• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西昆仑东段宿营地晚三叠世中性脉岩的锆石U-Pb定年、岩石地球化学特征及其意义

    黎有为 魏启荣 王程 丁鹏飞 刘小念 张小强 王敬元 刘文平 农明智

    黎有为, 魏启荣, 王程, 丁鹏飞, 刘小念, 张小强, 王敬元, 刘文平, 农明智, 2017. 西昆仑东段宿营地晚三叠世中性脉岩的锆石U-Pb定年、岩石地球化学特征及其意义. 地球科学, 42(6): 909-926. doi: 10.3799/dqkx.2017.083
    引用本文: 黎有为, 魏启荣, 王程, 丁鹏飞, 刘小念, 张小强, 王敬元, 刘文平, 农明智, 2017. 西昆仑东段宿营地晚三叠世中性脉岩的锆石U-Pb定年、岩石地球化学特征及其意义. 地球科学, 42(6): 909-926. doi: 10.3799/dqkx.2017.083
    Li Youwei, Wei Qirong, Wang Cheng, Ding Pengfei, Liu Xiaonian, Zhang Xiaoqiang, Wang Jingyuan, Liu Wenping, Nong Mingzhi, 2017. Zircon U-Pb Dating and Geochemistry of Late Triassic Intermediate Dykes in Suyingdi, Eastern Section of West Kunlun and Their Geological Significance. Earth Science, 42(6): 909-926. doi: 10.3799/dqkx.2017.083
    Citation: Li Youwei, Wei Qirong, Wang Cheng, Ding Pengfei, Liu Xiaonian, Zhang Xiaoqiang, Wang Jingyuan, Liu Wenping, Nong Mingzhi, 2017. Zircon U-Pb Dating and Geochemistry of Late Triassic Intermediate Dykes in Suyingdi, Eastern Section of West Kunlun and Their Geological Significance. Earth Science, 42(6): 909-926. doi: 10.3799/dqkx.2017.083

    西昆仑东段宿营地晚三叠世中性脉岩的锆石U-Pb定年、岩石地球化学特征及其意义

    doi: 10.3799/dqkx.2017.083
    基金项目: 

    贵州省科技计划项目 黔科合SY字[2012]3031号

    贵州省工程技术研究中心项目 黔科合G字[2014]4004号

    中国地质调查局项目 1212011220636

    详细信息
      作者简介:

      黎有为(1990-),男,助理研究员,主要从事岩浆岩与成矿研究.ORCID:0000-0002-9446-1371.E-mail:liyouwei668@163.com

      通讯作者:

      魏启荣,E-mail: weiqr1030@cug.edu.cn

    • 中图分类号: P588.1

    Zircon U-Pb Dating and Geochemistry of Late Triassic Intermediate Dykes in Suyingdi, Eastern Section of West Kunlun and Their Geological Significance

    • 摘要: 为了研究西昆仑造山带东段古特提斯构造-岩浆演化,提升区域研究程度,对宿营地脉岩进行系统的野外地质调查、岩相学、LA-ICP-MS锆石U-Pb定年、岩石地球化学研究.脉岩呈NE向成群成带分布;岩石类型为(含石榴)闪长玢岩、角闪安山玢岩及闪斜煌斑岩;获得(含石榴)闪长玢岩LA-ICP-MS锆石U-Pb加权平均年龄(214±1)~(219±1) Ma,形成于晚三叠世,是印支晚期构造-岩浆活动产物;脉岩主要为钙碱性系列岩石,表现出中Si(SiO2=53.92%~62.95%)、高Al(Al2O3=15.99%~17.69%)、富Na(Na2O=2.63%~6.09%、Na2O/K2O=1.09~8.30)、低Ti(Ti2O=0.50%~0.76%)、低P(P2O5=0.14%~0.23%)、Mg(Mg#=37.73~59.32) 变化大等主量元素特征,铝饱和指数(A/CNK)为0.92~1.36;脉岩富集LREE、Rb、Th、U、K,亏损HREE、Nb、Ta、P、Ti,(La/Yb)N=7.24~20.02,Ce、Eu异常不明显.结果表明,宿营地中性脉岩是西昆仑东段南缘晚三叠世古特提斯弧后拉张作用引起的壳-幔混合作用的产物.

       

    • 图  1  西昆仑东段宿营地地区地质简图

      WK.西昆仑地块;EK.东昆仑地块;QT.羌塘地块;BK.巴颜喀拉地块;AS.阿尔金断裂;ASN.阿尔金断裂北支;ASS.阿尔金断裂南支;HSS.红山顶-三道河子断裂;KMAS.康西瓦-木孜塔格-阿尼玛卿晚古生代结合带;XJS.西金乌兰-金沙江晚古生代结合带;1.第四系;2.下白垩统双伍山组;3.下三叠统西长沟组;4.中二叠统黄羊岭组;5.脉岩;6.断层;7.地质界线;8.产状;9.岩石化学分析样采样位置;10.锆石U-Pb年龄样采样位置;b图据(陈守建等,2011)

