Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing
-
摘要: 目前对优势页岩岩相的划分尚缺乏明确的标准.另外,合理连接不同孔隙测试方法的结果,实现页岩的全孔径孔隙结构定量化表征,成为现阶段亟待解决的关键问题.基于页岩的有机质丰度和矿物组分建立了岩相划分方案,查明了渝东南下志留统龙马溪组页岩发育硅质页岩、混合质页岩和粘土质页岩3类,根据有机质丰度将每类页岩细分为富、含和贫有机质等共计9种岩相,在此基础上开展了低压N2吸附和高压压汞实验.研究区龙马溪组中富有机质页岩孔径呈现多峰分布特征,主要孔径峰值位于2~3nm、70~90nm和200~300nm,页岩的孔体积主要来源于中孔(2~0nm)和宏孔(>0nm),比表面积主要来自中孔和微孔( < 2nm);对于孔体积贡献,微孔最高可占12%,中孔占3%,宏孔占2%.对于孔面积贡献,微孔最高占47%,中孔占7%,宏孔占11%.随着粘土矿物含量升高,在200~400nm范围内孔体积显著升高.中孔和宏孔贡献了超过90%的孔体积,微孔和中孔贡献了超过90%的比表面积.富有机质硅质页岩微孔比例高,对比表面积贡献高,孔体积和比表面积最大,有利于页岩气富集,是最有利的页岩岩相.Abstract: The favorable facies classification for shale has not been established so far, and it is a key issue in shale gas evaluation to characterize the full scale pore size distribution by reasonable relating of different results. In this study, lithofacies classification is established based on TOC and XRD experiments on cores. There are 9 types of lithofacies, namely the Organic-rich siliceous shale (ORS), Organic-rich mixed shale (ORM), Organic-rich argillaceous shale (ORA), Organic-fair siliceous shale (OMS), Organic-fair mixed shale (OMM), Organic-fair argillaceous shale (OMA), Organic-poor siliceous shale (OPS), Organic-poor mixed shale (OPM), and Organic-poor argillaceous shale (OPA) develop in southeastern Chongqing. Low pressure nitrogen adsorption and high pressure mercury intrusion experiments are conducted to quantitatively characterize the full scale pore size distribution. It is found that spectrum of pore size distribution for ORS have multiple peaks at 2-3nm, 70-90nm and 200-300nm, and the peak shifts to the small pore size when the TOC value increases. Mesopores and macropores have the largest proportion in pore volumes, whereas mesopores and micropores take the largest part of the pore surface areas. The pore volume percentage of micropore, mesopore and marcropore is 12%, 53%, and 52% respectively, and the pore surface area percentage of micro pore, mesopore and marcropore is 47%, 57%, and 11% respectively. The volume of 200-400nm pore obviously increases when clay mineral content increases. The contribution to the surface area is over 90% for micropores and mesopores. The contribution to the pore volume is over 90% for mesopores and marcropores. The organic-rich siliceous shale, which has the largest pore volume and surface area, is the most favourable lithofacies for shale gas enrichment.
-
Key words:
- southeastern Chongqing /
- Longmaxi Formation /
- shale lithofacies /
- siliceous shale /
- pore structure /
- petroleum geology
-
表 1 渝东南下志留统龙马溪组页岩岩相特征
Table 1. Lithofacies characteristics of the Longmaxi Formation shale in southeastern Chongqing
井号 埋深(m) TOC (%) 矿物组分(%) 岩相类型 岩相代号 石英 长石 碳酸盐岩 粘土矿物 黄铁矿 CY-1 2 410.1 3.7 54.2 22.5 9.5 8.6 3.9 富有机质硅质页岩 ORS CY-2 718.6 2.3 36.5 14.4 15.9 27.6 4.2 富有机质混合质页岩 ORM CY-2 751.2 2.6 35.6 11.3 7.6 41.2 3.8 富有机质粘土质页岩 ORA CY-4 782.0 1.4 44.5 17.0 9.2 25.1 3.3 含有机质硅质页岩 OMS CY-4 756.6 1.3 36.7 17.6 15.1 23.9 4.0 含有机质混合质页岩 OMM CY-3 775.0 1.3 33.2 14.5 6.9 41.0 3.1 含有机质粘土质页岩 OMA CY-6 818.0 0.7 44.9 18.6 8.1 25.7 1.7 贫有机质硅质页岩 OPS CY-5 761.0 0.6 38.9 21.3 17.5 19.6 1.8 贫有机质混合质页岩 OPM CY-6 763.0 0.6 36.4 10.8 3.8 45.4 2.1 贫有机质粘土质页岩 OPA 表 2 渝东南下志留统龙马溪组不同岩相页岩孔隙比例
Table 2. Proportion of pore size of the Longmaxi Formation shale in southeastern Chongqing
井号 埋深(m) TOC (%) 岩相代号 孔体积比例(%) 孔体积(mL/g) 孔比表面积比例(%) 孔比表面积(m2/g) 微孔 中孔 宏孔 微孔 中孔 宏孔 CY-1 2 410.1 3.7 ORS 12 36 52 0.031 47 48 5 18.75 CY-2 718.6 2.3 ORM 8 42 50 0.042 44 49 7 25.64 CY-2 751.2 2.6 ORA 6 45 49 0.024 46 43 11 18.35 CY-4 782.0 1.4 OMS 6 44 52 0.035 41 52 7 9.86 CY-4 756.6 1.3 OMM 7 53 40 0.028 42 52 6 6.77 CY-3 775.0 1.3 OMA 4 53 43 0.022 40 51 9 9.11 CY-6 818.0 0.7 OPS 3 52 45 0.009 39 57 4 5.70 CY-5 761.0 0.6 OPM 5 58 37 0.014 44 53 3 6.93 CY-6 763.0 0.6 OPA 8 40 54 0.018 40 55 5 10.58 -
[1] Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116 [2] Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018 [3] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052 [4] Chen, L., Jiang, Z.X., Xing, J.Y., et al., 2014.The Reservoir Characteristics and Evaluation of Xinchang Gas Field 28 Wells of Triassic Period Shale in West Sichuan Depression.Journal of Oil and Gas Technology, 36(5):25-31 (in Chinese with English abstract). [5] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2012.Structure Characteristics and Accumulation Significance of Nanopores in Longmaxi Shale Gas Reservoir in the Southern Sichuan Basin.Journal of China Coal Society, 37(3):438-444 (in Chinese with English abstract). [6] Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103(1):606-616.doi: 10.1016/j.fuel.2012.06.119 [7] Dong, D.Z., Zou, C.N., Li, J.Z., 2011.Resource Potential, Exploration and Development Prospect of Shale Gas in the Whole World.Geological Bulletin of China, 30(2):324-336 (in Chinese with English abstract). https://www.researchgate.net/publication/279558165_Resource_potential_exploration_and_development_prospect_of_shale_gas_in_the_whole_world [8] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). https://www.researchgate.net/publication/260213494_Formation_and_enrichment_mode_of_Jiaoshiba_shale_gas_field_Sichuan_Basin [9] Guo, X.S., 2014.Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China—Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract). [10] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068 [11] Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012.Experiments on Methane Adsorption of Common Clay Minerals in Shale.Earth Science, 37(5):1043-1050 (in Chinese with English abstract). [12] Jiang, Z.X., Tang, X.L., Cheng, L.J., et al., 2015.Characterization and Origin of the Silurian Wufeng-Longmaxi Formation Shale Multiscale Heterogeneity in Southeastern Sichuan Basin, China.Interpretation, 3(2):SJ61-SJ74.doi: 10.1190/int-2014-0151.1 [13] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061 [14] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059 [15] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340.doi: 10.1306/10240808059 [16] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048 [17] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004 [18] Tang, X.L., Jiang, Z.X., Li, Z., et al., 2015.The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 23:464-473.doi: 10.1016/j.jngse.2015.02.031 [19] Wang, G.C., Carr, T.R., 2012.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers and Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011 [20] Wang, G.C., Ju, Y.W., Yan, Z.F., et al., 2015.Pore Structure Characteristics of Coal-Bearing Shale Using Fluid Invasion Methods:A Case Study in the Huainan-Huaibei Coalfield in China.Marine and Petroleum Geology, 62:1-13.doi: 10.1016/j.marpetgeo.2015.01.001 [21] Wang, S.J., Wang, L.S., Huang, J.L., et al., 2009.Accumulation Conditions of Shale Gas Reservoirs in Silurian of the Upper Yangtze Region.Natural Gas Industry, 29(5):45-50, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200905009.htm [22] Wu, S.T., Zou, C., N., Zhu, R.K., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm [23] Xiao, X.M., Song, Z.G., Zhu, Y.M., et al., 2013.Summary of Shale Gas Research in North American and Revelations to Shale Gas Exploration of Lower Paleozoic Strata in China South Area.Journal of China Coal Society, 38(5):721-727 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00001 [24] Xie, X.N., Li, H.J., Xiong, X., et al., 2008.Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan.Journal of Earth Science, 19(5):507-517.doi: 10.1016/s1002-0705(08)60056-4 [25] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [26] Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1823 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales [27] Zhao, J.Z., Wang, S., Li, Y.M., 2012.The Key Problems and Technology of Shale Gas Reservoir Fracturing.Natural Gas Industry, 32(4):46-49 (in Chinese with English abstract). [28] 陈磊, 姜振学, 邢金艳, 等, 2014.川西坳陷新场28井上三叠统须五段页岩气储层特征研究及评价.石油天然气学报, 36(5): 25-31. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201405006.htm [29] 陈尚斌, 朱炎铭, 王红岩, 等, 2012.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义.煤炭学报, 37(3): 438-444. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203015.htm [30] 董大忠, 邹才能, 李建忠, 等, 2011.页岩气资源潜力与勘探开发前景.地质通报, 30(2): 324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201505043.htm [31] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03 [32] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7): 1209-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [33] 吉利明, 邱军利, 张同伟, 等, 2012.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学, 37(5): 1043-1050. http://www.earth-science.net/WebPage/Article.aspx?id=2308 [34] 王社教, 王兰生, 黄金亮, 等, 2009.上扬子区志留系页岩气成藏条件.天然气工业, 29(5): 45-50, 137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106012.htm [35] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188 [36] 肖贤明, 宋之光, 朱炎铭, 等, 2013.北美页岩气研究及对我国下古生界页岩气开发的启示.煤炭学报, 38(5): 721-727. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305002.htm [37] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [38] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189 [39] 赵金洲, 王松, 李勇明, 2012.页岩气藏压裂改造难点与技术关键.天然气工业, 32(4): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204014.htm