Zircon U-Pb Dating and Geochemistry of Late Triassic Intermediate Dykes in Suyingdi, Eastern Section of West Kunlun and Their Geological Significance
-
摘要: 为了研究西昆仑造山带东段古特提斯构造-岩浆演化,提升区域研究程度,对宿营地脉岩进行系统的野外地质调查、岩相学、LA-ICP-MS锆石U-Pb定年、岩石地球化学研究.脉岩呈NE向成群成带分布;岩石类型为(含石榴)闪长玢岩、角闪安山玢岩及闪斜煌斑岩;获得(含石榴)闪长玢岩LA-ICP-MS锆石U-Pb加权平均年龄(214±1)~(219±1) Ma,形成于晚三叠世,是印支晚期构造-岩浆活动产物;脉岩主要为钙碱性系列岩石,表现出中Si(SiO2=53.92%~62.95%)、高Al(Al2O3=15.99%~17.69%)、富Na(Na2O=2.63%~6.09%、Na2O/K2O=1.09~8.30)、低Ti(Ti2O=0.50%~0.76%)、低P(P2O5=0.14%~0.23%)、Mg(Mg#=37.73~59.32) 变化大等主量元素特征,铝饱和指数(A/CNK)为0.92~1.36;脉岩富集LREE、Rb、Th、U、K,亏损HREE、Nb、Ta、P、Ti,(La/Yb)N=7.24~20.02,Ce、Eu异常不明显.结果表明,宿营地中性脉岩是西昆仑东段南缘晚三叠世古特提斯弧后拉张作用引起的壳-幔混合作用的产物.Abstract: order to understand tectonic-magmatic evolution of eastern section of West Kunlun orogen, a systematic field geological surveying, microscopic petrographic examination, LA-ICP-MS U-Pb zircon dating, and geochemistry study were carried out for the Suyingdi dykes. These dykes occur in groups or belts along an NE trending. The rock types of dykes include (garnet-bearing) diorite-porphyrite, hornblende andesite-porphyrite, and proterobase spessartite. Using LA-ICP-MS method, zircons in the (garnet-bearing) diorite-porphyrite samples show a weighted average age between 214±1 and 219±1 Ma, indicating that they formed in Late Triassic epoch, and they are probably tectonic-magmatic products of late period of Indosinian. The rocks belong to the calc-alkaline series, showing intermediate Si (SiO2=53.92%-62.95%), high Al (Al2O3=15.99%-17.69%), rich in Na (Na2O=2.63%-6.09%, Na2O/K2O=1.09-8.30), Ti(Ti2O=0.50%-0.76%), P(P2O5=0.14%-0.23%). The rocks also show a large range of Mg (Mg#=37.73-59.32), and their A/CNK values vary from 0.92 to 1.36. They show enrichment in LREE, Rb, Th, U, K; depletion in HREE, Nb, Ta, Ti, P; (La/Yb)N=7.24-20.02 and weak Ce and Eu anomalies. Suyingdi intermediate dykes are the product of crustal-mantle magma mixing which caused by back-arc extention of eastern section of West Kunlun in Late Triassic.
-
Key words:
- intermediate dyke /
- zircon U-Pb dating /
- geochemistry /
- tectonic setting /
- West Kunlun /
- geochronology
-
图 1 西昆仑东段宿营地地区地质简图
WK.西昆仑地块;EK.东昆仑地块;QT.羌塘地块;BK.巴颜喀拉地块;AS.阿尔金断裂;ASN.阿尔金断裂北支;ASS.阿尔金断裂南支;HSS.红山顶-三道河子断裂;KMAS.康西瓦-木孜塔格-阿尼玛卿晚古生代结合带;XJS.西金乌兰-金沙江晚古生代结合带;1.第四系;2.下白垩统双伍山组;3.下三叠统西长沟组;4.中二叠统黄羊岭组;5.脉岩;6.断层;7.地质界线;8.产状;9.岩石化学分析样采样位置;10.锆石U-Pb年龄样采样位置;b图据(陈守建等,2011)
Fig. 1. Geologic sketch of Suyingdi area, eastern section of West Kunlun
图 5 西昆仑东段宿营地中性脉岩TAS图解(a)、FAM图解(b)、SiO2-K2O图解(c)和A/CNK-A/NK图解(d)
1.橄榄辉长岩;2.辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.似长辉长岩;14.似长二长闪长岩;15.似长正长闪长岩;16.似长正长岩;17.似长岩;18.霓方钠岩/磷霞岩/粗白榴岩;Ir-Irvine分界线(Irvine and Baragar, 1971);A.碱性系列;S.亚碱性系列;TH.拉斑玄武岩系列;CA.钙碱性系列;数据来源:东昆仑同期石榴闪长玢岩(Yuan et al., 2008);a图据Cox et al.(1979);b图据Irvine and Baragar(1971);c图据Peccerillo and Taylor(1976);d图据Maniar and Piccolli(1989)
Fig. 5. TAS (a), FAM (b), K2O-SiO2 (c) and A/NK-A/CNK (d) diagram of Suyingdi dykes
图 6 西昆仑东段宿营地中性脉岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)
东昆仑同期石榴闪长玢岩数据同图 5;球粒陨石标准化值据Sun and McDonough(1989)
Fig. 6. REE distribution pattern (a) and trace element spidergram (b) of Suyingdi dykes
图 9 西昆仑东段宿营地中性脉岩Y-Nb(a)和Yb+Ta-Rb(b)构造环境判别图解
syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;VAG.岛弧花岗岩;底图据Pearce et al.(1984);图中东昆仑同期石榴闪长玢岩数据同图 6b
Fig. 9. Y-Nb diagram (a) and Yb+Ta-Rb diagram (b) of tectonic setting discrimination of Suyingdi dykes
表 1 西昆仑东段宿营地中性脉岩LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb data of zircon of Suyingdi dykes
点号 元素(10-6) 同位素比值 年龄(Ma) Pb Th U Th/U 207Pb*/206Pb* 1σ 207Pb*/235U 1σ 206Pb*/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 样品2065-1(含石榴石闪长玢岩) B2065-1-1 25.51 102.62 337.86 0.30 0.050 11 0.002 46 0.237 53 0.011 29 0.034 53 0.000 36 211 113 216 9 219 2 B2065-1-2 26.13 92.35 324.20 0.28 0.057 17 0.002 64 0.272 02 0.012 49 0.034 41 0.000 45 498 102 244 10 218 3 B2065-1-3 38.88 165.39 452.29 0.37 0.055 87 0.002 65 0.265 03 0.012 32 0.034 50 0.000 43 456 106 239 10 219 3 B2065-1-4 17.64 74.63 235.51 0.32 0.049 45 0.002 51 0.234 22 0.011 76 0.034 49 0.000 49 169 114 214 10 219 3 B2065-1-5 21.15 72.01 271.73 0.27 0.059 84 0.003 12 0.287 00 0.015 41 0.034 44 0.000 52 598 113 256 12 218 3 B2065-1-6 28.99 114.20 305.74 0.37 0.053 87 0.002 99 0.253 46 0.013 42 0.034 21 