      Fig.  1.  Geologic sketch of Suyingdi area, eastern section of West Kunlun

      图  2  西昆仑东段宿营地地区中性脉岩野外及镜下特征

      a.闪长玢岩脉地貌特征;b.闪长玢岩脉与西长沟组的接触关系;c.闪长玢岩野外露头特征;d.含石榴闪长玢岩中的暗色包体;e.闪长玢岩镜下特征;f.含石榴闪长玢岩镜下特征;g.角闪安山玢岩镜下特征;h.闪斜煌斑岩镜下特征;Grt.石榴石;Mag.磁铁矿;Pl.斜长石;Qz.石英;Am.角闪石;下图同

      Fig.  2.  Field photos and photomicrograph features of Suyingdi dykes

      图  3  西昆仑东段宿营地中性脉岩中锆石阴极发光电子图像

      Fig.  3.  CL image of zircon of Suyingdi dykes

      图  4  西昆仑东段宿营地中性脉岩中锆石U-Pb年龄谐和图

      Fig.  4.  Zircon U-Pb concordia diagram of Suyingdi dykes

      图  5  西昆仑东段宿营地中性脉岩TAS图解(a)、FAM图解(b)、SiO2-K2O图解(c)和A/CNK-A/NK图解(d)

      1.橄榄辉长岩;2.辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.似长辉长岩;14.似长二长闪长岩;15.似长正长闪长岩;16.似长正长岩;17.似长岩;18.霓方钠岩/磷霞岩/粗白榴岩;Ir-Irvine分界线(Irvine and Baragar, 1971);A.碱性系列;S.亚碱性系列;TH.拉斑玄武岩系列;CA.钙碱性系列;数据来源:东昆仑同期石榴闪长玢岩(Yuan et al., 2008);a图据Cox et al.(1979);b图据Irvine and Baragar(1971);c图据Peccerillo and Taylor(1976);d图据Maniar and Piccolli(1989)

      Fig.  5.  TAS (a), FAM (b), K2O-SiO2 (c) and A/NK-A/CNK (d) diagram of Suyingdi dykes

      图  6  西昆仑东段宿营地中性脉岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)

      东昆仑同期石榴闪长玢岩数据同图 5;球粒陨石标准化值据Sun and McDonough(1989)

      Fig.  6.  REE distribution pattern (a) and trace element spidergram (b) of Suyingdi dykes

      图  7  西昆仑东段宿营地中性脉岩的SiO2-REE(a)和SiO2-Y(b)图解

      Fig.  7.  SiO2-REE (a) and SiO2-Y (b) diagram of Suyingdi dykes

      图  8  西昆仑东段宿营地中性脉岩YbN-(La/Yb)N判别图解

      底图据Castillo(2006)

      Fig.  8.  YbN-(La/Yb)N diagram of Suyingdi dykes

      图  9  西昆仑东段宿营地中性脉岩Y-Nb(a)和Yb+Ta-Rb(b)构造环境判别图解

      syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;VAG.岛弧花岗岩;底图据Pearce et al.(1984);图中东昆仑同期石榴闪长玢岩数据同图 6b

      Fig.  9.  Y-Nb diagram (a) and Yb+Ta-Rb diagram (b) of tectonic setting discrimination of Suyingdi dykes

      表  1  西昆仑东段宿营地中性脉岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS U-Pb data of zircon of Suyingdi dykes

