Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China
-
摘要: 针对我国南方海相富有机质页岩时空非均质强、热演化程度高、构造演化历史复杂、页岩气具差异富集和保存条件多样等特点,采用多学科方法对南方五峰组-龙马溪组海相页岩气区进行精细解剖,形成了针对南方复杂地区海相高过成熟页岩气评价参数表征的多项关键技术.研究结果显示富泥硅质页岩和富泥/硅混合质页岩是五峰组-龙马溪组的优质岩相;页岩中孔和宏孔提供了主要的孔体积,微-纳米孔隙结构特征受页岩组分及其孔隙发育程度双重控制;页岩气富集演化具二高、三复杂特点(古温度高,热演化程度高,温压演化复杂,页岩气赋存方式复杂及保存条件复杂).研究中所提出的页岩岩相表征和优选技术、多尺度储集空间全息表征技术、海相页岩复杂演化改造过程表征技术、初步形成的甜点评价参数体系表征方法可有效地应用于南方五峰组-龙马溪组海相页岩气评价.研究成果可为南方页岩气基础地质调查工程提供技术支撑.Abstract: In view of the characteristics of strong temporal and spatial heterogeneity, high thermal maturity, complex tectonic evolution, differential enrichment and various preservation conditions of shale gas in southern China, multidisciplinary methods are applied to further study the Wufeng-Longmaxi marine shale gas, and a number of key technologies are developed to characterize the evaluation parameters of marine shale gas with over-high maturity in the complex geologic areas of southern China. The results show that argillaceous siliceous shales and argillaceous/siliceous mixed shales are the advantageous lithofacies in the Wufeng Formation-Longmaxi Formation. The meso-pore and macro-pore make a great contribution to the pore volume, and the micro-nano pore structure is controlled by mineral composition and porosity development. The enrichment and evolution of shale gas are characterized by high paleotemperature, high thermal evolution, complex evolution of temperature and pressure, complicated conditions for shale gas occurrence and preservation. The Wufeng-Longmaxi marine shale gas could be effectively evaluated in terms of technologies of lithofacies optimization, the characterization of pore space from macroscopic and microscopic perspectives, the complex evolution process of marine shale, and the evaluation parameters for sweet spots of shale gas. The research results can provide technical support for the basic geological survey of shale gas in southern China.
-
Key words:
- shale gas /
- Wufeng Formation /
- Longmaxi Formation /
- enrichment mechanism /
- key technology /
- Yangtze area /
- petroleum geology
-
图 9 有机质成熟度Ro与芳香族C=C谱带向最小波数Wmin移动现象的关系
Fig. 9. The relationship of maturation and the shift of the aromatic C=C bands of kerogens towards a minimum wave number Wmin
表 1 基于QEMSCAN的渝东南地区五峰组-龙马溪组页岩组成成分
Table 1. Contents of the minerals and organic matter of the four Wufeng-Longmaxi shale samples from the QEMSCAN results in southeastern Chongqing area
样品 井名 深度(m) 石英(%) 长石(%) 碳酸盐矿物(%) 粘土矿物(%) 黄铁矿(%) TOC(%) SG-1 Jy1 2 383 91.56 2.75 0.95 2.47 1.61 0.63 SG-2 Yc4 692 74.92 10.83 4.22 5.83 1.77 2.23 SG-3 Jy1 2 365 49.04 14.36 18.51 8.31 2.70 6.98 SG-4 Yc4 661 35.55 13.22 4.00 45.61 1.77 0.54 表 2 南方五峰组-龙马溪组页岩气甜点区评价参数
Table 2. The evaluation parameters for the sweet spots of the Wufeng-Longmaxi shale gas, southern China
参数类型 参数 甜点区 一般区 优质岩相 有机碳含量 >2 <2 高碳富泥硅质页岩厚度(m) >20 <20 储集空间 总孔隙度(%) >5 <5 页理缝 发育 不发育 保存条件 断裂与裂缝 不发育 较发育 压力系数 >1.2 <1.2 经济性 含气量(m3/t) >3 <3 游离气相对含量(%) >50 <50 -
[1] Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116 [2] de Boer, J.H., Lippens B.C., 1964.Studies on Pore Systems in Catalysts Ⅱ.The Shapes of Pores in Aluminum Oxide Systems.Journal of Catalysis, 3(1):38-43.doi: 10.1016/0021-9517(64)90090-9 [3] Bruner, K.R., Walker-Milani, M., Smosna, R., 2015.Lithofacies of the Devonian Marcellus Shale in the Eastern Appalachian Basin, U.S.A..Journal of Sedimentary Research, 85(8):937-954.doi: 10.2110/jsr.2015.62 [4] Casas, D., Ercilla, G., Baraza, J., et al., 2003.Recent Mass-Movement Processes on the Ebro Continental Slope (NW Mediterranean).Marine and Petroleum Geology, 20:445-457.doi: 10.1016/s0264-8172(03)00078-3 [5] Chen L., Lu, Y.C., Jiang S., et al., 2015.Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China.Marine and Petroleum Geology, 65:232-246.doi: 10.1016/j.jngse.2015.12.026 [6] Clift, P.D., Sun, Z., 2006.The Sedimentary and Tectonic Evolution of the Yinggehai-Song Hong Basin and the Southern Hainan Margin, South China Sea:Implications for Tibetan Uplift and Monsoon Intensification.Journal of Geophysical Research:Solid Earth, 111(B6):232-241.doi: 10.1029/2005jb004048 [7] Diaz, H.G., Lewis, R., Miller, C., et al., 2013.Evaluating the Impact of Mineralogy on Reservoir Quality and Completion Quality of Organic Shale Plays.AAPG Rocky Mountain Section Meeting, Salt Lake City. [8] Dong, D.Z., Wang, Y.M., Li, X.J., et al., 2016.Breakthrough and Prospect of Shale Gas Exploration and Development in China.Natural Gas Industry, 36(1):19-32 (in Chinese with English abstract). https://www.researchgate.net/publication/311344717_Breakthrough_and_prospect_of_shale_gas_exploration_and_development_in_China [9] Gao, J., He, S., Yi, J.Z., 2015.Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance.Oil & Gas Geology, 36(3):472-480 (in Chinese with English abstract). https://www.researchgate.net/publication/282381014_Discovery_of_high_density_methane_inclusions_in_Jiaoshiba_shale_gas_field_and_its_significance [10] Gao, J., He, S., Zhao, J.X., et al., 2017.Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China:Insight from Fluid Inclusions in Fracture Cements.Marine and Petroleum Geology, 83:124-139.doi: 10.1016/j.marpetgeo.2017.02.018 [11] Ganz, H.H., Kalkreuth, W., 1991.IR Classification of Kerogen Type, Thermal Maturation, Hydrocarbon Potential and Lithological Characteristics.Journal of Southeast Asian Earth Sciences, 5(1-4):19-28.doi: 10.1016/0743-9547(91)90007-k [12] Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091 [13] Hao, F., Zou, H.Y., 2013.Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales.Marine and Petroleum Geology, 44:1-12.doi: 10.1016/j.marpetgeo.2013.03.005 [14] Jia, C.Z., Pang, X.Q., Jiang, F.J., 2016.Research Status and Development Directions of Hydrocarbon Resources in China.Petroleum Science Bulletin, 1(1):2-23 (in Chinese with English abstract). [15] Jiang, Z.X., Tang, X.L., Cheng, L.J., et al., 2015.Characterization and Origin of the Silurian Wufeng-Longmaxi Formation Shale Multiscale Heterogeneity in Southeastern Sichuan Basin, China.Interpretation, 3(2):SJ61-SJ74.doi: 10.1190/int-2014-0151.1 [16] Jiang, Z.X., Tang, X.L., Li, Z., et al., 2016.The Whole-Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin.Earth Science Frontiers, 23(2):126-134 (in Chinese with English abstract). https://www.researchgate.net/publication/283888005_Whole-Aperture_Pore_Structure_Characterization_and_Its_Effect_on_Gas_Content_of_the_Longmaxi_Formation_Shale_in_the_Jiaoshiba_Area_Sichuan_Basin [17] Liu, S.G., Deng, B., Zhong, Y., et al., 2016.Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas Across the Sichuan Basin and Its Periphery.Earth Science Frontiers, 23(1):11-28 (in Chinese with English abstract). [18] Lu, S.F., Xue, H.T., Wang, M., et al., 2016.Several Key Issues and Research Trends in Evaluation of Shale Oil.Acta Petrolei Sinica, 37(10):1309-1322 (in Chinese with English abstract). [19] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-305.doi: 10.1016/j.marpetgeo.2016.04.024 [20] Song, Y., Jiang, L., Ma, X.Z., 2013.Formation and Distribution Characteristics of Unconventional Oil and Gas Reservoirs.Journal of Palaeogeography, 15(5):605-614 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780123971623000025 [21] Song, Y., Jiang, L., Ma, X.Z., 2013.Formation and Distribution Characteristics of Unconventional Oil and Gas Reservoirs.Journal of Palaeogeography, 15(5):605-614 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780123971623000025 [22] Tang, X.L., Jiang, Z.X., Li, Z., et al., 2015.The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 23:464-473.doi: 10.1016/j.jngse.2015.02.031 [23] Tang, X.L., Jiang, Z.X., Jiang, S., et al., 2016a.Effect of Organic Matter and Maturity on Pore Size Distribution and Gas Storage Capacity in High-Mature to Post-Mature Shales.Energy & Fuels, 30(11):8985-8996.doi: 10.1021/acs.energyfuels.6b01499 [24] Tang, X.L., Jiang, Z.X., Jiang, S., et al., 2016b.Heterogeneous Nanoporosity of the Silurian Longmaxi Formation Shale Gas Reservoir in the Sichuan Basin Using the QEMSCAN, FIB-SEM, and Nano-CT Methods.Marine and Petroleum Geology, 78:99-109.doi: 10.1016/j.marpetgeo.2016.09.010 [25] Wang, G.C., Carr, T.R., 2013.Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin.AAPG Bulletin, 97(12):2173-2205.doi: 10.1306/05141312135 [26] Yan, C.N., Jin, Z.J., Zhao, J.H.; et al., 2016.Comparison of Marcellus Shale in United States and Longmaxi Formation Shale in Southern China.Geological Science and Technology Information, 35(6):122-130 (in Chinese with English abstract). http://www.scirp.org/journal/PaperInformation.aspx?paperID=64045& [27] Yang, R., He, S., Hu, Q.H., et al., 2017.Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China).International Journal of Coal Geology, 171:1-11.doi: 10.1016/j.coal.2016.12.003 [28] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://www.researchgate.net/publication/305417638_A_new_method_for_microscopic_pore_structure_analysis_in_shale_matrix [29] Zhang, J.K., He, S., Yi, J.Z., et al., 2014.Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of Lower Paleozoic Marine Shales in the Western Middle Yangtze Area.Acta Petrolei Sinica, 35(1):58-67 (in Chinese with English abstract). doi: 10.1038/aps.2013.122 [30] Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016.Geological Difference and Its Significance of Marine Shale Gases in South China.Petroleum Exploration & Development, 43(4):499-510 (in Chinese with English abstract). [31] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅰ).Petroleum Exploration & Development, 42(6):689-701 (in Chinese with English abstract). [32] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅱ).Petroleum Exploration & Development, 43(2):166-178 (in Chinese with English abstract). https://www.researchgate.net/publication/304823520_Shale_gas_in_China_characteristics_challenges_and_prospects_II [33] 董大忠, 王玉满, 李新景, 等, 2016.中国页岩气勘探开发新突破及发展前景思考.天然气工业, 36(1): 19-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601005.htm [34] 高键, 何生, 易积正, 2015.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义.石油与天然气地质, 36(3): 472-480. doi: 10.11743/ogg20150316 [35] 贾承造, 庞雄奇, 姜福杰, 2016.中国油气资源研究现状与发展方向.石油科学通报, 1(1): 2-23. http://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601002.htm [36] 姜振学, 唐相路, 李卓, 等, 2016.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制.地学前缘, 23(2): 126-134. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602015.htm [37] 刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用.地学前缘, 23(1): 11-28. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm [38] 卢双舫, 薛海涛, 王民, 等, 2016.页岩油评价中的若干关键问题及研究趋势.石油学报, 37(10): 1309-1322. doi: 10.7623/syxb201610012 [39] 宋岩, 姜林, 马行陟, 2013.非常规油气藏的形成及其分布特征.古地理学报, 15(5): 605-614. doi: 10.7605/gdlxb.2013.05.048 [40] 颜彩娜, 金之钧, 赵建华, 等, 2016.美国Marcellus页岩与中国南方龙马溪组页岩地质特征对比及启示.地质科技情报, 35(6): 122-130. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606018.htm [41] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [42] 张建坤, 何生, 易积正, 等, 2014.岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史.石油学报, 35(1): 58-67. doi: 10.7623/syxb201401006 [43] 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4): 499-510. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm [44] 邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6): 689-701. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm [45] 邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2): 166-178. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm