Mechanisms of Shale Gas Generation from Typically Organic-Rich Marine Shales
-
摘要: 目前页岩生烃的评价体系主要停留在静态条件下,忽略了成烃的动态过程,不能正确评价页岩原始的生烃潜力.采用生烃动力学模拟实验方法,分别对一个相对低成熟的典型海相富有机质页岩及其干酪根样品开展封闭体系和半开放体系下的人工熟化,并对熟化后的两个系列样品进行黄金管生气动力学模拟实验.对裂解产物中气态烃化合物、轻烃类化合物以及碳同位素开展了定量分析,结果表明,甲烷生成过程被划分为4个阶段,即生油(小于1.0% EayRo)、凝析油生成(1.0%~1.% EayRo)、湿气生成(1.%~2.2% EayRo)和干气生成阶段(大于2.2% EayRo);页岩中甲烷的最大产率主要来自干酪根的初次裂解(占22.7%)、可排沥青(占7.6%)和残余沥青(占19.6%)的二次裂解;经过早期排烃作用的页岩样品仍有大量的可溶沥青,在高-过成熟阶段其可以与干酪根、不可溶沥青相互作用,成为晚期主要的页岩生气母质.Abstract: The evaluation system of shale hydrocarbon generation is mainly addressed in the static condition at present, ignoring the dynamic process of hydrocarbon generation. Consequently, the original hydrocarbon generation potential of the shale cannot be properly evaluated. In this study, a typically marine shale sample with relatively low maturity and its kerogen were artificially matured by a half closed pyrolysis system and a closed pyrolysis system. Samples with different maturity levels obtained from the two systems were then pyrolyzed for gas generation in sealed gold tubes (i. e., pyrolysis experiment in sealed gold tubes). The quantitative analysis based on the products of C1-C5 gases, C6-C12 light hydrocarbons and carbon isotopes of gases from the simulation experiments indicates that the generation process of methane in kerogen can be divided into four stages:oil-generation ( < 1.0% EasyRo), condensate-generation (1.0%-1.5% EasyRo), wet-gas-generation (1.5%-2.2% EasyRo) and dry-gas-stage (>2.2% EasyRo). Kerogen, expelled bitumen and residue bitumen contributes 22.7%, 57.6% and 19.6% of maximum yield of methane in shale, respectively. Abundant soluble bitumen still exists in the shale matrix after the hydrocarbon expulsion, which becomes the major source of shale gas by interacting with kerogen and insoluble bitumen at high maturity levels.
-
Key words:
- organic-rich shale /
- kinetics of hydrocarbon generation /
- hydrocarbon expulsion /
- kerogen /
- bitumen /
- geochemistry
-
表 1 封闭体系模拟样品的成熟度与TOC含量
Table 1. Maturity and TOC content of the whole rock and kerogen samples obtained from the closed pyrolysis system
样品代号 样品类型 成熟度(%) TOC(%) R 全岩(未抽提) 0.57 6.78 K0 干酪根(未抽提) 0.57 67.12 K1 干酪根(抽提过) 0.57 68.12 K2 干酪根(抽提过) 0.8 69.07 K3 干酪根(抽提过) 1.0 69.92 K4 干酪根(抽提过) 1.3 72.56 表 2 半封闭体系人工熟化实验条件与样品基本参数
Table 2. Experimental condition of artificially matured samples and basic parameters of samples with different maturity level in a half closed pyrolysis system
样品代号 成熟度(%) 温度(℃) 压力(MPa) 时间(h) 残余固体TOC(%) S1 0.7 300 50 66 4.55 S2 1.0 343 50 72 5.07 S3 1.3 370 50 65 3.56 S4 2.0 415 50 72 3.42 S5 2.5 442 50 72 2.86 S6 3.0 467 50 72 2.99 -
[1] Basim, F., Harold, W., Gary, A., 2004.Gas Potential of Selected Shale Formations in the Western Canadian Sedimentary Basin.Canadian Resources, 10(1):21-25. [2] Behar, F., Jarvie, D.M., 2013.Compositional Modeling of Gas Generation from Two Shale Gas Resource Systems:Barnett Shale (United States) and Posidonia Shale (Germany).AAPG Memoir, 103:25-44. doi: 10.1007/978-3-319-49634-4_6/fulltext.html [3] Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997.Thermal Cracking of Kerogen in Open and Closed Systems:Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation.Organic Geochemistry, 26(5-6):321-339.doi: 10.1016/s0146-6380(97)00014-4 [4] Berner, U., Faber, E., 1996.Empirical Carbon Isotope/Maturity Relationships for Gases from Algal Kerogens and Terrigenous Organic Matter, Based on Dry, Open-System Pyrolysis.Organic Geochemistry, 24(10-11):947-955.doi: 10.1016/s0146-6380(96)00090-3 [5] Chen, J.P., Zhao, W.Z., Xiao, Z.M., et al., 2007.A Discussion on the Upper Limit of Maturity for Gas Generation by Marine Kerogens and the Utmost of Gas Generative Potential:Taking the Study on the Tarim Basin as an Example.Chinese Science Bulletin, 52(S1):95-100 (in Chinese with English abstract). https://www.researchgate.net/publication/225622578_Gas_formation_mechanism_of_marine_carbonate_source_rocks_in_China [6] Chen, Z.F., Zhai X.X., 1997.Formation Mechanism of