      点号 元素(10-6) 同位素比值 年龄(Ma)
      Pb Th U Th/U 207Pb*/206Pb* 1σ 207Pb*/235U 1σ 206Pb*/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
       样品2065-1(含石榴石闪长玢岩)
      B2065-1-125.51102.62337.860.300.050 110.002 460.237 530.011 290.034 530.000 3621111321692192
      B2065-1-226.1392.35324.200.280.057 170.002 640.272 020.012 490.034 410.000 45498102244102183
      B2065-1-338.88165.39452.290.370.055 870.002 650.265 030.012 320.034 500.000 43456106239102193
      B2065-1-417.6474.63235.510.320.049 450.002 510.234 220.011 760.034 490.000 49169114214102193
      B2065-1-521.1572.01271.730.270.059 840.003 120.287 000.015 410.034 440.000 52598113256122183
      B2065-1-628.99114.20305.740.370.053 870.002 990.253 460.013 420.034 210.000 45365126229112173
      B2065-1-743.34180.59560.370.320.049 190.001 820.235 340.008 780.034 510.000 401678221572192
      B2065-1-838.35154.17353.870.440.055 700.002 610.263 320.012 150.034 500.000 44439106237102193
      B2065-1-926.21100.26385.560.260.051 930.002 740.246 050.012 540.034 710.000 46283116223102203
      B2065-1-1039.30166.05460.520.360.049 690.002 750.234 820.012960.034430.00048189125214112183
      B2065-1-1139.84154.29558.050.280.046 990.002 260.222 610.011 120.034 470.000 435611120492183
      B2065-1-1244.97156.47653.560.240.048 780.002 190.229 800.010 820.034 540.000 5520010621092193
      B2065-1-1324.4699.03306.030.320.050 010.002 530.235 300.011 770.034 670.000 46195119215102203
      B2065-1-1433.92138.01453.020.300.051 190.001 960.241 360.009 310.034 500.000 402508922082192
      B2065-1-1540.44155.31424.030.370.052 130.002 330.248 190.011 190.034 510.000 3930010222592192
      B2065-1-1631.36130.60414.280.320.048 880.001 960.227 120.008 690.033 840.000 341439020872152
      B2065-1-1725.7698.27317.960.310.051 110.002 670.241 380.012 660.034 370.000 36256120220102182
      B2065-1-1825.22105.30300.200.350.052270.002 550.248 530.012 200.034 350.000 45298108225102183
      B2065-1-1941.85184.45497.650.370.049120.002 460.235 420.012 020.034 570.000 48154151215102193
      B2065-1-2055.15249.35614.870.410.046 620.001 640.222 090.008 100.034 130.000 30329120472162
      B2065-1-2131.72126.89421.190.300.049 120.001 930.233 820.008 660.034 700.000 371549321372202
      B2065-1-2228.49126.21308.690.410.050 890.002 260.241 570.010 620.034 550.000 4523510622092193
      B2065-1-2337.33158.03458.200.340.052 430.002 060.251 280.009 940.034 570.000 373068922882192
      B2065-1-2424.79103.02313.030.330.051 530.002 150.244830.009 980.034 540.000 3926510122282192
      B2065-1-2563.92288.87787.030.370.049 500.001 710.234 470.007 840.034 420.000 311727521462182
      B2065-1-2635.31161.15360.750.450.049 620.002 130.235 100.009 810.034 460.000 4017610221482182
       样品7168-1(含石榴石闪长玢岩)
      B7168-1-132.17199.86420.770.470.053 430.002 280.245 030.009 790.033 670.000 433469422382133
      B7168-1-238.15192.66529.960.360.053 250.001 960.248 370.008 990.033 790.000 353398322572142
      B7168-1-333.21104.42552.860.190.053 390.002 310.247 170.011 340.033 360.000 523469222492123
      B7168-1-445.70247.48676.780.370.053 290.001 770.247 900.008 370.033 580.000 403437422572132
      B7168-1-514.5765.61231.360.280.053 840.003 910.247 120.017 560.033 610.000 46365165224142133
      B7168-1-624.30124.89363.190.340.053 280.002 020.244 230.009 110.033 330.000 383399022272112
      B7168-1-750.99296.69751.900.390.053 970.001 760.252 540.007 890.033 920.000 333697422962152
       样品7168-1(含石榴石闪长玢岩)
      B7168-1-815.7492.11228.110.40 0.049 930.003 450.239 920.016 100.034 620.000 55191156218132193
      B7168-1-938.75213.54554.950.380.055 780.002 550.262 090.011 840.033 910.000 47443102236102153
      B7168-1-1049.05357.46601.430.590.052 640.001 770.247 950.008 240.033 980.000 383227622572152
      B7168-1-1121.71103.29367.840.280.051 000.002 610.241 040.011 610.034 390.000 4324311721992183
      B7168-1-1262.92360.59992.790.360.054 910.002 260.259 870.010 840.034 060.000 404098823592163
      B7168-1-1317.8989.40294.700.300.053 390.003 580.244 360.015 820.033 270.000 53346156222132113
      B7168-1-1435.35237.20516.560.460.055 310.002 400.257 030.011 360.033 430.000 444339823292123
      B7168-1-1537.54232.83515.510.450.051 930.001 920.246 430.008 880.034 320.000 392838522472182
       样品7742-1(闪长玢岩)
      B7742-1-123.89143.12385.300.37 0.049 660.002 030.237 460.010 040.034 650.000 431899621682203
      B7742-1-231.81195.07550.410.350.048 420.001 590.231 690.007 770.034 610.000 371207621262192
      B7742-1-316.68107.61278.100.390.049 780.002 160.237 060.010 280.034 850.000 4418310221682213
      B7742-1-422.99136.32385.130.350.054 020.002 240.259 460.010 930.034 700.000 383729323492202
      B7742-1-511.8069.18235.260.290.049 440.002 390.234 850.011 150.034 660.000 4816911521492203
      B7742-1-611.7078.94205.120.380.052 510.002 840.253 980.015 040.034 440.000 58309122230122184
      B7742-1-713.5781.88271.730.300.050 280.002 730.239 670.012 900.034 690.000 53209126218112203
      B7742-1-812.7276.45226.640.340.057 910.003 090.277 810.014 860.034 880.000 50528117249122213
      B7742-1-913.3282.17265.330.310.049 760.002 630.239 490.013 250.034 690.000 57183122218112204
      B7742-1-1018.71118.28342.540.350.051 580.002 290.239 880.010 180.034 100.000 4333310221882163
      B7742-1-1111.3668.84204.930.340.052 000.002 750.246 100.013 370.034 440.000 55287150223112183
      B7742-1-1222.82141.16361.450.390.048 940.003 320.233 390.015 820.034 640.000 43146152213132203
      B7742-1-1317.20105.70276.350.380.053 610.002 610.254 790.012 460.034 580.000 47354111230102193
      B7742-1-1418.43115.58288.760.400.053 750.002 500.253 690.011 770.034 420.000 42361104230102183
      B7742-1-159.5054.70151.330.360.055 050.004 870.248 280.019 600.034 520.000 82413200225162195
      B7742-1-1614.8379.88201.090.400.062 210.004 220.293 010.020 170.034 230.000 57681146261162174
      B7742-1-1714.5182.68236.900.350.051 390.002 580.243 770.012 410.034 470.000 47257115222102183
      B7742-1-1820.24107.12333.310.320.051 850.002 520.242 800.011 380.034 440.000 4128011122192183
      B7742-1-1915.5595.32259.400.370.052 890.002 910.248 210.013 100.034 530.000 55324131225112193
      B7742-1-2020.80117.26338.380.350.054 290.003 000.259 940.014 350.034 590.000 49383124235122193
      B7742-1-2114.3280.15233.050.340.051 240.003 300.242 820.016 110.034 560.000 69250150221132194
      B7742-1-2225.55174.52352.100.500.055 660.003 080.264 780.017 650.033 820.000 49439129239142143
      B7742-1-2326.34134.93278.380.480.051 360.001 850.337 410.012 490.047 630.000 562578329593003
      B7742-1-248.7056.88146.000.390.057 950.003 230.260 530.013 930.033 640.000 5252894235112133
       样品8070-1(闪长玢岩)
      B8070-1-141.12146.12651.060.220.050 090.002 020.240 140.009 510.034 340.000 371989921982182
       样品8070-1(闪长玢岩)
      B8070-1-222.6493.70267.210.350.054 380.003 710.255 480.016 520.034 490.000 47387149231132193
      B8070-1-328.05103.85437.840.240.054 610.002 540.257 940.012 170.033 880.000 36394106233102152
      B8070-1-430.98133.77389.540.340.047 930.002 630.225 250.012 260.033 740.000 3995126206102142
      B8070-1-523.3788.22397.870.220.047 260.002 490.225 740.012 430.034 350.000 4261122207102183
      B8070-1-625.7989.60412.860.220.053 020.002 950.249 260.013 910.034 100.000 46328126226112163
      B8070-1-728.86141.37355.920.400.053 300.002 800.243 900.012 380.033 480.000 41343120222102123
      B8070-1-815.7366.05181.450.360.054 050.004 280.255 020.019 810.033 800.000 49372180231162143
      B8070-1-927.79117.99396.100.300.050 520.004 000.239 180.019 110.034 420.000 54220179218162183
      B8070-1-1028.57121.01323.590.370.050 260.003 150.229 330.013 840.033 430.000 40206146210112123
      B8070-1-1127.35112.34368.390.300.048 840.002 920.236 820.015 150.034 310.000 41139137216122173
      B8070-1-1224.19107.20255.290.420.049 960.003 960.233 500.017 980.034 410.000 47195174213152183
      B8070-1-13191.69708.401097.300.650.050 990.001 670.317 420.010 040.045 140.000 432398128082853
      B8070-1-1438.35160.30517.710.310.052 650.002 410.245 350.010 530.034 080.000 3732210422392162
      B8070-1-1522.87107.13298.360.360.055 030.003 550.250 820.015 920.033 300.000 40413144227132113
      B8070-1-1633.95143.41405.770.350.046 640.002 480.217 220.011 620.033 830.000 3932122200102142
      B8070-1-1728.06120.75415.180.290.050 190.002 460.234 290.011 210.033 940.000 3721111821492152
      B8070-1-1818.7267.66292.380.230.050 470.003 310.233 610.014 760.033 660.000 47217152213122133
      B8070-1-1934.84168.15416.520.400.047 530.002 480.224 350.011 890.033 960.000 4276119206102153
      B8070-1-2013.5551.40146.090.350.047 680.005 370.215 370.023 280.033 880.000 5383248198192153
      B8070-1-2139.12176.36437.650.400.045 680.002 300.214 430.010 680.033 910.000 3419792152
      B8070-1-22 45.73 224.50 467.05 0.48 0.050 21 0.002 54 0.232 87 0.011 69 0.033 56 0.000 36 211 117 213 10 213 2
      注:Pb*代表放射性铅.
      下载: 导出CSV

      表  2  西昆仑东段宿营地中性脉岩主量元素分析结果(%)

      Table  2.   Major element result of Suyingdi dykes (%)

      样号岩性SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5H2O+CO2TotalMg#σA/CNK
      B0141-1闪长玢岩62.500.5017.201.043.610.091.582.805.900.750.171.302.4399.8637.772.271.10
      BP2-18-1闪长玢岩58.790.6517.411.104.650.122.504.564.151.200.172.472.0199.7743.631.811.06
      B4180-1闪长玢岩60.580.6816.781.284.500.091.972.696.090.920.162.471.6599.8637.842.801.05
      B3712-2闪长玢岩55.970.7517.320.915.810.134.155.103.261.200.183.940.3599.0852.231.531.09
      D4306-2闪长玢岩62.950.5417.451.203.890.101.804.114.131.230.152.200.2299.9738.741.441.12
      B7742-1闪长玢岩57.360.6616.270.724.650.102.604.742.632.400.173.503.6899.4846.151.761.05
      B7661-2闪长玢岩58.370.6916.620.515.430.113.165.133.721.410.173.171.3499.8348.381.710.98
      B2065-1含石榴石闪长玢岩59.120.6717.690.934.850.112.003.245.381.010.232.212.0399.4838.052.531.12
      B5218-1含石榴石闪长玢岩62.020.5917.271.333.150.071.815.043.501.780.181.731.1599.6242.101.471.02
      B7168-1含石榴石闪长玢岩61.150.5115.990.903.970.081.803.375.251.300.142.812.6899.9639.672.360.99
      B8094-1角闪安山玢岩61.160.6217.670.894.300.082.431.645.061.590.181.952.1699.7445.412.441.36
      B3569-1角闪安山玢岩57.840.6616.900.625.530.134.582.695.500.660.213.091.2799.6856.782.561.15
      B8104-1闪斜煌斑岩53.920.7617.301.395.090.135.316.423.141.820.182.731.6499.8259.392.250.92
      下载: 导出CSV