0.000 45 365 126 229 11 217 3 B2065-1-7 43.34 180.59 560.37 0.32 0.049 19 0.001 82 0.235 34 0.008 78 0.034 51 0.000 40 167 82 215 7 219 2 B2065-1-8 38.35 154.17 353.87 0.44 0.055 70 0.002 61 0.263 32 0.012 15 0.034 50 0.000 44 439 106 237 10 219 3 B2065-1-9 26.21 100.26 385.56 0.26 0.051 93 0.002 74 0.246 05 0.012 54 0.034 71 0.000 46 283 116 223 10 220 3 B2065-1-10 39.30 166.05 460.52 0.36 0.049 69 0.002 75 0.234 82 0.01296 0.03443 0.00048 189 125 214 11 218 3 B2065-1-11 39.84 154.29 558.05 0.28 0.046 99 0.002 26 0.222 61 0.011 12 0.034 47 0.000 43 56 111 204 9 218 3 B2065-1-12 44.97 156.47 653.56 0.24 0.048 78 0.002 19 0.229 80 0.010 82 0.034 54 0.000 55 200 106 210 9 219 3 B2065-1-13 24.46 99.03 306.03 0.32 0.050 01 0.002 53 0.235 30 0.011 77 0.034 67 0.000 46 195 119 215 10 220 3 B2065-1-14 33.92 138.01 453.02 0.30 0.051 19 0.001 96 0.241 36 0.009 31 0.034 50 0.000 40 250 89 220 8 219 2 B2065-1-15 40.44 155.31 424.03 0.37 0.052 13 0.002 33 0.248 19 0.011 19 0.034 51 0.000 39 300 102 225 9 219 2 B2065-1-16 31.36 130.60 414.28 0.32 0.048 88 0.001 96 0.227 12 0.008 69 0.033 84 0.000 34 143 90 208 7 215 2 B2065-1-17 25.76 98.27 317.96 0.31 0.051 11 0.002 67 0.241 38 0.012 66 0.034 37 0.000 36 256 120 220 10 218 2 B2065-1-18 25.22 105.30 300.20 0.35 0.05227 0.002 55 0.248 53 0.012 20 0.034 35 0.000 45 298 108 225 10 218 3 B2065-1-19 41.85 184.45 497.65 0.37 0.04912 0.002 46 0.235 42 0.012 02 0.034 57 0.000 48 154 151 215 10 219 3 B2065-1-20 55.15 249.35 614.87 0.41 0.046 62 0.001 64 0.222 09 0.008 10 0.034 13 0.000 30 32 91 204 7 216 2 B2065-1-21 31.72 126.89 421.19 0.30 0.049 12 0.001 93 0.233 82 0.008 66 0.034 70 0.000 37 154 93 213 7 220 2 B2065-1-22 28.49 126.21 308.69 0.41 0.050 89 0.002 26 0.241 57 0.010 62 0.034 55 0.000 45 235 106 220 9 219 3 B2065-1-23 37.33 158.03 458.20 0.34 0.052 43 0.002 06 0.251 28 0.009 94 0.034 57 0.000 37 306 89 228 8 219 2 B2065-1-24 24.79 103.02 313.03 0.33 0.051 53 0.002 15 0.24483 0.009 98 0.034 54 0.000 39 265 101 222 8 219 2 B2065-1-25 63.92 288.87 787.03 0.37 0.049 50 0.001 71 0.234 47 0.007 84 0.034 42 0.000 31 172 75 214 6 218 2 B2065-1-26 35.31 161.15 360.75 0.45 0.049 62 0.002 13 0.235 10 0.009 81 0.034 46 0.000 40 176 102 214 8 218 2 样品7168-1(含石榴石闪长玢岩) B7168-1-1 32.17 199.86 420.77 0.47 0.053 43 0.002 28 0.245 03 0.009 79 0.033 67 0.000 43 346 94 223 8 213 3 B7168-1-2 38.15 192.66 529.96 0.36 0.053 25 0.001 96 0.248 37 0.008 99 0.033 79 0.000 35 339 83 225 7 214 2 B7168-1-3 33.21 104.42 552.86 0.19 0.053 39 0.002 31 0.247 17 0.011 34 0.033 36 0.000 52 346 92 224 9 212 3 B7168-1-4 45.70 247.48 676.78 0.37 0.053 29 0.001 77 0.247 90 0.008 37 0.033 58 0.000 40 343 74 225 7 213 2 B7168-1-5 14.57 65.61 231.36 0.28 0.053 84 0.003 91 0.247 12 0.017 56 0.033 61 0.000 46 365 165 224 14 213 3 B7168-1-6 24.30 124.89 363.19 0.34 0.053 28 0.002 02 0.244 23 0.009 11 0.033 33 0.000 38 339 90 222 7 211 2 B7168-1-7 50.99 296.69 751.90 0.39 0.053 97 0.001 76 0.252 54 0.007 89 0.033 92 0.000 33 369 74 229 6 215 2 样品7168-1(含石榴石闪长玢岩) B7168-1-8 15.74 92.11 228.11 0.40 0.049 93 0.003 45 0.239 92 0.016 10 0.034 62 0.000 55 191 156 218 13 219 3 B7168-1-9 38.75 213.54 554.95 0.38 0.055 78 0.002 55 0.262 09 0.011 84 0.033 91 0.000 47 443 102 236 10 215 3 B7168-1-10 49.05 357.46 601.43 0.59 0.052 64 0.001 77 0.247 95 0.008 24 0.033 98 0.000 38 322 76 225 7 215 2 B7168-1-11 21.71 103.29 367.84 0.28 0.051 00 0.002 61 0.241 04 0.011 61 0.034 39 0.000 43 243 117 219 9 218 3 B7168-1-12 62.92 360.59 992.79 0.36 0.054 91 0.002 26 0.259 87 0.010 84 0.034 06 0.000 40 409 88 235 9 216 3 B7168-1-13 17.89 89.40 294.70 0.30 0.053 39 0.003 58 0.244 36 0.015 82 0.033 27 0.000 53 346 156 222 13 211 3 B7168-1-14 35.35 237.20 516.56 0.46 0.055 31 0.002 40 0.257 03 0.011 36 0.033 43 0.000 44 433 98 232 9 212 3 B7168-1-15 37.54 232.83 515.51 0.45 0.051 93 0.001 92 0.246 43 0.008 88 0.034 32 0.000 39 283 85 224 7 218 2 样品7742-1(闪长玢岩) B7742-1-1 23.89 143.12 385.30 0.37 0.049 66 0.002 03 0.237 46 0.010 04 0.034 65 0.000 43 189 96 216 8 220 3 B7742-1-2 31.81 195.07 550.41 0.35 0.048 42 0.001 59 0.231 69 0.007 77 0.034 61 0.000 37 120 76 212 6 219 2 B7742-1-3 16.68 107.61 278.10 0.39 0.049 78 0.002 16 0.237 06 0.010 28 0.034 85 0.000 44 183 102 216 8 221 3 B7742-1-4 22.99 136.32 385.13 0.35 0.054 02 0.002 24 0.259 46 0.010 93 0.034 70 0.000 38 372 