• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性

    彭女佳 何生 郝芳 何希鹏 张培先 翟刚毅 包书景 何陈诚 杨锐

    彭女佳, 何生, 郝芳, 何希鹏, 张培先, 翟刚毅, 包书景, 何陈诚, 杨锐, 2017. 川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性. 地球科学, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092
    引用本文: 彭女佳, 何生, 郝芳, 何希鹏, 张培先, 翟刚毅, 包书景, 何陈诚, 杨锐, 2017. 川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性. 地球科学, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092
    Peng Nüjia, He Sheng, Hao Fang, He Xipeng, Zhang Peixian, Zhai Gangyi, Bao Shujing, He Chencheng, Yang Rui, 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092
    Citation: Peng Nüjia, He Sheng, Hao Fang, He Xipeng, Zhang Peixian, Zhai Gangyi, Bao Shujing, He Chencheng, Yang Rui, 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092

    川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性

    doi: 10.3799/dqkx.2017.092
    基金项目: 

    国家基础地质调查项目 12120114046901

    高等学校创新引智计划 B14031

    国家自然科学基金重大项目 41690134

    国家重大油气专项 2016ZX05034-002-003

    中国地质调查局油气基础性公益性地质调查项目 DD20160185

    详细信息
      作者简介:

      彭女佳(1990-), 女, 博士研究生, 主要从事页岩气研究.ORCID:0000-0002-8803-6731.E-mail:nyujiapeng@cug.edu.cn

      通讯作者:

      何生, ORCID:0000-0001-5403-5899.E-mail:shenghe@cug.edu.cn

    • 中图分类号: P618.12

    The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan

    • 摘要: 页岩孔隙结构及差异性是页岩含气性和产能评价的基础性问题.针对川东南彭水地区五峰组与龙马溪组页岩的孔隙结构已有若干研究成果,然而在页岩孔隙结构差异性和有机孔定量特征方面还缺乏研究.利用低温低压氮气吸附测定和氩离子抛光-场发射扫描电镜(FE-EM)技术,对页岩样品纳米孔隙进行了二维观察与统计以及分形特征计算,研究了3nm至几百nm页岩孔径范围的孔隙结构及其差异性.研究区五峰组-龙马溪组页岩有机孔十分发育;氮气吸附测定页岩孔隙形状包含开放型圆筒状、层状结构狭缝状和墨水瓶状等;扫描电镜观察有机孔形态主要有近圆形、椭圆形和多角形等.五峰组和龙马溪组页岩孔隙结构具有明显的差异性,主要体现在孔径大小、形态和数量上.氮气吸附测定表明,五峰组页岩孔隙比表面积和总孔容较龙马溪组大,微孔所占总孔的比例也较高;五峰组页岩孔径相对龙马溪组更细窄.扫描电镜二维图像观察与统计结果表明,五峰组有机孔径以小于3nm为主,形态以多角形为主;龙马溪组有机孔径以小于0nm为主,形态多呈近圆形和椭圆形.五峰组页岩的分形维值大于龙马溪组页岩,说明前者孔隙复杂程度较高.

       

    • 图  1  研究区位置(a),川东南彭水地区构造位置(b)和构造剖面(c)

      修改自Pan et al.(2016)

      Fig.  1.  Location of the study area (a), tectonic location (b) and profile (c) of Pengshui area in southeastern Sichuan

      图  2  PY1井地层柱状图

      Fig.  2.  Stratigraphic column of well PY1

      图  3  页岩样品氮气吸附-脱附曲线

      Fig.  3.  N2 adsorption-desorption isotherms of shale samples

      图  4  IUPAC吸附等温线与脱附迟滞分类

      修改自Thommes et al.(2015);a.物理吸附等温线分类;b.脱附迟滞分类

      Fig.  4.  IUPAC classification of isotherms and hysteresis

      图  5  页岩平均孔径与孔隙体积关系

      Fig.  5.  The relationship between average pore diameter and pore volume of shale samples

      图  6  PY1井页岩样品纳米孔缝类型

      a.有机孔,孔隙长轴方向与有机质延伸方向基本一致,PY1井2 100.80 m;b.有机孔,孔隙长轴方向与有机质边缘基本平行,PY1井2 153.19 m;c.较大有机孔内有较小有机孔相连通,PY1井2 129.73 m;d.充填在矿物颗粒之间不规则有机质,发育大量椭圆状、扁长形有机孔,脆性矿物边缘发育粒间孔,内部有粒内孔,PY1井2 158.12 m;e.充填在矿物颗粒之间不规则有机质,有机质内发育大量有机孔,矿物颗粒内发育少量粒内孔,PY1井2 153.19 m;f.页岩中孔隙发育复杂,溶蚀孔发育, 黄铁矿与石英颗粒间存在粒间孔,碎屑颗粒与粘土矿物间存在贴粒缝,PY1井2 129.73 m;g.充填在草莓状黄铁矿晶体之间的有机质,发育大量不规则晶间-有机质复合孔,PY1井2 144.77 m;h.矿物结晶微裂缝,最宽处裂缝可达188.6 nm,PY1井2 100.80 m;i.构造微裂缝,PY1井2 129.73 m

      Fig.  6.  Pore types of shale samples from well PY1

      图  7  PY1井有机孔孔隙特征统计图

      a.有机孔孔径分布直方图;b.有机孔圆度系数分布直方图

      Fig.  7.  Statistical graph of organic pore characteristics in well PY1

      图  8  五峰组-龙马溪组页岩有机孔隙形态对比

      a.12万倍下龙马溪组典型有机孔扫描电镜图像,孔径相对较大,形态呈椭圆、近圆形;b.图a处理图,红色区域为有机孔;c.25万倍下龙马溪组典型有机孔扫描电镜图像;d.图c处理图,红色区域为有机孔;e.12万倍下五峰组典型有机孔扫描电镜图像,孔径相对较小,形态呈椭圆、扁长、菱角状;f.图e处理图,红色区域为有机孔;g.25万倍下五峰组典型有机孔扫描电镜图像;h.图g处理图,红色区域为有机孔;i.图a和图e为12万倍下有机孔圆度系数对比;j.图c和图g为25万倍下有机孔圆度系数对比

      Fig.  8.  Organic pore shapes comparison between Wufeng Formation and Longmaxi Formation

      图  9  基于氮气吸附曲线的分维关系

      Fig.  9.  Fractal dimension relationship from N2 adsorption isotherms

      图  10  五峰组(a)和龙马溪组(b)有机孔孔隙周长与面积分维关系

      Fig.  10.  Fractal dimension relationship of organic pore perimeter and area in Wufeng Formation (a) and Longmaxi Formation (b)

      表  1  页岩样品地化参数和矿物组成特征

      Table  1.   Geochemical parameters and mineral composition of shale samples

      样品编号深度(m)层位岩相TOC (%) 矿物组成(%)
      粘土石英长石碳酸盐黄铁矿
      PY1-12 100.80龙马溪组富泥/硅混合质页岩0.8229.436.616.915.21.9
      PY1-22 129.73龙马溪组富泥/硅混合质页岩1.2737.936.414.77.63.4
      PY1-32 138.08龙马溪组富泥/硅混合质页岩2.3425.940.812.315.95.1
      PY1-42 144.77龙马溪组富泥硅质页岩3.0725.443.19.517.54.5
      PY1-52 153.19五峰组富泥硅质页岩3.2725.955.89.64.34.4
      PY1-62 158.12五峰组富泥/硅混合质页岩3.9241.839.610.55.32.8
      下载: 导出CSV

      表  2  页岩样品孔隙结构参数

      Table  2.   Pore structure parameters of shale samples

      样品编号深度(m)层位BET比表面积(m2/g)BJH总孔容(mL/g)t-plot微孔比表面积(m2/g)t-plot微孔孔容(mL/g)微孔比表面比例(%)微孔孔容比例(%)
      PY1-12 100.80龙马溪组8.229 90.009 8622.859 00.001 21734.7412.34
      PY1-22 129.73龙马溪组10.240 80.012 0673.641 30.001 54835.5612.83
      PY1-32 138.08龙马溪组15.936 10.016 7186.417 60.002 74440.2716.41
      PY1-42 144.77龙马溪组16.662 40.017 1476.774 40.002 90540.6616.94
      PY1-52 153.19五峰组17.648 80.017 8507.213 00.003 09540.8717.34
      PY1-62 158.12五峰组21.102 20.017 7789.632 40.004 14745.6523.33
      下载: 导出CSV

      表  3  基于FHH模型的吸附孔孔隙分维值计算结果

      Table  3.   Calculation results of adsorption pore fractal dimension obtained from FHH model

      样品编号层位吸附体积与孔径双对数关系1相关系数R2分维值D1吸附体积与孔径双对数关系2相关系数R2分维值D2吸附体积与孔径双对数关系3相关系数R2分维值D3
      PY1-1龙马溪组y=1.245 3-0.081 0x0.994 82.919 0y=0.993 3-0.163 4x0.997 32.836 6y=0.974 8-0.307 3x0.995 22.692 7
      PY1-2龙马溪组y=1.504 7-0.069 2x0.989 72.930 8y=1.206 9-0.164 4x0.997 32.835 6y=1.191 5-0.306 2x0.993 52.693 8
      PY1-3龙马溪组y=1.957 0-0.043 4x0.995 92.956 6y=1.644 8-0.151 5x0.992 52.848 5y=1.627 0-0.290 1x0.992 02.709 9
      PY1-4龙马溪组y=2.040 5-0.031 9x0.995 82.968 1y=1.688 9-0.156 8x0.988 62.843 2y=1.669 8-0.283 7x0.991 22.716 3
      PY1-5五峰组y=2.098 0-0.027 0x0.995 42.973 0y=1.751 8-0.152 1x0.983 52.847 9y=1.727 2-0.282 7x0.991 62.717 3
      PY1-6五峰组y=2.097 7-0.029 1x0.996 42.970 9y=1.913 5-0.097 0x0.978 12.903 0y=1.891 8-0.256 0x0.985 82.744 0
      下载: 导出CSV
    • [1] Cardott, B.J., Landis, C.R., Curtis, M.E., 2015.Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway.International Journal of Coal Geology, 139:106-113.doi: 10.1016/j.coal.2014.08.012
      [2] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052
      [3] Chen, B., Pi, D.C., 2009.Silurian Longmaxi Shale Gas Potential Analysis in Middle & Upper Yangtze Region.China Petroleum Exploration, 14(3):15-19 (in Chinese with English abstract).
      [4] Chen, Y.Y., Zou, C.N., Mastalerz, M., et al., 2015.Porosity and Fractal Characteristics of Shale across a Maturation Gradient.Natural Gas Geoscience, 26(9):1646-1656 (in Chinese with English abstract). doi: 10.1111/1755-6724.12302_7
      [5] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d
      [6] Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31.doi: 10.1016/j.coal.2012.08.004
      [7] Dathe, A., Eins, S., Niemeyer, J., et al., 2001.The Surface Fractal Dimension of the Soil-Pore Interface as Measured by Image Analysis.Geoderma, 103(1-2):203-229.doi: 10.1016/s0016-7061(01)00077-5
      [8] Dong, T., Harris, N.B., Ayranci, K., et al., 2015.Porosity Characteristics of the Devonian Horn River Shale, Canada:Insights from Lithofacies Classification and Shale Composition.International Journal of Coal Geology, 141-142:74-90.doi: 10.1016/j.coal.2015.03.001
      [9] Fu, C.Q., Zhu, Y.M., Chen, S.B., 2016.Pore Structure and Fractal Features of Hetang Formation Shale in Western Zhejiang.Journal of China University of Mining & Technology, 45(1):77-86 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201601012.htm
      [10] Guo, Y.H., Zhao, D.F., 2015.Analysis of Micro-Scale Heterogeneity Characteristics in Marine Shale Gas Reservoir.Journal of China University of Mining & Technology, 44(2):300-307 (in Chinese with English abstract). https://www.researchgate.net/publication/282709896_Analysis_of_micro-scale_heterogeneity_characteristics_in_marine_shale_gas_reservoir
      [11] Hou, Y.G., He, S., Yi, J.Z., et al., 2014.Effect of Pore Structure on Methane Sorption Capacity of Shales.Petroleum Exploration and Development, 41(2):248-256 (in Chinese with English abstract). https://max.book118.com/html/2014/1230/10960279.shtm
      [12] Hu, Z.Q., Du, W., Peng, Y.M., et al., 2015.Microscopic Pore Characteristics and the Source-Reservoir Relationship of Shale—A Case Study from the Wufeng and Longmaxi Formations in Southeast Sichuan Basin.Oil & Gas Geology, 36(6):1001-1008 (in Chinese with English abstract).