      表  3  西昆仑东段宿营地中性脉岩稀土元素分析结果(10-6)

      Table  3.   Rare earth element result of Suyingdi dykes (10-6)

      样号LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELaN/YbNEu/Eu*Ce/Ce*
      B0141-122.8542.705.0822.213.741.503.360.421.940.361.060.170.950.1410.45106.4898.088.4017.201.270.93
      BP2-18-124.1943.425.0422.104.241.364.220.623.410.661.970.331.920.2817.52113.77100.3513.419.030.970.91
      B4180-126.7447.505.7625.194.431.254.200.583.020.581.780.291.660.2316.05123.21110.8712.3411.560.870.89
      B3712-227.9249.996.6429.265.851.645.420.884.720.972.910.412.640.4019.10139.64121.318.357.580.870.87
      D4306-222.5844.135.6624.944.541.434.230.653.370.671.840.261.700.2613.93116.25103.2812.989.560.980.93
      B7742-125.0148.696.0426.015.031.275.030.804.380.882.580.362.300.3517.35128.71112.0516.687.810.760.94
      B7661-227.4953.566.7830.145.761.685.520.884.780.982.880.412.720.4118.63144.00125.4118.587.240.900.93
      B2065-122.7741.925.2122.904.301.754.010.552.650.501.450.231.300.1913.67109.7298.8510.8812.591.270.91
      B5218-124.8446.245.6724.664.201.483.640.441.920.341.040.160.890.129.99115.62107.098.5520.021.130.92
      B7168-127.7453.096.7028.985.281.504.870.703.370.631.780.241.420.2112.81136.49123.2913.2214.030.890.93
      B8094-125.5843.635.1822.263.911.193.920.532.820.561.730.291.690.2615.21113.54101.7511.810.880.920.88
      B3569-124.9745.305.8825.594.941.634.710.743.900.822.340.332.140.3318.40123.62108.3115.318.371.020.88
      B8104-120.1736.804.4219.923.911.493.850.593.390.682.040.341.940.2918.4599.8286.7113.127.461.160.91
      下载: 导出CSV

      表  4  西昆仑东段宿营地中性脉岩微量元素分析结果(10-6)

      Table  4.   Trace element result of Suyingdi dykes (10-6)

      样号RbSrBaThUNbTaZrHfScVCrCoNiCuPbZn
      B0141-125.86416637.051.569.260.591123.017.3152.98.967.142.964.7618.196.5
      BP2-18-137.43413296.191.496.890.621293.5113.680.412.710.98.215.5211.583.3
      B4180-143.15302026.581.507.690.5872.11.9512.781.211.810.03.606.3818.8102
      B3712-230.94434857.151.699.510.651183.1621.412968.818.217.77.7548.5185
      D4306-247.63361805.341.158.490.611263.4110.572.79.917.866.994.2516.670.5
      B7742-190.32903676.861.516.870.541253.4416.175.742.213.518.25.7711.973.9
      B7661-233.73954096.251.448.660.591313.5117.080.646.113.725.56.8635.5118
      B2065-130.584117095.161.248.140.521303.359.5454.49.818.873.713.8512.2102
      B5218-171.33705406.471.568.880.561303.597.5354.512.07.165.098.1318.390.6
      B7168-139.94091317.272.126.210.571193.2312.759.011.89.638.177.8117.180.1
      B8094-151.74733738.792.047.480.621373.7812.082.837.610.811.03.4310.878.8
      B3569-117.814341715.881.6010.10.731393.5215.510613219.045.27.9622.178.0
      B8104-150.54397435.881.527.470.5149.41.3222.715511018.246.425.610.975.6
      下载: 导出CSV
    • [1] Ancochea, E., Brändle, J.L., Huertas, M.J., et al., 2003.The Felsic Dikes of La Gomera (Canary Islands):Identification of Cone Sheet and Radial Dike Swarms.Journal of Volcanology and Geothermal Research, 120(3-4):197-206.doi: 10.1016/s0377-0273(02)00384-0
      [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [3] Bian, Q.T., Li, D.H., Pospelov, I., et al., 2004.Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China.Journal of Asian Earth Sciences, 23(4):577-596.doi: 10.1016/j.jseaes.2003.09.003
      [4] Birch, W.D., Gleadow, A.J.W., 1974.The Genesis of Garnet and Cordierite in Acid Volcanic Rocks:Evidence from the Cerberean Cauldron, Central Victoria, Australia.Contributions to Mineralogy and Petrology, 45(1):1-13.doi: 10.1007/bf00371133
      [5] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7
      [6] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun.Acta Geologica Sinica, 87(2):178-196(in Chinese with English abstract).doi: 10.3969/j.issn.0001-5717.2013.02.004
      [7] Chen, S.J., Li, R.S., Ji, W.H., et al., 2011.Lithostratigraphy Character and Tectonic-Evolvement of Permian-Trias in the Bayankala Tectonic Belt.Earth Science, 36(3):393-408(in Chinese with English abstract). https://www.researchgate.net/publication/286994757_Lithostratigraphy_character_and_tectonic_evolvement_of_Permian_Trias_in_the_Bayankala_tectonic_belt
      [8] Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979.The Interpretation of Igneous Rocks.George, Allen and Unwin, London.
      [9] Day, R.A., Green, T.H., Smith, I.E.M., 1992.The Origin and Significance of Garnet Phenocrysts and Garnet-Bearing Xenoliths in Miocene Calc-Alkaline Volcanics from Northland, New Zealand.Journal of Petrology, 33(1):125-161.doi: 10.1093/petrology/33.1.125
      [10] Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014.Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications.Lithos, 205:266-283.doi: 10.1016/j.lithos.2014.07.015
      [11] Foley, S., Tiepolo, M., Vannucci, R., 2002.Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones.Nature, 417(6891):837-840.doi: 10.1038/nature00799
      [12] Fu, L.B., Wei, J.H., Wei, Q.R., et al., 2010.Petrogenesis and Geodynamic Setting of Late Triassic Dykes of Jinchanggouliang, Eastern Inner Mongolia.Earth Science, 35(6):933-946(in Chinese with English abstract). https://www.researchgate.net/publication/287679337_Petrogenesis_and_geodynamic_setting_of_late_Triassic_dykes_of_Jinchanggouliang_Eastern_Inner_Mongolia
      [13] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897.doi: 10.1038/nature03162
      [14] Halls, H.C., 1982.The Importance and Potential of Mafic Dyke Swarms in Studies of Geodynamic Processes.Geoscience Canada, 9(3):145-154. https://www.researchgate.net/publication/285020850_The_importance_and_potential_of_mafic_dyke_swarms_in_studies_of_geodynamic_processes
      [15] Harangi, S., 2001.Almandine Garnet in Calc-Alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-Central Europe):Geochemistry, Petrogenesis and Geodynamic Implications.Journal of Petrology, 42(10):1813-1843.doi: 10.1093/petrology/42.10.1813
      [16] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548.doi: 10.1139/e71-055
      [17] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008.Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China.Geological Journal of China Universities, 14(4):496-509(in Chinese with English abstract). https://www.researchgate.net/publication/284880075_Characteristics_and_genesis_of_Mesozoic_A-type_granites_and_associated_mineral_deposits_in_the_southern_Hunan_and_northern_Guangxi_provinces_along_the_Shi-Hang_belt_South_China
      [18] Kang, L., Xiao, P.X., Gao, X.F., et al., 2012.LA-ICP-MS U-Pb Dating of the Zircon from Muztagata Pluton in Western Kunlun Orogenic Belt:Constraints on the Time of Paleotethys' Collision.Geological Review, 58(4):763-774(in Chinese with English abstract). https://www.researchgate.net/publication/286208709_LA-ICP-MS_U-Pb_dating_of_the_zircon_from_Muztagata_pluton_in_western_Kunlun_orogenic_belt_Constraints_on_the_time_of_Paleotethys'_collision
      [19] Kawabata, H., Takafuji, N., 2005.Origin of Garnet Crystals in Calc-Alkaline Volcanic Rocks from the Setouchi Volcanic Belt, Japan.Mineralogical Magazine, 69(6):951-971.doi: 10.1180/0026461056960301
      [20] Krippner, A., Meinhold, G., Morton, A.C., et al., 2014.Evaluation of Garnet Discrimination Diagrams Using Geochemical Data of Garnets Derived from Various Host Rocks.Sedimentary Geology, 306:36-52.doi: 10.1016/j.sedgeo.2014.03.004
      [21] Lackey, J.S., Erdmann, S., Hark, J.S., et al., 2011.Tracing Garnet Origins in Granitoid Rocks by Oxygen Isotope Analysis:Examples from the South Mountain Batholith, Nova Scotia.The Canadian Mineralogist, 49(2):417-439.doi: 10.3749/canmin.49.2.417
      [22] Lai, J.Q., Huang, M., Song, W.B., et al., 2015.Geochemical Characteristics and Source of Ore-Forming Materials of Kaerqueka Copper Polymetallic Deposit in Qinghai Province, China.Earth Science, 40(1):1-16(in Chinese with English abstract). https://www.researchgate.net/publication/281667162_Geochemical_characteristics_and_source_of_ore-forming_materials_of_Kaerqueka_copper_polymetallic_deposit_in_Qinghai_Province_China
      [23] Liang, T., Luo, Z.H., Li, W.T., et al., 2005.Geologic Features and Tectonic Implications of the Tuyon Volcano Group.Xinjiang Geology, 23(2):105-110(in Chinese with English abstract).
      [24] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004.Crust-Mantle Magmatic Mixing in East Kunlun:Evidence from Zircon SHRIMP Geochronology.Chinese Science Bulletin, 49(6):596-602(in Chinese).
      [25] Liu, J.L., Sun, F.Y., Li, L., et al., 2015.Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). https://www.researchgate.net/publication/291077410_Characteristics_of_Early_Jurassic_volcanic_rocks_and_their_tectonic_significance_in_Haidewula_east_Kunlun_orogenic_belt_Qinghai_Province
      [26] Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [27] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004
      [28] Liu, Z., Jiang, Y.H., Jia, R.Y., et al., 2015.Origin of Late Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Tibet Plateau, Northwest China:Implications for Paleo-Tethys Evolution.Gondwana Research, 27(1):326-341.doi: 10.1016/j.gr.2013.09.022
      [29] Ludwing, K.R., 2012.User's Manual for Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication No.5.
      [30] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Buttetin of China, 21(6):292-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun
      [31] Lü, J.G., Wang, J.C., Chu, C.H., et al., 2006.Zircon SHRIMP U-Pb Dating of the Wolonggang Monzogranite Porphyry in the Western Segment of the Hoh Xil Belt, Qinghai-Tibet Plateau and Its Geological Significance.Geological Bulletin of China, 25(6):721-724(in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2006.06.011
      [32] Mahoney, J.J., Frei, R., Tejada, M.L.G., et al., 1998.Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor.Journal of Petrology, 39(7):1285-1306.doi: 10.1093/petroj/39.7.1285
      [33] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [34] Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events.Earth Science Frontiers, 13(6):43-51(in Chinese with English abstract). https://www.researchgate.net/publication/309457071_From_the_Tethys_to_the_Formation_of_the_Qinghai-Tibet_Plateau_Constrained_by_Tectono-Magmatic_Event
      [35] Moyen, J.F., 2009.High Sr/Y and La/Yb Ratios:The Meaning of the "Adakitic Signature".Lithos, 112(3-4):556-574.doi: 10.1016/j.lithos.2009.04.001
      [36] Nitoi, E., Munteanu, M., Marincea, S., et al., 2002.Magma-Enclave Interactions in the East Carpathian Subvolcanic Zone, Romania:Petrogenetic Implications.Journal of Volcanology and Geothermal Research, 118(1-2):229-259.doi: 10.1016/s0377-0273(02)00258-5
      [37] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53(2):3-14.doi: 10.1016/j.jseaes.2011.12.018
      [38] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [39] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47.doi: 10.1007/bf00375192
      [40] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745
      [41] Poland, M.P., Fink, J.H., Tauxe, L., 2004.Patterns of Magma Flow in Segmented Silicic Dikes at Summer Coon Volcano, Colorado:AMS and Thin Section Analysis.Earth and Planetary Science Letters, 219(1-2):155-169.doi: 10.1016/s0012-821x(03)00706-4
      [42] Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008.Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean.Geology, 36(5):351.doi: 10.1130/g24435a.1
      [43] Qiao, G.B., Zhang, H.D., Wu, Y.Z., et al., 2015.Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun:Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics.Acta Geologica Sinica, 89(7):1180-1194(in Chinese with English abstract).
      [44] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356.doi: 10.1016/s0009-2541(99)00106-0
      [45] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891
      [46] Rudnik, R., Gao, S., 2003.Composition of the Continental Crust.In:Rudnik, R., ed., The Crust, Treatise on Geochemistry.Elservier, Amsterdam, 3-164.doi:10.1016/B0-08-043751-6/03016-4
      [47] Samadi, R., Mirnejad, H., Kawabata, H., et al., 2014.Magmatic Garnet in the Triassic (215 Ma) Dehnow Pluton of NE Iran and Its Petrogenetic Significance.International Geology Review, 56(5):596-621.doi: 10.1080/00206814.2014.880659
      [48] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [49] Tatsumi, Y., Hanyu, T., 2003.Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan.Geochemistry, Geophysics, Geosystems, 4(9):1081.doi: 10.1029/2003GC000530
      [50] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288, 1300.
      [51] Warren, R.C., 1970.Electron Microprobe Investigations of Almandine Garnets from a Quartz Diorite Stock and Adjacent Metamorphic Rocks, British Columbia.Amer.Geophys.Union Trans., 51:444. https://www.coursehero.com/file/p3gani8/demanding-nuclear-energy-companies-to-develop-a-waste-supervision-societies-to/
      [52] Westerman, D.S., Dini, A., Innocenti, F., et al., 2003.When and Where did Hybridization Occur? The Case of the Monte Capanne Pluton, Italy.Atlantic Geology, 39(2):147-162.doi: 10.4138/1177
      [53] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf
      [54] Xia, R., Wang, C.M., Qing, M., et al., 2015.Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen:Record of Closure of the Paleo-Tethys.Lithos, 234-235:47-60.doi: 10.1016/j.lithos.2015.07.018
      [55] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014
      [56] Xiong, X.L., Adam, J., Green, T.H., et al., 2006.Trace Element Characteristics of Partial Melts Product by Melting of Metabasalts at High Pressures:Constrain on the Formation Condition of Adakitic Melts.Science in China(Series D), 49(9):915-925.doi: 10.1007/s11430-006-0915-2