93 234 9 220 2 B7742-1-5 11.80 69.18 235.26 0.29 0.049 44 0.002 39 0.234 85 0.011 15 0.034 66 0.000 48 169 115 214 9 220 3 B7742-1-6 11.70 78.94 205.12 0.38 0.052 51 0.002 84 0.253 98 0.015 04 0.034 44 0.000 58 309 122 230 12 218 4 B7742-1-7 13.57 81.88 271.73 0.30 0.050 28 0.002 73 0.239 67 0.012 90 0.034 69 0.000 53 209 126 218 11 220 3 B7742-1-8 12.72 76.45 226.64 0.34 0.057 91 0.003 09 0.277 81 0.014 86 0.034 88 0.000 50 528 117 249 12 221 3 B7742-1-9 13.32 82.17 265.33 0.31 0.049 76 0.002 63 0.239 49 0.013 25 0.034 69 0.000 57 183 122 218 11 220 4 B7742-1-10 18.71 118.28 342.54 0.35 0.051 58 0.002 29 0.239 88 0.010 18 0.034 10 0.000 43 333 102 218 8 216 3 B7742-1-11 11.36 68.84 204.93 0.34 0.052 00 0.002 75 0.246 10 0.013 37 0.034 44 0.000 55 287 150 223 11 218 3 B7742-1-12 22.82 141.16 361.45 0.39 0.048 94 0.003 32 0.233 39 0.015 82 0.034 64 0.000 43 146 152 213 13 220 3 B7742-1-13 17.20 105.70 276.35 0.38 0.053 61 0.002 61 0.254 79 0.012 46 0.034 58 0.000 47 354 111 230 10 219 3 B7742-1-14 18.43 115.58 288.76 0.40 0.053 75 0.002 50 0.253 69 0.011 77 0.034 42 0.000 42 361 104 230 10 218 3 B7742-1-15 9.50 54.70 151.33 0.36 0.055 05 0.004 87 0.248 28 0.019 60 0.034 52 0.000 82 413 200 225 16 219 5 B7742-1-16 14.83 79.88 201.09 0.40 0.062 21 0.004 22 0.293 01 0.020 17 0.034 23 0.000 57 681 146 261 16 217 4 B7742-1-17 14.51 82.68 236.90 0.35 0.051 39 0.002 58 0.243 77 0.012 41 0.034 47 0.000 47 257 115 222 10 218 3 B7742-1-18 20.24 107.12 333.31 0.32 0.051 85 0.002 52 0.242 80 0.011 38 0.034 44 0.000 41 280 111 221 9 218 3 B7742-1-19 15.55 95.32 259.40 0.37 0.052 89 0.002 91 0.248 21 0.013 10 0.034 53 0.000 55 324 131 225 11 219 3 B7742-1-20 20.80 117.26 338.38 0.35 0.054 29 0.003 00 0.259 94 0.014 35 0.034 59 0.000 49 383 124 235 12 219 3 B7742-1-21 14.32 80.15 233.05 0.34 0.051 24 0.003 30 0.242 82 0.016 11 0.034 56 0.000 69 250 150 221 13 219 4 B7742-1-22 25.55 174.52 352.10 0.50 0.055 66 0.003 08 0.264 78 0.017 65 0.033 82 0.000 49 439 129 239 14 214 3 B7742-1-23 26.34 134.93 278.38 0.48 0.051 36 0.001 85 0.337 41 0.012 49 0.047 63 0.000 56 257 83 295 9 300 3 B7742-1-24 8.70 56.88 146.00 0.39 0.057 95 0.003 23 0.260 53 0.013 93 0.033 64 0.000 52 528 94 235 11 213 3 样品8070-1(闪长玢岩) B8070-1-1 41.12 146.12 651.06 0.22 0.050 09 0.002 02 0.240 14 0.009 51 0.034 34 0.000 37 198 99 219 8 218 2 样品8070-1(闪长玢岩) B8070-1-2 22.64 93.70 267.21 0.35 0.054 38 0.003 71 0.255 48 0.016 52 0.034 49 0.000 47 387 149 231 13 219 3 B8070-1-3 28.05 103.85 437.84 0.24 0.054 61 0.002 54 0.257 94 0.012 17 0.033 88 0.000 36 394 106 233 10 215 2 B8070-1-4 30.98 133.77 389.54 0.34 0.047 93 0.002 63 0.225 25 0.012 26 0.033 74 0.000 39 95 126 206 10 214 2 B8070-1-5 23.37 88.22 397.87 0.22 0.047 26 0.002 49 0.225 74 0.012 43 0.034 35 0.000 42 61 122 207 10 218 3 B8070-1-6 25.79 89.60 412.86 0.22 0.053 02 0.002 95 0.249 26 0.013 91 0.034 10 0.000 46 328 126 226 11 216 3 B8070-1-7 28.86 141.37 355.92 0.40 0.053 30 0.002 80 0.243 90 0.012 38 0.033 48 0.000 41 343 120 222 10 212 3 B8070-1-8 15.73 66.05 181.45 0.36 0.054 05 0.004 28 0.255 02 0.019 81 0.033 80 0.000 49 372 180 231 16 214 3 B8070-1-9 27.79 117.99 396.10 0.30 0.050 52 0.004 00 0.239 18 0.019 11 0.034 42 0.000 54 220 179 218 16 218 3 B8070-1-10 28.57 121.01 323.59 0.37 0.050 26 0.003 15 0.229 33 0.013 84 0.033 43 0.000 40 206 146 210 11 212 3 B8070-1-11 27.35 112.34 368.39 0.30 0.048 84 0.002 92 0.236 82 0.015 15 0.034 31 0.000 41 139 137 216 12 217 3 B8070-1-12 24.19 107.20 255.29 0.42 0.049 96 0.003 96 0.233 50 0.017 98 0.034 41 0.000 47 195 174 213 15 218 3 B8070-1-13 191.69 708.40 1097.30 0.65 0.050 99 0.001 67 0.317 42 0.010 04 0.045 14 0.000 43 239 81 280 8 285 3 B8070-1-14 38.35 160.30 517.71 0.31 0.052 65 0.002 41 0.245 35 0.010 53 0.034 08 0.000 37 322 104 223 9 216 2 B8070-1-15 22.87 107.13 298.36 0.36 0.055 03 0.003 55 0.250 82 0.015 92 0.033 30 0.000 40 413 144 227 13 211 3 B8070-1-16 33.95 143.41 405.77 0.35 0.046 64 0.002 48 0.217 22 0.011 62 0.033 83 0.000 39 32 122 200 10 214 2 B8070-1-17 28.06 120.75 415.18 0.29 0.050 19 0.002 46 0.234 29 0.011 21 0.033 94 0.000 37 211 118 214 9 215 2 B8070-1-18 18.72 67.66 292.38 0.23 0.050 47 0.003 31 0.233 61 0.014 76 0.033 66 0.000 47 217 152 213 12 213 3 B8070-1-19 34.84 168.15 416.52 0.40 0.047 53 0.002 48 0.224 35 0.011 89 0.033 96 0.000 42 76 119 206 10 215 3 B8070-1-20 13.55 51.40 146.09 0.35 0.047 68 0.005 37 0.215 37 0.023 28 0.033 88 0.000 53 83 248 198 19 215 3 B8070-1-21 39.12 176.36 437.65 0.40 0.045 68 0.002 30 0.214 43 0.010 68 0.033 91 0.000 34 197 9 215 2 B8070-1-22 45.73 224.50 467.05 0.48 0.050 21 0.002 54 0.232 87 0.011 69 0.033 56 0.000 36 211 117 213 10 213 2 注:Pb*代表放射性铅. 表 2 西昆仑东段宿营地中性脉岩主量元素分析结果(%)