      [13] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [14] Ji, W.M., Song, Y., Jiang, Z.X., et al., 2016.Micro-Nano Pore Structure Characteristics and Its Control Factors of Shale in Longmaxi Formation, Southeastern Sichuan Basin.Acta Petrolei Sinica, 37(2):182-195 (in Chinese with English abstract).
      [15] Liu, W., Yu, Q., Yan, J.F., et al., 2012.Characteristics of Organic-Rich Mudstone Reservoirs in the Silurian Longmaxi Formation in Upper Yangtze Region.Oil & Gas Geology, 33(3):346-352 (in Chinese with English abstract).
      [16] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      [17] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309.doi: 10.1016/j.marpetgeo.2016.04.024
      [18] Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005.Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas:Gas-Shale Play with Multi-Trillion Cubic Foot Potential.AAPG Bulletin, 89(2):155-175.doi: 10.1306/09170404042
      [19] Pan, L., Xiao, X.M., Tian, H., et al., 2016.Geological Models of Gas in Place of the Longmaxi Shale in Southeast Chongqing, South China.Marine and Petroleum Geology, 73:433-444.doi: 10.1016/j.marpetgeo.2016.03.018
      [20] Passey, Q.R., Bohacs, K., Esch, W.L., et al., 2010.From Oil-Prone Source Rock to Gas-Producing Shale Reservoir-Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs.International Oil and Gas Conference and Exhibition, Beijing, SPE 131350.doi:10.2118/131350-ms
      [21] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      [22] Thommes, M., Kaneko, K., Neimark, A.V., et al., 2015.Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report).Pure and Applied Chemistry, 87(9-10):1051-1069.doi: 10.1515/pac-2014-1117
      [23] Wang, F.Y., He, Z.Y., Meng, X.H., et al., 2011.Occurrence of Shale Gas and Prediction of Original Gas In-Place (Ogip).Natural Gas Geoscience, 22(3):501-510 (in Chinese with English abstract).
      [24] Wang, L., Chen, Y.Y., Liu, Y.X., 2014.Shale Porous Structural Characteristics of Longmaxi Formation in Pengshui Area of Southeast Sichuan Basin.China Petroleum Exploration, 19(5):80-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201405009.htm
      [25] Wang, L., Zhang, X.D., Liu, Y.X., 2015.Study of Ar Ion Milling/SEM Analysis on Uncoated Shale Samples.Journal of Chinese Electron Microscopy Society, 34(1):33-39 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzxwxb2015010007
      [26] Wang, Y., Zhu, Y.M., Chen, S.B., et al., 2013.Formation Conditions of Shale Gas in Lower Cambrian Niutitang Formation, Northwestern Hunan.Journal of China University of Mining & Technology, 42(4):586-594 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201304013.htm
      [27] Wang, Y.M., Dong, D.Z., Li, J.Z., et al., 2012.Reservoir Characteristics of Shale Gas in Longmaxi Formation of the Lower Silurian, Southern Sichuan.Acta Petrolei Sinica, 33(4):551-561 (in Chinese with English abstract). doi: 10.1038/aps.2012.9
      [28] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [29] Xiao, H., 2014.Study on Shale Reservoir Characteristics and Quantitative Characterization of Longmaxi Formation in Pengshui Area (Dissertation).Northeast Petroleum University, Daqing (in Chinese with English abstract).
      [30] Yang, R., He, S., Yi, J.Z., et al., 2016a.Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry.Marine and Petroleum Geology, 70:27-45.doi: 10.1016/j.marpetgeo.2015.11.019
      [31] Yang, R., He, S., Hu, Q.H., et al., 2016b.Pore Characterization and Methane Sorption Capacity of Over-Mature Organic-Rich Wufeng and Longmaxi Shales in the Southeast Sichuan Basin, China.Marine and Petroleum Geology, 77:247-261.doi: 10.1016/j.marpetgeo.2016.06.001
      [32] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [33] Zhang, Q., Liu, R.H., Pang, Z.L., et al., 2016.Characterization of Microscopic Pore Structures in Lower Silurian Black Shale(S1l), Southeastern Chongqing, China.Marine and Petroleum Geology, 71:250-259.doi: 10.1016/j.marpetgeo.2015.12.015
      [34] Zhou, D.H., Jiao, F.Z., Guo, X.S., et al., 2013.Geological Features of the Lower Jurassic Shale Gas Play in Fuling Area, the Southeastern Sichuan Basin.Oil & Gas Geology, 34(4):450-454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201304006.htm
      [35] 陈波, 皮定成, 2009.中上扬子地区志留系龙马溪组页岩气资源潜力评价.中国石油勘探, 14(3): 15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200903005.htm
      [36] 陈燕燕, 邹才能, Mastalerz, M., 等, 2015.页岩微观孔隙演化及分形特征研究.天然气地球科学, 26(9): 1646-1656. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509005.htm
      [37] 付常青, 朱炎铭, 陈尚斌, 2016.浙西荷塘组页岩孔隙结构及分形特征研究.中国矿业大学学报, 45(1): 77-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601012.htm
      [38] 郭英海, 赵迪斐, 2015.微观尺度海相页岩储层微观非均质性研究.中国矿业大学学报, 44(2): 300-307. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502014.htm
      [39] 侯宇光, 何生, 易积正, 等, 2014.页岩孔隙结构对甲烷吸附能力的影响.石油勘探与开发, 41(2): 248-256. doi: 10.11698/PED.2014.02.17
      [40] 胡宗全, 杜伟, 彭勇民, 等, 2015.页岩微观孔隙特征及源-储关系——以川东南地区五峰组-龙马溪组为例.石油与天然气地质, 36(6): 1001-1008. doi: 10.11743/ogg20150615
      [41] 纪文明, 宋岩, 姜振学, 等, 2016.四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素.石油学报, 37(2): 182-195. doi: 10.7623/syxb201602004
      [42] 刘伟, 余谦, 闫剑飞, 等, 2012.上扬子地区志留系龙马溪组富有机质泥岩储层特征.石油与天然气地质, 33(3): 346-352. doi: 10.11743/ogg20120303
      [43] 王飞宇, 贺志勇, 孟晓辉, 等, 2011.页岩气赋存形式和初始原地气量(OGIP)预测技术.天然气地球科学, 22(3): 501-510. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103019.htm
      [44] 王亮, 陈云燕, 刘玉霞, 2014.川东南彭水地区龙马溪组页岩孔隙结构特征.中国石油勘探, 19(5): 80-88. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201405009.htm
      [45] 王亮, 章雄冬, 刘玉霞, 2015.不镀膜页岩样品的氩离子抛光/扫描电镜分析方法研究.电子显微学报, 34(1): 33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201501006.htm
      [46] 王阳, 朱炎铭, 陈尚斌, 等, 2013.湘西北下寒武统牛蹄塘组页岩气形成条件分析.中国矿业大学学报, 42(4): 586-594. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304013.htm
      [47] 王玉满, 董大忠, 李建忠, 等, 2012.川南下志留统龙马溪组页岩气储层特征.石油学报, 33(4): 551-561. doi: 10.7623/syxb201204003
      [48] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [49] 肖红, 2014. 彭水区块龙马溪组页岩储层特征及其定量表征研究(硕士学位论文). 大庆: 东北石油大学. http://cdmd.cnki.com.cn/Article/CDMD-10220-1014389933.htm
      [50] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [51] 周德华, 焦方正, 郭旭升, 等, 2013.川东南涪陵地区下侏罗统页岩油气地质特征.石油与天然气地质, 34(4): 450-454. doi: 10.11743/ogg20130404
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  5102
    • HTML全文浏览量:  1896
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-20
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回