      [57] Xu, X.W., Zhang, B.L., Qin, K.Z., et al., 2007.Origin of Lamprophyres by the Mixing of Basic and Alkaline Melts in Magma Chamber in Beiya Area, Western Yunnan, China.Lithos, 99(3-4):339-362.doi: 10.1016/j.lithos.2007.06.011
      [58] Xu, Z.Q., Li, H.B., Yang, J.S., et al., 2001.A Large Transpression Zone at the South Margin of the East Kunlun Mountains and Oblique Subduction.Acta Geologica Sinica, 75(2):156-164(in Chinese with English abstract). https://www.researchgate.net/publication/287876866_A_large_transpression_zone_at_the_South_Margin_of_the_East_Kunlun_mountains_and_oblique_subduction
      [59] Xu, Z.Q., Yang, J.S., Li, H.Q., et al., 2012.Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism.Acta Petrologica Sinica, 28(6):1697-1709(in Chinese with English abstract). https://www.researchgate.net/publication/298412412_Indosinian_collision-orogenic_system_of_Chinese_continent_and_its_orogenic_mechanism
      [60] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau.Acta Petrologica Sinica, 29(6):1847-1860(in Chinese with English abstract).
      [61] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009.Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China.Journal of Earth Science, 20(2):303-331.doi: 10.1007/s12583-009-0027-y
      [62] Yuan, C., Sun, M., Xiao, W.J., et al., 2008.Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for Adakite and Magmas from the MASH Zone.International Journal of Earth Sciences, 98(6):1489-1510.doi: 10.1007/s00531-008-0335-y
      [63] Zeng, L.S., Asimow, P.D., Saleeby, J.B., 2005.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source.Geochimica et Cosmochimica Acta, 69(14):3671-3682.doi: 10.1016/j.gca.2005.02.035
      [64] Zhan, Y., Hou, G.T., Hari, K.R., et al., 2015.Geochemical and Isotopic Constraints on the Evolution of Late Paleozoic Dyke Swarms in West Junggar, Xinjiang, China.Journal of Asian Earth Sciences, 113(1):126-136.doi: 10.1016/j.jseaes.2014.07.012
      [65] Zhang, C.L., Yu, H.F., Wang, A.G., et al., 2005.Dating of Triassic Granites in the Western Kunlun Mountains and Its Tectonic Significane.Acta Geologica Sinica, 79(5):645-652(in Chinese with English abstract). https://www.researchgate.net/publication/289602492_Dating_of_Triassic_granites_in_the_western_Kunlun_Mountains_and_its_tectonic_significane
      [66] Zhang, L.Y., Ding, L., Pullen, A., et al., 2014.Age and Geochemistry of Western Hoh-Xil-Songpan-Ganzi Granitoids, Northern Tibet:Implications for the Mesozoic Closure of the Paleo-Tethys Ocean.Lithos, 190-191:328-348.doi: 10.1016/j.lithos.2013.12.019
      [67] Zhang, Q., Jin, W.J., Wang, Y.L., et al., 2006.A Model of Delamination of Continental Lower Crust.Acta Petrologica Sinica, 22(2):265-276(in Chinese with English abstract). https://www.researchgate.net/publication/286314931_A_model_of_delamination_of_continental_lower_crust
      [68] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244(in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China
      [69] Zhang, Y., Niu, Y.L., Hu, Y., et al., 2016.The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China—Evidence from Geochronology and Geochemistry of the Arkarz Pluton.Lithos, 245:191-204.doi: 10.1016/j.lithos.2015.05.007
      [70] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 87(2):178-196. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302006.htm
      [71] 陈守建, 李荣社, 计文化, 等, 2011.巴颜喀拉构造带二叠-三叠纪岩相特征及构造演化.地球科学, 36(3):393-408. http://www.earth-science.net/WebPage/Article.aspx?id=2106
      [72] 付乐兵, 魏俊浩, 魏启荣, 等, 2010.内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景.地球科学, 35(6):933-946. http://www.earth-science.net/WebPage/Article.aspx?id=2039
      [73] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报, 14(4):496-509. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm
      [74] 康磊, 校培喜, 高晓峰, 等, 2012.西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年:对古特提斯碰撞时限的制约.地质论评, 58(4):763-774. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204018.htm
      [75] 赖健清, 黄敏, 宋文彬, 等, 2015.青海卡尔却卡铜多金属矿床地球化学特征与成矿物质来源.地球科学, 40(1):1-16. doi: 10.11867/j.issn.1001-8166.2015.01.001
      [76] 梁涛, 罗照华, 李文韬, 等, 2005.托云火山群的火山地质特征及其构造意义.新疆地质, 23(2):105-110. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200502002.htm
      [77] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406018.htm
      [78] 刘金龙, 孙丰月, 李良, 等, 2015.青海阿尼玛卿蛇绿杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.earth-science.net/WebPage/Article.aspx?id=3101
      [79] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm
      [80] 吕金刚, 王炬川, 禇春华, 等, 2006.青藏高原可可西里带西段卧龙岗二长花岗斑岩锆石SHRIMP U-Pb定年及其地质意义.地质通报, 25(6):721-724. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200606011.htm
      [81] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm
      [82] 乔耿彪, 张汉德, 伍跃中, 等, 2015.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约.地质学报, 89(7):1180-1194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507003.htm
      [83] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9):1277-1288, 1300. http://www.earth-science.net/WebPage/Article.aspx?id=2935
      [84] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [85] 许志琴, 李海兵, 杨经绥, 等, 2001.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用.地质学报, 75(2):156-164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200102002.htm
      [86] 许志琴, 杨经绥, 李化启, 等, 2012.中国大陆印支碰撞造山系及其造山机制.岩石学报, 28(6):1697-1709. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm
      [87] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      [88] 张传林, 于海锋, 王爱国, 等, 2005.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义.地质学报, 79(5):645-652. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505009.htm
      [89] 张旗, 金惟俊, 王元龙, 等, 2006.大陆下地壳拆沉模式初探.岩石学报, 22(2):265-276. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611001.htm
      [90] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  5574
    • HTML全文浏览量:  1758
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-01
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回