Conventional Crudes in Northern Tarim Basin.Experimental Petroleum Geology, 19(1):52-58 (in Chinese with English abstract). [7] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d [8] Dieckmann, V., Ondrak, R., Cramer, B., et al., 2006.Deep Basin Gas:New Insights from Kinetic Modelling and Isotopic Fractionation in Deep-Formed Gas Precursors.Marine and Petroleum Geology, 23(2):183-199.doi: 10.1016/j.marpetgeo.2005.08.002 [9] Dieckmann, V., Schenk, H.J., Horsfield, B., et al., 1998.Kinetics of Petroleum Generation and Cracking by Programmed-Temperature Closed-System Pyrolysis of Toarcian Shales.Fuel, 77(1-2):23-31.doi: 10.1016/s0016-2361(97)00165-8 [10] Ding, X.J., Liu, G.D., Huang, Z.L., et al., 2016.Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks.Earth Science, 41(5):832-842 (in Chinese with English abstract). https://www.researchgate.net/publication/304879937_Controlling_function_of_organic_matter_supply_and_preservation_on_formation_of_source_rocks [11] Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3):288-299, 308 (in Chinese with English abstract). https://www.researchgate.net/publication/284617068_Forming_conditions_and_characteristics_of_shale_gas_in_the_Lower_Paleozoic_of_the_Upper_Yangtze_region_China [12] Fang, C.C., Xiong, Y.Q., Liang, Q.Y., et al., 2012.Variation in Abundance and Distribution of Diamondoids during Oil Cracking.Organic Geochemistry, 47:1-8.doi: 10.1016/j.orggeochem.2012.03.003 [13] Geng, A.S., Liao, Z.W., 2002.Kinetic Studies of Asphaltene Pyrolyses and Their Geochemical Applications.Applied Geochemistry, 17(12):1529-1541.doi: 10.1016/s0883-2927(02)00053-7 [14] Hill, R.J., Zhang, E., Katz, B.J., et al., 2007.Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):501-521.doi: 10.1306/12060606063 [15] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068 [16] Li, S.F., Wang, S.L., Bi, J.X., et al., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW201501015.htm [17] Liao, Y.H., Geng, A.S., Liu, D.H., et al., 2007.Carbon Isotopic Fractionation Effect Caused by Maturity during the Generation of Coal-Pyrolysis Hydrocarbons.Petroleum Geology and Experiment, 29(6):583-588 (in Chinese with English abstract). [18] Liu, J.Z., Tang, Y.C., 1998.Kinetics of Early Methane Generation from Green River Shale.Chinese Science Bulletin, 43(11):1187-1191 (in Chinese with English abstract). doi: 10.1007%2FBF02883470.pdf [19] Lu, J.L., Fu, J.M., Zhang, H.Z., et al., 1991.Study on Simulation of Natural Gas Migration in Different Conditions.Oil & Gas Geology, 12(2):153-160 (in Chinese with English abstract). [20] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). https://www.researchgate.net/publication/279571586_Controlling_Factors_for_Shale_Gas_Accumulation_and_Prediction_of_Potential_Development_Area_in_Shale_Gas_Reservoir_of_South_ChinaJ [21] Pan, C.C., Fu, J.M., Sheng, G.Y., 2000.Sequential Extraction and Compositional Analysis of Oil-Bearing Fluid Inclusions in Reservoir Rocks from Kuche Depression, Tarim Basin.Chinese Science Bulletin, 45(1):60-66.doi: 10.1007/bf02893786 [22] Peters, K.E., Moldowan, J.M., 1993.The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments.Prentice Hall, Englewood Cliffs. [23] Seewald, J.S., Seyfried, W.E., Thornton, E.C., 1990.Organic-Rich Sediment Alteration:An Experimental and Theoretical Study at Elevated Temperatures and Pressures.Applied Geochemistry, 5(1):193-209.doi: 10.1016/0883-2927(90)90048-A [24] Shuai, Y.H., Zou, Y.R., Peng, P.G., 2003.Kinetics Modeling of Stable Carbon Isotopes of Coal-Generated Methane and Its Significance for Gases Accumulation in the Kuqa Depression, Tarim Basin.Geochimica, 32(5):469-475 (in Chinese with English abstract). doi: 10.1007/BF02890458 [25] Sweeney, J.J., Burnham, A.K., 1990.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1).AAPG Bulletin, 74(10):1559-1570.doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d [26] Tang, Y., Behar, F., 1995.Rate Constants of N-Alkanes Generation from Type Ⅱ Kerogen in Open and Closed Pyrolysis Systems.Energy & Fuels, 9(3):507-512.doi: 10.1021/ef00051a016 [27] Ungerer, P., Pelet, R., 1987.Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins.Nature, 327(6117):52-54.doi: 10.1038/327052a0 [28] Wang, Z.Y., Zhao, C.Y., Cheng, K.M., et al., 1997.Contributors and Potential of Hydrocarbon Generation of Source Rocks by Solid-State 13C NMR Spectroscopy.Chinese Science Bulletin, 42(5):508-510 (in Chinese with English abstract). doi: 10.1007%2FBF02882597.pdf [29] Xia, X.Y., Chen, J., Braun, R., et al., 2013.Isotopic Reversals with Respect to Maturity Trends Due to Mixing of Primary and Secondary Products in Source Rocks.Chemical Geology, 339:205-212.doi: 10.1016/j.chemgeo.2012.07.025 [30] Xiong, Y.Q., Geng, A.S., Liu, J.Z., et al., 2002.Kinetic Simulating Experiment Combined with GC-RMS Analysis:Application to Identification of Effective Gas Source Rock.Geochimica, 31(1):21-25 (in Chinese with English abstract). [31] Xiong, Y.Q., Geng, A.S., Zhang, Z.H., et al., 2004.Formation Mechanism of Oil-Formed Gas and Hydrocarbon Generation Potential Restoration of Its Source Rocks.Natural Gas Industry, 24(2):11-13 (in Chinese with English abstract). [32] Zhang, J.C., Jin, Z.Y., Yuan, M.S., 2004.Reservoiring Mechanism of Shale Gas and Its Distribution.Natural Gas Industry, 24(7):15-18 (in Chinese with English abstract). https://www.researchgate.net/publication/303636775_Reservoiring_mechanism_of_shale_gas_and_its_distribution [33] Zhang, J.C., Xue, H., Zhang, D.M., et al., 2003.Shale Gas and Its Accumulation Mechanism.Geoscience, 17(4):466 (in Chinese with English abstract). http://file.scirp.org/pdf/AM_2013013010542488.pdf [34] Zhang, S.C., Zhang, B.M., Bian, L.Z., et al., 2007.The Xiamaling Oil Shale Generated through Rhodophyta over 800Ma Ago.Science in China (Series D), 37(5):636-643 (in Chinese with English abstract). doi: 10.1007/s11430-007-0012-1 [35] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics and Resource Potential of Shale Gas in China.Petroleum Exploration and Development, 37(6):641-653.doi: 10.1016/s1876-3804(11)60001-3 [36] 陈建平, 赵文智, 王招明, 等, 2007.海相干酪根天然气生成成熟度上限与生气潜力极限探讨——以塔里木盆地研究为例.科学通报, 52(S1): 95-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1011.htm [37] 陈正辅, 翟晓先, 1997.塔里木盆地北部常规原油形成机制.石油实验地质, 19(1): 52-58. doi: 10.11781/sysydz199701052 [38] 丁修建, 柳广弟, 黄志龙, 等, 2016.有机质供给和保存在烃源岩形成中的控制作用.地球科学, 41(5): 832-842. http://www.earth-science.net/WebPage/Article.aspx?id=3291 [39] 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. doi: 10.11743/ogg20100304 [40] 李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5): 843-852. http://www.earth-science.net/WebPage/Article.aspx?id=3306 [41] 廖玉宏, 耿安松, 刘德汉, 等, 2007.煤生烃过程中成熟度引起的碳同位素分馏效应.石油实验地质, 29(6): 583-588. doi: 10.11781/sysydz200706583 [42] 刘金钟, 唐永春, 1998.用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报, 43(11): 1187-1191. doi: 10.3321/j.issn:0023-074X.1998.11.001 [43] 卢家烂, 傅家谟, 张惠之, 等, 1991.不同条件下天然气运移影响的模拟实验研究.石油与天然气地质, 12(2): 153-160. doi: 10.11743/ogg19910207 [44] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4): 484-491. doi: 10.7623/syxb200904002 [45] 帅燕华, 邹艳荣, 彭平安, 2003.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义.地球化学, 32(5): 469-475. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200305007.htm [46] 王兆云, 赵长毅, 程克明, 等, 1997.应用固体13C核磁共振波谱研究源岩生烃贡献组分及评价源岩生烃潜力.科学通报, 42(5): 508-510. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199705016.htm [47] 熊永强, 耿安松, 刘金钟, 等, 2002.生烃动力学模拟实验结合GC-RMS测定在有效气源岩判识中的应用.地球化学, 31(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200201003.htm [48] 熊永强, 耿安松, 张海祖, 等, 2004.油型气的形成机理及其源岩生烃潜力恢复.天然气工业, 24(2): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200402004.htm [49] 张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布.天然气工业, 24(7): 15-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm [50] 张金川, 薛会, 张德明, 等, 2003.页岩气及其成藏机理.现代地质, 17(4): 466. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200304019.htm [51] 张水昌, 张宝民, 边立曾, 等, 2007.8亿多年前由红藻堆积而成的下马岭组油页岩.中国科学(D辑), 37(5): 636-643. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705006.htm