• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制

    李卓 姜振学 唐相路 王朋飞 黄璞 王国臻

    李卓, 姜振学, 唐相路, 王朋飞, 黄璞, 王国臻, 2017. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
    引用本文: 李卓, 姜振学, 唐相路, 王朋飞, 黄璞, 王国臻, 2017. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
    Li Zhuo, Jiang Zhenxue, Tang Xianglu, Wang Pengfei, Huang Pu, Wang Guozhen, 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
    Citation: Li Zhuo, Jiang Zhenxue, Tang Xianglu, Wang Pengfei, Huang Pu, Wang Guozhen, 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090

    渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制

    doi: 10.3799/dqkx.2017.090
    基金项目: 

    中国地质调查局项目 12120114046201

    国家自然科学基金项目 41502123

    中国石油大学(北京)科研基金 2462013YJRC044

    详细信息
      作者简介:

      李卓(1983-), 男, 助理研究员, 主要从事非常规油气储层预测与评价方面的研究.ORCID:0000-0001-9635-9840.E-mail:zhuo.li@cup.edu.cn

      通讯作者:

      姜振学, ORCID:0000-0001-9882-6983.E-mail:jiangzx@cup.edu.cn

    • 中图分类号: P618.13

    Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing

    • 摘要: 目前对优势页岩岩相的划分尚缺乏明确的标准.另外,合理连接不同孔隙测试方法的结果,实现页岩的全孔径孔隙结构定量化表征,成为现阶段亟待解决的关键问题.基于页岩的有机质丰度和矿物组分建立了岩相划分方案,查明了渝东南下志留统龙马溪组页岩发育硅质页岩、混合质页岩和粘土质页岩3类,根据有机质丰度将每类页岩细分为富、含和贫有机质等共计9种岩相,在此基础上开展了低压N2吸附和高压压汞实验.研究区龙马溪组中富有机质页岩孔径呈现多峰分布特征,主要孔径峰值位于2~3nm、70~90nm和200~300nm,页岩的孔体积主要来源于中孔(2~0nm)和宏孔(>0nm),比表面积主要来自中孔和微孔( < 2nm);对于孔体积贡献,微孔最高可占12%,中孔占3%,宏孔占2%.对于孔面积贡献,微孔最高占47%,中孔占7%,宏孔占11%.随着粘土矿物含量升高,在200~400nm范围内孔体积显著升高.中孔和宏孔贡献了超过90%的孔体积,微孔和中孔贡献了超过90%的比表面积.富有机质硅质页岩微孔比例高,对比表面积贡献高,孔体积和比表面积最大,有利于页岩气富集,是最有利的页岩岩相.

       

    • 图  1  渝东南地区构造位置(a)及井位分布(b)

      Fig.  1.  Tectonic characteristics (a) and wells distribution (b) of southeastern Chongqing

      图  2  海相页岩岩相划分方案

      Clay.粘土矿物;Ca.碳酸盐矿物,主要包括方解石和白云石;Si.石英;Ⅰ.粘土质页岩;Ⅱ.钙质页岩;Ⅲ.混合质页岩;Ⅳ.硅质页岩

      Fig.  2.  The lithofacies classification of marine shale

      图  3  渝东南下志留统龙马溪组页岩矿物组成

      Fig.  3.  The mineral composition of the Longmaxi Formation shale in southeastern Chongqing

      图  4  基于高压压汞法表征渝东南地区龙马溪组页岩孔径分布

      Fig.  4.  Pore size distribution calculated using mercury intrusion data for Longmaxi Formation shale in southeastern Chongqing

      图  5  基于低压N2法表征渝东南地区龙马溪组页岩孔径变化率分布

      Fig.  5.  Incremental pore volume calculated using N2 adsorption data for Longmaxi Formation shale in southeastern Chongqing

      图  6  基于低压N2法表征渝东南地区龙马溪组页岩孔径分布

      Fig.  6.  Pore size distribution calculated using N2 adsorption data for Longmaxi Formation shale in southeastern Chongqing

      图  7  渝东南地区龙马溪组页岩全尺度孔径分布特征

      Fig.  7.  Full scale pore size distribution characteristics for Longmaxi Formation shale in southeastern Chongqing

      图  8  渝东南下志留统龙马溪组不同岩相页岩孔隙比例

      Fig.  8.  Proportion of pore size of the Longmaxi Formation shale in southeastern Chongqing

      表  1  渝东南下志留统龙马溪组页岩岩相特征

      Table  1.   Lithofacies characteristics of the Longmaxi Formation shale in southeastern Chongqing

      井号埋深(m)TOC (%) 矿物组分(%)岩相类型岩相代号
      石英长石碳酸盐岩粘土矿物黄铁矿
      CY-12 410.13.754.222.59.58.63.9富有机质硅质页岩ORS
      CY-2718.62.336.514.415.927.64.2富有机质混合质页岩ORM
      CY-2751.22.635.611.37.641.23.8富有机质粘土质页岩ORA
      CY-4782.01.444.517.09.225.13.3含有机质硅质页岩OMS
      CY-4756.61.336.717.615.123.94.0含有机质混合质页岩OMM
      CY-3775.01.333.214.56.941.03.1含有机质粘土质页岩OMA
      CY-6818.00.744.918.68.125.71.7贫有机质硅质页岩OPS
      CY-5761.00.638.921.317.519.61.8贫有机质混合质页岩OPM
      CY-6763.00.636.410.83.845.42.1贫有机质粘土质页岩OPA
      下载: 导出CSV

      表  2  渝东南下志留统龙马溪组不同岩相页岩孔隙比例

      Table  2.   Proportion of pore size of the Longmaxi Formation shale in southeastern Chongqing