Table 2. Major element result of Suyingdi dykes (%)
样号 岩性 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ CO2 Total Mg# σ A/CNK B0141-1 闪长玢岩 62.50 0.50 17.20 1.04 3.61 0.09 1.58 2.80 5.90 0.75 0.17 1.30 2.43 99.86 37.77 2.27 1.10 BP2-18-1 闪长玢岩 58.79 0.65 17.41 1.10 4.65 0.12 2.50 4.56 4.15 1.20 0.17 2.47 2.01 99.77 43.63 1.81 1.06 B4180-1 闪长玢岩 60.58 0.68 16.78 1.28 4.50 0.09 1.97 2.69 6.09 0.92 0.16 2.47 1.65 99.86 37.84 2.80 1.05 B3712-2 闪长玢岩 55.97 0.75 17.32 0.91 5.81 0.13 4.15 5.10 3.26 1.20 0.18 3.94 0.35 99.08 52.23 1.53 1.09 D4306-2 闪长玢岩 62.95 0.54 17.45 1.20 3.89 0.10 1.80 4.11 4.13 1.23 0.15 2.20 0.22 99.97 38.74 1.44 1.12 B7742-1 闪长玢岩 57.36 0.66 16.27 0.72 4.65 0.10 2.60 4.74 2.63 2.40 0.17 3.50 3.68 99.48 46.15 1.76 1.05 B7661-2 闪长玢岩 58.37 0.69 16.62 0.51 5.43 0.11 3.16 5.13 3.72 1.41 0.17 3.17 1.34 99.83 48.38 1.71 0.98 B2065-1 含石榴石闪长玢岩 59.12 0.67 17.69 0.93 4.85 0.11 2.00 3.24 5.38 1.01 0.23 2.21 2.03 99.48 38.05 2.53 1.12 B5218-1 含石榴石闪长玢岩 62.02 0.59 17.27 1.33 3.15 0.07 1.81 5.04 3.50 1.78 0.18 1.73 1.15 99.62 42.10 1.47 1.02 B7168-1 含石榴石闪长玢岩 61.15 0.51 15.99 0.90 3.97 0.08 1.80 3.37 5.25 1.30 0.14 2.81 2.68 99.96 39.67 2.36 0.99 B8094-1 角闪安山玢岩 61.16 0.62 17.67 0.89 4.30 0.08 2.43 1.64 5.06 1.59 0.18 1.95 2.16 99.74 45.41 2.44 1.36 B3569-1 角闪安山玢岩 57.84 0.66 16.90 0.62 5.53 0.13 4.58 2.69 5.50 0.66 0.21 3.09 1.27 99.68 56.78 2.56 1.15 B8104-1 闪斜煌斑岩 53.92 0.76 17.30 1.39 5.09 0.13 5.31 6.42 3.14 1.82 0.18 2.73 1.64 99.82 59.39 2.25 0.92 表 3 西昆仑东段宿营地中性脉岩稀土元素分析结果(10-6)
Table 3. Rare earth element result of Suyingdi dykes (10-6)
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LaN/YbN Eu/Eu* Ce/Ce* B0141-1 22.85 42.70 5.08 22.21 3.74 1.50 3.36 0.42 1.94 0.36 1.06 0.17 0.95 0.14 10.45 106.48 98.08 8.40 17.20 1.27 0.93 BP2-18-1 24.19 43.42 5.04 22.10 4.24 1.36 4.22 0.62 3.41 0.66 1.97 0.33 1.92 0.28 17.52 113.77 100.35 13.41 9.03 0.97 0.91 B4180-1 26.74 47.50 5.76 25.19 4.43 1.25 4.20 0.58 3.02 0.58 1.78 0.29 1.66 0.23 16.05 123.21 110.87 12.34 11.56 0.87 0.89 B3712-2 27.92 49.99 6.64 29.26 5.85 1.64 5.42 0.88 4.72 0.97 2.91 0.41 2.64 0.40 19.10 139.64 121.3 18.35 7.58 0.87 0.87 D4306-2 22.58 44.13 5.66 24.94 4.54 1.43 4.23 0.65 3.37 0.67 1.84 0.26 1.70 0.26 13.93 116.25 103.28 12.98 9.56 0.98 0.93 B7742-1 25.01 48.69 6.04 26.01 5.03 1.27 5.03 0.80 4.38 0.88 2.58 0.36 2.30 0.35 17.35 128.71 112.05 16.68 7.81 0.76 0.94 B7661-2 27.49 53.56 6.78 30.14 5.76 1.68 5.52 0.88 4.78 0.98 2.88 0.41 2.72 0.41 18.63 144.00 125.41 18.58 7.24 0.90 0.93 B2065-1 22.77 41.92 5.21 22.90 4.30 1.75 4.01 0.55 2.65 0.50 1.45 0.23 1.30 0.19 13.67 109.72 98.85 10.88 12.59 1.27 0.91 B5218-1 24.84 46.24 5.67 24.66 4.20 1.48 3.64 0.44 1.92 0.34 1.04 0.16 0.89 0.12 9.99 115.62 107.09 8.55 20.02 1.13 0.92 B7168-1 27.74 53.09 6.70 28.98 5.28 1.50 4.87 0.70 3.37 0.63 1.78 0.24 1.42 0.21 12.81 136.49 123.29 13.22 14.03 0.89 0.93 B8094-1 25.58 43.63 5.18 22.26 3.91 1.19 3.92 0.53 2.82 0.56 1.73 0.29 1.69 0.26 15.21 113.54 101.75 11.8 10.88 0.92 0.88 B3569-1 24.97 45.30 5.88 25.59 4.94 1.63 4.71 0.74 3.90 0.82 2.34 0.33 2.14 0.33 18.40 123.62 108.31 15.31 8.37 1.02 0.88 B8104-1 20.17 36.80 4.42 19.92 3.91 1.49 3.85 0.59 3.39 0.68 2.04 0.34 1.94 0.29 18.45 99.82 86.71 13.12 7.46 1.16 0.91 表 4 西昆仑东段宿营地中性脉岩微量元素分析结果(10-6)
Table 4. Trace element result of Suyingdi dykes (10-6)
样号 Rb Sr Ba Th U Nb Ta Zr Hf Sc V Cr Co Ni Cu Pb Zn B0141-1 25.8 641 663 7.05 1.56 9.26 0.59 112 3.01 7.31 52.9 8.96 7.14 2.96 4.76 18.1 96.5 BP2-18-1 37.4 341 329 6.19 1.49 6.89 0.62 129 3.51 13.6 80.4 12.7 10.9 8.21 5.52 11.5 83.3 B4180-1 43.1 530 202 6.58 1.50 7.69 0.58 72.1 1.95 12.7 81.2 11.8 10.0 3.60 6.38 18.8 102 B3712-2 30.9 443 485 7.15 1.69 9.51 0.65 118 3.16 21.4 129 68.8 18.2 17.7 7.75 48.5 185 D4306-2 47.6 336 180 5.34 1.15 8.49 0.61 126 3.41 10.5 72.7 9.91 7.86 6.99 4.25 16.6 70.5 B7742-1 90.3 290 367 6.86 1.51 6.87 0.54 125 3.44 16.1 75.7 42.2 13.5 18.2 5.77 11.9 73.9 B7661-2 33.7 395 409 6.25 1.44 8.66 0.59 131 3.51 17.0 80.6 46.1 13.7 25.5 6.86 35.5 118 B2065-1 30.5 841 1709 5.16 1.24 8.14 0.52 130 3.35 9.54 54.4 9.81 8.87 3.71 3.85 12.2 102 B5218-1 71.3 370 540 6.47 1.56 8.88 0.56 130 3.59 7.53 54.5 12.0 7.16 5.09 8.13 18.3 90.6 B7168-1 39.9 409 131 7.27 2.12 6.21 0.57 119 3.23 12.7 59.0 11.8 9.63 8.17 7.81 17.1 80.1 B8094-1 51.7 473 373 8.79 2.04 7.48 0.62 137 3.78 12.0 82.8 37.6 10.8 11.0 3.43 10.8 78.8 B3569-1 17.8 1434 171 5.88 1.60 10.1 0.73 139 3.52 15.5 106 132 19.0 45.2 7.96 22.1 78.0 B8104-1 50.5 439 743 5.88 1.52 7.47 0.51 49.4 1.32 22.7 155 110 18.2 46.4 25.6 10.9 75.6 -
