• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国典型海相富有机质页岩的生气机理

    张莉 熊永强 陈媛 李芸 蒋文敏 雷锐 吴宗洋

    张莉, 熊永强, 陈媛, 李芸, 蒋文敏, 雷锐, 吴宗洋, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
    引用本文: 张莉, 熊永强, 陈媛, 李芸, 蒋文敏, 雷锐, 吴宗洋, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
    Zhang Li, Xiong Yongqiang, Chen Yuan, Li Yun, Jiang Wenmin, Lei Rui, Wu Zongyang, 2017. Mechanisms of Shale Gas Generation from Typically Organic-Rich Marine Shales. Earth Science, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
    Citation: Zhang Li, Xiong Yongqiang, Chen Yuan, Li Yun, Jiang Wenmin, Lei Rui, Wu Zongyang, 2017. Mechanisms of Shale Gas Generation from Typically Organic-Rich Marine Shales. Earth Science, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088

    中国典型海相富有机质页岩的生气机理

    doi: 10.3799/dqkx.2017.088
    基金项目: 

    国家基础地质调查项目 12120114046801

    国家自然科学基金项目 41672126

    详细信息
      作者简介:

      张莉(1990-), 女, 博士研究生, 主要从事有机与油气地球化学研究.ORCID:0000-0002-7482-5289.E-mail:zhangliucas@gmail.com

      通讯作者:

      熊永强, ORCID:0000-0003-1483-4498.E-mail:xiongyq@gig.ac.cn

    • 中图分类号: P59

    Mechanisms of Shale Gas Generation from Typically Organic-Rich Marine Shales

    • 摘要: 目前页岩生烃的评价体系主要停留在静态条件下,忽略了成烃的动态过程,不能正确评价页岩原始的生烃潜力.采用生烃动力学模拟实验方法,分别对一个相对低成熟的典型海相富有机质页岩及其干酪根样品开展封闭体系和半开放体系下的人工熟化,并对熟化后的两个系列样品进行黄金管生气动力学模拟实验.对裂解产物中气态烃化合物、轻烃类化合物以及碳同位素开展了定量分析,结果表明,甲烷生成过程被划分为4个阶段,即生油(小于1.0% EayRo)、凝析油生成(1.0%~1.% EayRo)、湿气生成(1.%~2.2% EayRo)和干气生成阶段(大于2.2% EayRo);页岩中甲烷的最大产率主要来自干酪根的初次裂解(占22.7%)、可排沥青(占7.6%)和残余沥青(占19.6%)的二次裂解;经过早期排烃作用的页岩样品仍有大量的可溶沥青,在高-过成熟阶段其可以与干酪根、不可溶沥青相互作用,成为晚期主要的页岩生气母质.

       

    • 图  3  黄金管热模拟实验中全岩与干酪根的C6~C12轻烃产率

      a.正构烷烃;b.异构烷烃;c.环烷烃;d.芳烃

      Fig.  3.  Yield curves of C6-C12 light hydrocarbons generated from the organic-rich shale and kerogen by pyrolysis experiments in sealed gold tubes

      图  1  黄金管热模拟实验中全岩与干酪根的气态烃产率

      a.甲烷;b.乙烷;c.丙烷

      Fig.  1.  Yield curves of gaseous hydrocarbons from the organic-rich shale (whole rock) and kerogen by pyrolysis experiments in sealed gold tubes

      图  2  黄金管热模拟实验中气态烃的碳同位素组成

      a.甲烷;b.乙烷;c.丙烷

      Fig.  2.  Carbon isotope composition of gaseous hydrocarbons by pyrolysis experiments in sealed gold tubes

      图  4  半开放体系下页岩熟化过程中气态烃产率(a)与碳同位素δ13C (b)

      C1=CH4;C2=C2H6;C3=C3H8

      Fig.  4.  Yield (a) and carbon isotope curves (b) of gaseous hydrocarbons generated from artificially matured samples in a half closed pyrolysis system

      图  5  半开放体系下模拟实验样品在黄金管生烃模拟中的气态烃产率

      a.甲烷;b.乙烷;c.丙烷

      Fig.  5.  Yield curves of gaseous hydrocarbons generated from artificially maturated shale samples by pyrolysis experiments in sealed gold tubes

      图  6  半开放体系下模拟实验样品在黄金管生烃模拟中的碳同位素变化特征

      a.甲烷;b.乙烷;c.CO2

      Fig.  6.  Carbon isotope curves of artificially maturated shale samples by pyrolysis experiments in sealed gold tubes

      图  7  干酪根样品在热成熟过程中的气态烃产率

      a.甲烷;b.乙烷;c.丙烷

      Fig.  7.  Yield curves of gaseous hydrocarbons generated from artificially maturated kerogen samples

      图  8  热模拟实验中不同成熟度干酪根气态烃产率

      a.甲烷;b.乙烷;c.丙烷

      Fig.  8.  Yield curves of gaseous hydrocarbons of kerogen samples with different maturity by pyrolysis experiments

      图  9  不同成熟度干酪根的碳同位素特征

      a.甲烷;b.乙烷;c.丙烷

      Fig.  9.  Carbon isotope curves of kerogen samples with different maturity

      图  10  干酪根样品K1在热成熟过程中产生甲烷的来源

      Fig.  10.  Possible origins of methane during the maturation of original kerogen sample K1

      图  11  页岩样品S1在热成熟过程中产生甲烷的来源

      Fig.  11.  Possible origins of methane during the maturation of shale sample S1

      图  12  黄金管封闭体系中不同热模拟样品的甲烷产率对比

      Fig.  12.  Yield curves of methane generated from different samples in an anhydrous closed pyrolysis system

      图  13  黄金管封闭体系中不同热模拟样品的甲烷产率曲线

      图a、b中K′成熟度分别为0.7% EasyRo、1.0% EasyRo

      Fig.  13.  Yield curves of methane generated from samples by pyrolysis experiments in sealed gold tubes

      图  14  黄金管封闭体系中样品的气态重烃(C2~C5)产率曲线

      Fig.  14.  Yield curves of gaseous hydrocarbons (C2-C5) generated from samples by pyrolysis experiments in sealed gold tubes

      表  1  封闭体系模拟样品的成熟度与TOC含量

      Table  1.   Maturity and TOC content of the whole rock and kerogen samples obtained from the closed pyrolysis system

      样品代号 样品类型 成熟度(%) TOC(%)
      R 全岩(未抽提) 0.57 6.78
      K0 干酪根(未抽提) 0.57 67.12
      K1 干酪根(抽提过) 0.57 68.12
      K2 干酪根(抽提过) 0.8 69.07
      K3 干酪根(抽提过) 1.0 69.92
      K4 干酪根(抽提过) 1.3 72.56
      下载: 导出CSV

      表  2  半封闭体系人工熟化实验条件与样品基本参数

      Table  2.   Experimental condition of artificially matured samples and basic parameters of samples with different maturity level in a half closed pyrolysis system