      井号埋深(m)TOC (%)岩相代号孔体积比例(%)孔体积(mL/g)孔比表面积比例(%)孔比表面积(m2/g)
      微孔中孔宏孔微孔中孔宏孔
      CY-12 410.13.7ORS1236520.0314748518.75
      CY-2718.62.3ORM842500.0424449725.64
      CY-2751.22.6ORA645490.02446431118.35
      CY-4782.01.4OMS644520.035415279.86
      CY-4756.61.3OMM753400.028425266.77
      CY-3775.01.3OMA453430.022405199.11
      CY-6818.00.7OPS352450.009395745.70
      CY-5761.00.6OPM558370.014445336.93
      CY-6763.00.6OPA840540.0184055510.58
      下载: 导出CSV
    • [1] Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116
      [2] Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018
      [3] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052
      [4] Chen, L., Jiang, Z.X., Xing, J.Y., et al., 2014.The Reservoir Characteristics and Evaluation of Xinchang Gas Field 28 Wells of Triassic Period Shale in West Sichuan Depression.Journal of Oil and Gas Technology, 36(5):25-31 (in Chinese with English abstract).
      [5] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2012.Structure Characteristics and Accumulation Significance of Nanopores in Longmaxi Shale Gas Reservoir in the Southern Sichuan Basin.Journal of China Coal Society, 37(3):438-444 (in Chinese with English abstract).
      [6] Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103(1):606-616.doi: 10.1016/j.fuel.2012.06.119
      [7] Dong, D.Z., Zou, C.N., Li, J.Z., 2011.Resource Potential, Exploration and Development Prospect of Shale Gas in the Whole World.Geological Bulletin of China, 30(2):324-336 (in Chinese with English abstract). https://www.researchgate.net/publication/279558165_Resource_potential_exploration_and_development_prospect_of_shale_gas_in_the_whole_world
      [8] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). https://www.researchgate.net/publication/260213494_Formation_and_enrichment_mode_of_Jiaoshiba_shale_gas_field_Sichuan_Basin
      [9] Guo, X.S., 2014.Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China—Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract).
      [10] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [11] Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012.Experiments on Methane Adsorption of Common Clay Minerals in Shale.Earth Science, 37(5):1043-1050 (in Chinese with English abstract).
      [12] Jiang, Z.X., Tang, X.L., Cheng, L.J., et al., 2015.Characterization and Origin of the Silurian Wufeng-Longmaxi Formation Shale Multiscale Heterogeneity in Southeastern Sichuan Basin, China.Interpretation, 3(2):SJ61-SJ74.doi: 10.1190/int-2014-0151.1
      [13] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      [14] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      [15] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340.doi: 10.1306/10240808059
      [16] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      [17] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004
      [18] Tang, X.L., Jiang, Z.X., Li, Z., et al., 2015.The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 23:464-473.doi: 10.1016/j.jngse.2015.02.031
      [19] Wang, G.C., Carr, T.R., 2012.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers and Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011
      [20] Wang, G.C., Ju, Y.W., Yan, Z.F., et al., 2015.Pore Structure Characteristics of Coal-Bearing Shale Using Fluid Invasion Methods:A Case Study in the Huainan-Huaibei Coalfield in China.Marine and Petroleum Geology, 62:1-13.doi: 10.1016/j.marpetgeo.2015.01.001
      [21] Wang, S.J., Wang, L.S., Huang, J.L., et al., 2009.Accumulation Conditions of Shale Gas Reservoirs in Silurian of the Upper Yangtze Region.Natural Gas Industry, 29(5):45-50, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200905009.htm
      [22] Wu, S.T., Zou, C., N., Zhu, R.K., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [23] Xiao, X.M., Song, Z.G., Zhu, Y.M., et al., 2013.Summary of Shale Gas Research in North American and Revelations to Shale Gas Exploration of Lower Paleozoic Strata in China South Area.Journal of China Coal Society, 38(5):721-727 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00001
      [24] Xie, X.N., Li, H.J., Xiong, X., et al., 2008.Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan.Journal of Earth Science, 19(5):507-517.doi: 10.1016/s1002-0705(08)60056-4
      [25] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      [26] Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1823 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      [27] Zhao, J.Z., Wang, S., Li, Y.M., 2012.The Key Problems and Technology of Shale Gas Reservoir Fracturing.Natural Gas Industry, 32(4):46-49 (in Chinese with English abstract).
      [28] 陈磊, 姜振学, 邢金艳, 等, 2014.川西坳陷新场28井上三叠统须五段页岩气储层特征研究及评价.石油天然气学报, 36(5): 25-31. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201405006.htm
      [29] 陈尚斌, 朱炎铭, 王红岩, 等, 2012.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义.煤炭学报, 37(3): 438-444. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203015.htm
      [30] 董大忠, 邹才能, 李建忠, 等, 2011.页岩气资源潜力与勘探开发前景.地质通报, 30(2): 324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201505043.htm
      [31] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03
      [32] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7): 1209-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
      [33] 吉利明, 邱军利, 张同伟, 等, 2012.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学, 37(5): 1043-1050. http://www.earth-science.net/WebPage/Article.aspx?id=2308
      [34] 王社教, 王兰生, 黄金亮, 等, 2009.上扬子区志留系页岩气成藏条件.天然气工业, 29(5): 45-50, 137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106012.htm
      [35] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [36] 肖贤明, 宋之光, 朱炎铭, 等, 2013.北美页岩气研究及对我国下古生界页岩气开发的启示.煤炭学报, 38(5): 721-727. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305002.htm
      [37] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [38] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      [39] 赵金洲, 王松, 李勇明, 2012.页岩气藏压裂改造难点与技术关键.天然气工业, 32(4): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204014.htm
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  3989
    • HTML全文浏览量:  1795
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-08
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回