[1] Ancochea, E., Brändle, J.L., Huertas, M.J., et al., 2003.The Felsic Dikes of La Gomera (Canary Islands):Identification of Cone Sheet and Radial Dike Swarms.Journal of Volcanology and Geothermal Research, 120(3-4):197-206.doi: 10.1016/s0377-0273(02)00384-0 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [3] Bian, Q.T., Li, D.H., Pospelov, I., et al., 2004.Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China.Journal of Asian Earth Sciences, 23(4):577-596.doi: 10.1016/j.jseaes.2003.09.003 [4] Birch, W.D., Gleadow, A.J.W., 1974.The Genesis of Garnet and Cordierite in Acid Volcanic Rocks:Evidence from the Cerberean Cauldron, Central Victoria, Australia.Contributions to Mineralogy and Petrology, 45(1):1-13.doi: 10.1007/bf00371133 [5] Castillo, P.R., 2006.An Overview of Adakite Petrogenesis.Chinese Science Bulletin, 51(3):257-268.doi: 10.1007/s11434-006-0257-7 [6] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun.Acta Geologica Sinica, 87(2):178-196(in Chinese with English abstract).doi: 10.3969/j.issn.0001-5717.2013.02.004 [7] Chen, S.J., Li, R.S., Ji, W.H., et al., 2011.Lithostratigraphy Character and Tectonic-Evolvement of Permian-Trias in the Bayankala Tectonic Belt.Earth Science, 36(3):393-408(in Chinese with English abstract). https://www.researchgate.net/publication/286994757_Lithostratigraphy_character_and_tectonic_evolvement_of_Permian_Trias_in_the_Bayankala_tectonic_belt [8] Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979.The Interpretation of Igneous Rocks.George, Allen and Unwin, London. [9] Day, R.A., Green, T.H., Smith, I.E.M., 1992.The Origin and Significance of Garnet Phenocrysts and Garnet-Bearing Xenoliths in Miocene Calc-Alkaline Volcanics from Northland, New Zealand.Journal of Petrology, 33(1):125-161.doi: 10.1093/petrology/33.1.125 [10] Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014.Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications.Lithos, 205:266-283.doi: 10.1016/j.lithos.2014.07.015 [11] Foley, S., Tiepolo, M., Vannucci, R., 2002.Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones.Nature, 417(6891):837-840.doi: 10.1038/nature00799 [12] Fu, L.B., Wei, J.H., Wei, Q.R., et al., 2010.Petrogenesis and Geodynamic Setting of Late Triassic Dykes of Jinchanggouliang, Eastern Inner Mongolia.Earth Science, 35(6):933-946(in Chinese with English abstract). https://www.researchgate.net/publication/287679337_Petrogenesis_and_geodynamic_setting_of_late_Triassic_dykes_of_Jinchanggouliang_Eastern_Inner_Mongolia [13] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897.doi: 10.1038/nature03162 [14] Halls, H.C., 1982.The Importance and Potential of Mafic Dyke Swarms in Studies of Geodynamic Processes.Geoscience Canada, 9(3):145-154. https://www.researchgate.net/publication/285020850_The_importance_and_potential_of_mafic_dyke_swarms_in_studies_of_geodynamic_processes [15] Harangi, S., 2001.Almandine Garnet in Calc-Alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-Central Europe):Geochemistry, Petrogenesis and Geodynamic Implications.Journal of Petrology, 42(10):1813-1843.doi: 10.1093/petrology/42.10.1813 [16] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548.doi: 10.1139/e71-055 [17] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008.Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China.Geological Journal of China Universities, 14(4):496-509(in Chinese with English abstract). https://www.researchgate.net/publication/284880075_Characteristics_and_genesis_of_Mesozoic_A-type_granites_and_associated_mineral_deposits_in_the_southern_Hunan_and_northern_Guangxi_provinces_along_the_Shi-Hang_belt_South_China [18] Kang, L., Xiao, P.X., Gao, X.F., et al., 2012.LA-ICP-MS U-Pb Dating of the Zircon from Muztagata Pluton in Western Kunlun Orogenic Belt:Constraints on the Time of Paleotethys' Collision.Geological Review, 58(4):763-774(in Chinese with English abstract). https://www.researchgate.net/publication/286208709_LA-ICP-MS_U-Pb_dating_of_the_zircon_from_Muztagata_pluton_in_western_Kunlun_orogenic_belt_Constraints_on_the_time_of_Paleotethys'_collision [19] Kawabata, H., Takafuji, N., 2005.Origin of Garnet Crystals in Calc-Alkaline Volcanic Rocks from the Setouchi Volcanic Belt, Japan.Mineralogical Magazine, 69(6):951-971.doi: 10.1180/0026461056960301 [20] Krippner, A., Meinhold, G., Morton, A.C., et al., 2014.Evaluation of Garnet Discrimination Diagrams Using Geochemical Data of Garnets Derived from Various Host Rocks.Sedimentary Geology, 306:36-52.doi: 10.1016/j.sedgeo.2014.03.004 [21] Lackey, J.S., Erdmann, S., Hark, J.S., et al., 2011.Tracing Garnet Origins in Granitoid Rocks by Oxygen Isotope Analysis:Examples from the South Mountain Batholith, Nova Scotia.The Canadian Mineralogist, 49(2):417-439.doi: 10.3749/canmin.49.2.417 [22] Lai, J.Q., Huang, M., Song, W.B., et al., 2015.Geochemical Characteristics and Source of Ore-Forming Materials of Kaerqueka Copper Polymetallic Deposit in Qinghai Province, China.Earth Science, 40(1):1-16(in Chinese with English abstract). https://www.researchgate.net/publication/281667162_Geochemical_characteristics_and_source_of_ore-forming_materials_of_Kaerqueka_copper_polymetallic_deposit_in_Qinghai_Province_China [23] Liang, T., Luo, Z.H., Li, W.T., et al., 2005.Geologic Features and Tectonic Implications of the Tuyon Volcano Group.Xinjiang Geology, 23(2):105-110(in Chinese with English abstract). [24] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004.Crust-Mantle Magmatic Mixing in East Kunlun:Evidence from Zircon SHRIMP Geochronology.Chinese Science Bulletin, 49(6):596-602(in Chinese). [25] Liu, J.L., Sun, F.Y., Li, L., et al., 2015.Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). https://www.researchgate.net/publication/291077410_Characteristics_of_Early_Jurassic_volcanic_rocks_and_their_tectonic_significance_in_Haidewula_east_Kunlun_orogenic_belt_Qinghai_Province [26] Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [27] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 [28] Liu, Z., Jiang, Y.H., Jia, R.Y., et al., 2015.Origin of Late Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Tibet Plateau, Northwest China:Implications for Paleo-Tethys Evolution.Gondwana Research, 27(1):326-341.doi: 10.1016/j.gr.2013.09.022 [29] Ludwing, K.R., 2012.User's Manual for Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication No.5. [30] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Buttetin of China, 21(6):292-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun [31] Lü, J.G., Wang, J.C., Chu, C.H., et al., 2006.Zircon SHRIMP U-Pb Dating of the Wolonggang Monzogranite Porphyry in the Western Segment of the Hoh Xil Belt, Qinghai-Tibet Plateau and Its Geological Significance.Geological Bulletin of China, 25(6):721-724(in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2006.06.011 [32] Mahoney, J.J., Frei, R., Tejada, M.L.G., et al., 1998.Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor.Journal of Petrology, 39(7):1285-1306.doi: 10.1093/petroj/39.7.1285 [33] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [34] Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events.Earth Science Frontiers, 13(6):43-51(in Chinese with English abstract). https://www.researchgate.net/publication/309457071_From_the_Tethys_to_the_Formation_of_the_Qinghai-Tibet_Plateau_Constrained_by_Tectono-Magmatic_Event [35] Moyen, J.F., 2009.High Sr/Y and La/Yb Ratios:The Meaning of the "Adakitic Signature".Lithos, 112(3-4):556-574.doi: 10.1016/j.lithos.2009.04.001 [36] Nitoi, E., Munteanu, M., Marincea, S., et al., 2002.Magma-Enclave Interactions in the East Carpathian Subvolcanic Zone, Romania:Petrogenetic Implications.Journal of Volcanology and Geothermal Research, 118(1-2):229-259.doi: 10.1016/s0377-0273(02)00258-5 [37] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53(2):3-14.doi: 10.1016/j.jseaes.2011.12.018 [38] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 [39] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47.doi: 10.1007/bf00375192 [40] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745 [41] Poland, M.P., Fink, J.H., Tauxe, L., 2004.Patterns of Magma Flow in Segmented Silicic Dikes at Summer Coon Volcano, Colorado:AMS and Thin Section Analysis.Earth and Planetary Science Letters, 219(1-2):155-169.doi: 10.1016/s0012-821x(03)00706-4 [42] Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008.Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean.Geology, 36(5):351.doi: 10.1130/g24435a.1 [43] Qiao, G.B., Zhang, H.D., Wu, Y.Z., et al., 2015.Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun:Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics.Acta Geologica Sinica, 89(7):1180-1194(in Chinese with English abstract). [44] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356.doi: 10.1016/s0009-2541(99)00106-0 [45] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891 [46] Rudnik, R., Gao, S., 2003.Composition of the Continental Crust.In:Rudnik, R., ed., The Crust, Treatise on Geochemistry.Elservier, Amsterdam, 3-164.doi:10.1016/B0-08-043751-6/03016-4 [47] Samadi, R., Mirnejad, H., Kawabata, H., et al., 2014.Magmatic Garnet in the Triassic (215 Ma) Dehnow Pluton of NE Iran and Its Petrogenetic Significance.International Geology Review, 56(5):596-621.doi: 10.1080/00206814.2014.880659 [48] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [49] Tatsumi, Y., Hanyu, T., 2003.Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan.Geochemistry, Geophysics, Geosystems, 4(9):1081.doi: 10.1029/2003GC000530 [50] Wang, C., Wei, Q.R., Liu, X.N., et al., 2014.Post-Collision Related Late Indosinian Granites of Gangdise Terrane:Evidences from Zircon U-Pb Geochronology and Petrogeochemistry.Earth Science, 39(9):1277-1288, 1300. [51] Warren, R.C., 1970.Electron Microprobe Investigations of Almandine Garnets from a Quartz Diorite Stock and Adjacent Metamorphic Rocks, British Columbia.Amer.Geophys.Union Trans., 51:444. https://www.coursehero.com/file/p3gani8/demanding-nuclear-energy-companies-to-develop-a-waste-supervision-societies-to/ [52] Westerman, D.S., Dini, A., Innocenti, F., et al., 2003.When and Where did Hybridization Occur? The Case of the Monte Capanne Pluton, Italy.Atlantic Geology, 39(2):147-162.doi: 10.4138/1177 [53] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf [54] Xia, R., Wang, C.M., Qing, M., et al., 2015.Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen:Record of Closure of the Paleo-Tethys.Lithos, 234-235:47-60.doi: 10.1016/j.lithos.2015.07.018 [55] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 [56] Xiong, X.L., Adam, J., Green, T.H., et al., 2006.Trace Element Characteristics of Partial Melts Product by Melting of Metabasalts at High Pressures:Constrain on the Formation Condition of Adakitic Melts.Science in China(Series D), 49(9):915-925.doi: 10.1007/s11430-006-0915-2 [57] Xu, X.W., Zhang, B.L., Qin, K.Z., et al., 2007.Origin of Lamprophyres by the Mixing of Basic and Alkaline Melts in Magma Chamber in Beiya Area, Western Yunnan, China.Lithos, 99(3-4):339-362.doi: 10.1016/j.lithos.2007.06.011 [58] Xu, Z.Q., Li, H.B., Yang, J.S., et al., 2001.A Large Transpression Zone at the South Margin of the East Kunlun Mountains and Oblique Subduction.Acta Geologica Sinica, 75(2):156-164(in Chinese with English abstract). https://www.researchgate.net/publication/287876866_A_large_transpression_zone_at_the_South_Margin_of_the_East_Kunlun_mountains_and_oblique_subduction [59] Xu, Z.Q., Yang, J.S., Li, H.Q., et al., 2012.Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism.Acta Petrologica Sinica, 28(6):1697-1709(in Chinese with English abstract). https://www.researchgate.net/publication/298412412_Indosinian_collision-orogenic_system_of_Chinese_continent_and_its_orogenic_mechanism [60] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau.Acta Petrologica Sinica, 29(6):1847-1860(in Chinese with English abstract). [61] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009.Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China.Journal of Earth Science, 20(2):303-331.doi: 10.1007/s12583-009-0027-y [62] Yuan, C., Sun, M., Xiao, W.J., et al., 2008.Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for Adakite and Magmas from the MASH Zone.International Journal of Earth Sciences, 98(6):1489-1510.doi: 10.1007/s00531-008-0335-y [63] Zeng, L.S., Asimow, P.D., Saleeby, J.B., 2005.