      样品代号 成熟度(%) 温度(℃) 压力(MPa) 时间(h) 残余固体TOC(%)
      S1 0.7 300 50 66 4.55
      S2 1.0 343 50 72 5.07
      S3 1.3 370 50 65 3.56
      S4 2.0 415 50 72 3.42
      S5 2.5 442 50 72 2.86
      S6 3.0 467 50 72 2.99
      下载: 导出CSV
    • [1] Basim, F., Harold, W., Gary, A., 2004.Gas Potential of Selected Shale Formations in the Western Canadian Sedimentary Basin.Canadian Resources, 10(1):21-25.
      [2] Behar, F., Jarvie, D.M., 2013.Compositional Modeling of Gas Generation from Two Shale Gas Resource Systems:Barnett Shale (United States) and Posidonia Shale (Germany).AAPG Memoir, 103:25-44. doi: 10.1007/978-3-319-49634-4_6/fulltext.html
      [3] Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997.Thermal Cracking of Kerogen in Open and Closed Systems:Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation.Organic Geochemistry, 26(5-6):321-339.doi: 10.1016/s0146-6380(97)00014-4
      [4] Berner, U., Faber, E., 1996.Empirical Carbon Isotope/Maturity Relationships for Gases from Algal Kerogens and Terrigenous Organic Matter, Based on Dry, Open-System Pyrolysis.Organic Geochemistry, 24(10-11):947-955.doi: 10.1016/s0146-6380(96)00090-3
      [5] Chen, J.P., Zhao, W.Z., Xiao, Z.M., et al., 2007.A Discussion on the Upper Limit of Maturity for Gas Generation by Marine Kerogens and the Utmost of Gas Generative Potential:Taking the Study on the Tarim Basin as an Example.Chinese Science Bulletin, 52(S1):95-100 (in Chinese with English abstract). https://www.researchgate.net/publication/225622578_Gas_formation_mechanism_of_marine_carbonate_source_rocks_in_China
      [6] Chen, Z.F., Zhai X.X., 1997.Formation Mechanism of Conventional Crudes in Northern Tarim Basin.Experimental Petroleum Geology, 19(1):52-58 (in Chinese with English abstract).
      [7] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d
      [8] Dieckmann, V., Ondrak, R., Cramer, B., et al., 2006.Deep Basin Gas:New Insights from Kinetic Modelling and Isotopic Fractionation in Deep-Formed Gas Precursors.Marine and Petroleum Geology, 23(2):183-199.doi: 10.1016/j.marpetgeo.2005.08.002
      [9] Dieckmann, V., Schenk, H.J., Horsfield, B., et al., 1998.Kinetics of Petroleum Generation and Cracking by Programmed-Temperature Closed-System Pyrolysis of Toarcian Shales.Fuel, 77(1-2):23-31.doi: 10.1016/s0016-2361(97)00165-8
      [10] Ding, X.J., Liu, G.D., Huang, Z.L., et al., 2016.Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks.Earth Science, 41(5):832-842 (in Chinese with English abstract). https://www.researchgate.net/publication/304879937_Controlling_function_of_organic_matter_supply_and_preservation_on_formation_of_source_rocks
      [11] Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3):288-299, 308 (in Chinese with English abstract). https://www.researchgate.net/publication/284617068_Forming_conditions_and_characteristics_of_shale_gas_in_the_Lower_Paleozoic_of_the_Upper_Yangtze_region_China
      [12] Fang, C.C., Xiong, Y.Q., Liang, Q.Y., et al., 2012.Variation in Abundance and Distribution of Diamondoids during Oil Cracking.Organic Geochemistry, 47:1-8.doi: 10.1016/j.orggeochem.2012.03.003
      [13] Geng, A.S., Liao, Z.W., 2002.Kinetic Studies of Asphaltene Pyrolyses and Their Geochemical Applications.Applied Geochemistry, 17(12):1529-1541.doi: 10.1016/s0883-2927(02)00053-7
      [14] Hill, R.J., Zhang, E., Katz, B.J., et al., 2007.Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):501-521.doi: 10.1306/12060606063
      [15] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      [16] Li, S.F., Wang, S.L., Bi, J.X., et al., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW201501015.htm
      [17] Liao, Y.H., Geng, A.S., Liu, D.H., et al., 2007.Carbon Isotopic Fractionation Effect Caused by Maturity during the Generation of Coal-Pyrolysis Hydrocarbons.Petroleum Geology and Experiment, 29(6):583-588 (in Chinese with English abstract).
      [18] Liu, J.Z., Tang, Y.C., 1998.Kinetics of Early Methane Generation from Green River Shale.Chinese Science Bulletin, 43(11):1187-1191 (in Chinese with English abstract). doi: 10.1007%2FBF02883470.pdf
      [19] Lu, J.L., Fu, J.M., Zhang, H.Z., et al., 1991.Study on Simulation of Natural Gas Migration in Different Conditions.Oil & Gas Geology, 12(2):153-160 (in Chinese with English abstract).
      [20] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). https://www.researchgate.net/publication/279571586_Controlling_Factors_for_Shale_Gas_Accumulation_and_Prediction_of_Potential_Development_Area_in_Shale_Gas_Reservoir_of_South_ChinaJ
      [21] Pan, C.C., Fu, J.M., Sheng, G.Y., 2000.Sequential Extraction and Compositional Analysis of Oil-Bearing Fluid Inclusions in Reservoir Rocks from Kuche Depression, Tarim Basin.Chinese Science Bulletin, 45(1):60-66.doi: 10.1007/bf02893786
      [22] Peters, K.E., Moldowan, J.M., 1993.The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments.Prentice Hall, Englewood Cliffs.
      [23] Seewald, J.S., Seyfried, W.E., Thornton, E.C., 1990.Organic-Rich Sediment Alteration:An Experimental and Theoretical Study at Elevated Temperatures and Pressures.Applied Geochemistry, 5(1):193-209.doi: 10.1016/0883-2927(90)90048-A
      [24] Shuai, Y.H., Zou, Y.R., Peng, P.G., 2003.Kinetics Modeling of Stable Carbon Isotopes of Coal-Generated Methane and Its Significance for Gases Accumulation in the Kuqa Depression, Tarim Basin.Geochimica, 32(5):469-475 (in Chinese with English abstract). doi: 10.1007/BF02890458
      [25] Sweeney, J.J., Burnham, A.K., 1990.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1).AAPG Bulletin, 74(10):1559-1570.doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d
      [26] Tang, Y., Behar, F., 1995.Rate Constants of N-Alkanes Generation from Type Ⅱ Kerogen in Open and Closed Pyrolysis Systems.Energy & Fuels, 9(3):507-512.doi: 10.1021/ef00051a016
      [27] Ungerer, P., Pelet, R., 1987.Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins.Nature, 327(6117):52-54.doi: 10.1038/327052a0
      [28] Wang, Z.Y., Zhao, C.Y., Cheng, K.M., et al., 1997.Contributors and Potential of Hydrocarbon Generation of Source Rocks by Solid-State 13C NMR Spectroscopy.Chinese Science Bulletin, 42(5):508-510 (in Chinese with English abstract). doi: 10.1007%2FBF02882597.pdf
      [29] Xia, X.Y., Chen, J., Braun, R., et al., 2013.Isotopic Reversals with Respect to Maturity Trends Due to Mixing of Primary and Secondary Products in Source Rocks.Chemical Geology, 339:205-212.doi: 10.1016/j.chemgeo.2012.07.025
      [30] Xiong, Y.Q., Geng, A.S., Liu, J.Z., et al., 2002.Kinetic Simulating Experiment Combined with GC-RMS Analysis:Application to Identification of Effective Gas Source Rock.Geochimica, 31(1):21-25 (in Chinese with English abstract).
      [31] Xiong, Y.Q., Geng, A.S., Zhang, Z.H., et al., 2004.Formation Mechanism of Oil-Formed Gas and Hydrocarbon Generation Potential Restoration of Its Source Rocks.Natural Gas Industry, 24(2):11-13 (in Chinese with English abstract).
      [32] Zhang, J.C., Jin, Z.Y., Yuan, M.S., 2004.Reservoiring Mechanism of Shale Gas and Its Distribution.Natural Gas Industry, 24(7):15-18 (in Chinese with English abstract). https://www.researchgate.net/publication/303636775_Reservoiring_mechanism_of_shale_gas_and_its_distribution
      [33] Zhang, J.C., Xue, H., Zhang, D.M., et al., 2003.Shale Gas and Its Accumulation Mechanism.Geoscience, 17(4):466 (in Chinese with English abstract). http://file.scirp.org/pdf/AM_2013013010542488.pdf
      [34] Zhang, S.C., Zhang, B.M., Bian, L.Z., et al., 2007.The Xiamaling Oil Shale Generated through Rhodophyta over 800Ma Ago.Science in China (Series D), 37(5):636-643 (in Chinese with English abstract). doi: 10.1007/s11430-007-0012-1
      [35] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics and Resource Potential of Shale Gas in China.Petroleum Exploration and Development, 37(6):641-653.doi: 10.1016/s1876-3804(11)60001-3
      [36] 陈建平, 赵文智, 王招明, 等, 2007.海相干酪根天然气生成成熟度上限与生气潜力极限探讨——以塔里木盆地研究为例.科学通报, 52(S1): 95-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1011.htm
      [37] 陈正辅, 翟晓先, 1997.塔里木盆地北部常规原油形成机制.石油实验地质, 19(1): 52-58. doi: 10.11781/sysydz199701052
      [38] 丁修建, 柳广弟, 黄志龙, 等, 2016.有机质供给和保存在烃源岩形成中的控制作用.地球科学, 41(5): 832-842. http://www.earth-science.net/WebPage/Article.aspx?id=3291
      [39] 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. doi: 10.11743/ogg20100304
      [40] 李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5): 843-852. http://www.earth-science.net/WebPage/Article.aspx?id=3306
      [41] 廖玉宏, 耿安松, 刘德汉, 等, 2007.煤生烃过程中成熟度引起的碳同位素分馏效应.石油实验地质, 29(6): 583-588. doi: 10.11781/sysydz200706583
      [42] 刘金钟, 唐永春, 1998.用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报, 43(11): 1187-1191. doi: 10.3321/j.issn:0023-074X.1998.11.001
      [43] 卢家烂, 傅家谟, 张惠之, 等, 1991.不同条件下天然气运移影响的模拟实验研究.石油与天然气地质, 12(2): 153-160. doi: 10.11743/ogg19910207
      [44] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4): 484-491. doi: 10.7623/syxb200904002
      [45] 帅燕华, 邹艳荣, 彭平安, 2003.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义.地球化学, 32(5): 469-475. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200305007.htm
      [46] 王兆云, 赵长毅, 程克明, 等, 1997.应用固体13C核磁共振波谱研究源岩生烃贡献组分及评价源岩生烃潜力.科学通报, 42(5): 508-510. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199705016.htm
      [47] 熊永强, 耿安松, 刘金钟, 等, 2002.生烃动力学模拟实验结合GC-RMS测定在有效气源岩判识中的应用.地球化学, 31(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200201003.htm
      [48] 熊永强, 耿安松, 张海祖, 等, 2004.油型气的形成机理及其源岩生烃潜力恢复.天然气工业, 24(2): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200402004.htm
      [49] 张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布.天然气工业, 24(7): 15-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
      [50] 张金川, 薛会, 张德明, 等, 2003.页岩气及其成藏机理.现代地质, 17(4): 466. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200304019.htm
      [51] 张水昌, 张宝民, 边立曾, 等, 2007.8亿多年前由红藻堆积而成的下马岭组油页岩.中国科学(D辑), 37(5): 636-643. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705006.htm
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  3922
    • HTML全文浏览量:  1884
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-13
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回