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source.Geochimica et Cosmochimica Acta, 69(14):3671-3682.doi: 10.1016/j.gca.2005.02.035 [64] Zhan, Y., Hou, G.T., Hari, K.R., et al., 2015.Geochemical and Isotopic Constraints on the Evolution of Late Paleozoic Dyke Swarms in West Junggar, Xinjiang, China.Journal of Asian Earth Sciences, 113(1):126-136.doi: 10.1016/j.jseaes.2014.07.012 [65] Zhang, C.L., Yu, H.F., Wang, A.G., et al., 2005.Dating of Triassic Granites in the Western Kunlun Mountains and Its Tectonic Significane.Acta Geologica Sinica, 79(5):645-652(in Chinese with English abstract). https://www.researchgate.net/publication/289602492_Dating_of_Triassic_granites_in_the_western_Kunlun_Mountains_and_its_tectonic_significane [66] Zhang, L.Y., Ding, L., Pullen, A., et al., 2014.Age and Geochemistry of Western Hoh-Xil-Songpan-Ganzi Granitoids, Northern Tibet:Implications for the Mesozoic Closure of the Paleo-Tethys Ocean.Lithos, 190-191:328-348.doi: 10.1016/j.lithos.2013.12.019 [67] Zhang, Q., Jin, W.J., Wang, Y.L., et al., 2006.A Model of Delamination of Continental Lower Crust.Acta Petrologica Sinica, 22(2):265-276(in Chinese with English abstract). https://www.researchgate.net/publication/286314931_A_model_of_delamination_of_continental_lower_crust [68] Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China.Acta Petrologica Sinica, 17(2):236-244(in Chinese with English abstract). https://www.researchgate.net/publication/279686768_The_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_Yanshan_period_from_Eastern_China [69] Zhang, Y., Niu, Y.L., Hu, Y., et al., 2016.The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China—Evidence from Geochronology and Geochemistry of the Arkarz Pluton.Lithos, 245:191-204.doi: 10.1016/j.lithos.2015.05.007 [70] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 87(2):178-196. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302006.htm [71] 陈守建, 李荣社, 计文化, 等, 2011.巴颜喀拉构造带二叠-三叠纪岩相特征及构造演化.地球科学, 36(3):393-408. http://www.earth-science.net/WebPage/Article.aspx?id=2106 [72] 付乐兵, 魏俊浩, 魏启荣, 等, 2010.内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景.地球科学, 35(6):933-946. http://www.earth-science.net/WebPage/Article.aspx?id=2039 [73] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报, 14(4):496-509. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm [74] 康磊, 校培喜, 高晓峰, 等, 2012.西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年:对古特提斯碰撞时限的制约.地质论评, 58(4):763-774. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204018.htm [75] 赖健清, 黄敏, 宋文彬, 等, 2015.青海卡尔却卡铜多金属矿床地球化学特征与成矿物质来源.地球科学, 40(1):1-16. doi: 10.11867/j.issn.1001-8166.2015.01.001 [76] 梁涛, 罗照华, 李文韬, 等, 2005.托云火山群的火山地质特征及其构造意义.新疆地质, 23(2):105-110. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200502002.htm [77] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406018.htm [78] 刘金龙, 孙丰月, 李良, 等, 2015.青海阿尼玛卿蛇绿杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.earth-science.net/WebPage/Article.aspx?id=3101 [79] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm [80] 吕金刚, 王炬川, 禇春华, 等, 2006.青藏高原可可西里带西段卧龙岗二长花岗斑岩锆石SHRIMP U-Pb定年及其地质意义.地质通报, 25(6):721-724. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200606011.htm [81] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm [82] 乔耿彪, 张汉德, 伍跃中, 等, 2015.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约.地质学报, 89(7):1180-1194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507003.htm [83] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9):1277-1288, 1300. http://www.earth-science.net/WebPage/Article.aspx?id=2935 [84] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [85] 许志琴, 李海兵, 杨经绥, 等, 2001.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用.地质学报, 75(2):156-164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200102002.htm [86] 许志琴, 杨经绥, 李化启, 等, 2012.中国大陆印支碰撞造山系及其造山机制.岩石学报, 28(6):1697-1709. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm [87] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm [88] 张传林, 于海锋, 王爱国, 等, 2005.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义.地质学报, 79(5):645-652. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505009.htm [89] 张旗, 金惟俊, 王元龙, 等, 2006.大陆下地壳拆沉模式初探.岩石学报, 22(2):265-276. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611001.htm [90] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm