Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance
-
摘要: 仲巴地体是雅鲁藏布江缝合带西段南北蛇绿岩带之间的重要构造单元,目前对其是否存在早古生代构造-热事件记录及构造属性判别尚不明确.通过野外观测、岩石地球化学研究和年代学分析,在仲巴地体中段的公珠错一带识别出一套侵入到黑云斜长片麻岩中的片麻状二长花岗岩,其锆石U-Pb年龄为~478 Ma,表明岩石形成时代为早奥陶世;该套花岗岩具有高Si、富Al和总碱含量较高的特点,铝饱和指数A/CNK=1.13~1.20,富集大离子亲石元素Rb、K,相对亏损Ba、Sr、Nb、Ti等,属于钙碱性强过铝质花岗岩.这是首次在雅鲁藏布江缝合带西段仲巴地体内部识别出代表早奥陶世构造-热事件的地质记录,该套花岗岩形成过程与原特提斯洋向冈瓦纳大陆北缘俯冲结束后的上地壳熔融相关,证明仲巴地体在早古生代应为东冈瓦纳大陆北缘的组成部分.Abstract: The Zhongba terrane is an important tectonic unit sandwiched between the northern and the southern ophiolitic sub-belts in the western segment of the Yarlung Zangbo Suture Zone (YZSZ), Southwest Tibet. Currently it is still unclear as to whether there exists the Early Paleozoic tectono-thermal events in this terrane as well as its tectonic affinity. BasedBaesed on field and petrological investigations, a suite of gneissic monzogranite that intruded into a biotite plagioclase gneiss was recognized near the Gongzhu Co area in the middle part of the Zhongba terrane in this study. U-Pb dating of zircon from the monzogranite yieldsed ages of ~478 Ma, indicating the deformation age for such rock at the Early Ordovician. These monzogranites are characterized by high Si and Al, relatively high contents of total alkalis, A/CNK=1.13-1.20, enrichment of large lithophile elements of Rb and K and depletion of Ba, Sr, Nb and Ti, which should be calc-alkalic alkaline, strong peraluminous granite. To our knowledge, this represents the first report of the Early Ordovician tectono-thermal events taken place within the Zhongba terrane from the western YZSZ. These gneissic monzogranites were formed by the upper crustal melting after subduction of the Proto-Tethys Ocean to the northern margin of the Gondwana supercontinent, and suggesting that the Zhongba terrane should belong to the northern margin of the eastern Gondwana supercontinent at the Early Paleozoic.
-
Key words:
- gneissic monzogranite /
- Zhongba terrane /
- Yarlung Zangbo Suture Zone /
- Southwest Tibet /
- petrology
-
图 1 藏南仲巴地体区域构造位置(a,b)与研究区地质简图(c)
图b中:1.湖泊;2.日喀则弧前盆地;3.特提斯喜马拉雅带;4.高喜马拉雅带;5.低喜马拉雅带;雅鲁藏布江缝合带;6.侏罗纪-白垩纪蛇绿岩;7.晚白垩世蛇绿混杂岩;8.仲巴地体:震旦-寒武系绿片岩相浅变质岩和奥陶-白垩系滨浅海相沉积岩;9.冈底斯岩基:白垩纪-新近纪火成岩;10.新生代淡色花岗岩;11.奥陶纪花岗岩;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;STDS.藏南拆离系;YZSZ.雅鲁藏布江缝合带;图c中:1.湖泊;2.第四系;3.古近纪-新近纪砾岩;4.石炭系钙质片岩、石英片岩、大理岩;5.震旦-寒武系(?)黑云斜长片麻岩、长英质片岩;6.奥陶纪片麻状二长花岗岩;7.晚侏罗世-早白垩世蛇绿岩;8.白垩纪-新近纪火成岩;9.新生代淡色花岗岩;10.主边界断裂;11.样品位置.图b据刘飞等(2015)有修改;图c据Pullen et al.(2011)有修改
Fig. 1. Regional tectonic map of the Zhongba terrane, southern Tibet (a, b) and simplified geological map of the Gongzhu Co area (c)
图 3 公珠错片麻状二长花岗岩样品稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石和原始地幔标准化值据Sun and McDonough(1989)
Fig. 3. Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spidergrams (b) of gneissic monzogranite samples from the Gongzhu Co area
图 5 公珠错片麻状二长花岗岩样品(2C-0, 2C-1) LA-ICP-MS U-Pb年龄谐和图(a, c)和稀土元素球粒陨石标准化配分图(b, d)
球粒陨石标准化值据Sun and McDonough(1989)
Fig. 5. U-Pb concordia diagrams (a, c) and chondrite-normalized REE patterns (b, d) for zircon grains from gneissic monzogranite samples (2C-0, 2C-1) in the Gongzhu Co area
表 1 公主错地区片麻状二长花岗岩主量(%)与微量元素(10-6)分析结果
Table 1. The results of major elements (%) and trace elements (10-6) of gneissic monzonitic granite from the Gongzhu Co area
样品 2C-0 2C-1 2C-2 主量元素(%) SiO2 71.70 74.02 74.93 TiO2 0.45 0.23 0.25 Al2O3 13.25 12.88 12.67 Fe2O3 4.14 2.27 2.34 MnO 0.06 0.04 0.05 MgO 1.08 0.52 0.52 CaO 1.45 0.71 0.78 Na2O 3.45 2.80 2.75 K2O 2.52 5.09 4.65 P2O5 0.25 0.16 0.16 LOI 0.72 0.50 0.66 Total 99.07 99.22 99.76 Mg# 37.81 34.80 34.12 微量元素(10-6) Sc 8.80 5.29 5.61 V 42.0 20.3 22.7 Cr 30.0 168.0 30.4 Co 6.60 2.99 2.39 Ni 24.10 11.00 6.31 Ga 20.9 16.9 16.8 Rb 286 388 414 Sr 49.20 32.60 30.51 Y 46.9 37.4 40.2 Zr 231.0 98.5 104.0 Nb 17.3 11.3 12.7 Cs 23.9 52.3 37.7 Ba 233 281 285 La 35.5 16.9 18.6 Ce 75.1 34.5 37.6 Pr 8.72 3.84 4.34 Nd 30.8 14.8 16.5 Sm 8.14 3.84 4.18 Eu 0.74 0.45 0.45 Gd 7.81 3.99 4.28 Tb 1.29 0.81 0.86 Dy 8.05 5.82 6.15 Ho 1.67 1.21 1.29 Er 5.14 3.47 3.81 Tm 0.72 0.56 0.64 Yb 4.42 3.82 4.47 Lu 0.65 0.52 0.60 Hf 6.60 3.23 3.40 Ta 1.64 1.82 2.11 Pb 19.3 26.1 22.6 Th 21.4 13.8 14.9 U 3.23 2.42 3.97 注:TFeO(as total iron)=FeO+0.9×Fe2O3;Mg#=100×Mg2+/(Mg2++Fe2+);主量元素为质量百分含量. 表 2 公主错地区片麻状二长花岗岩(2C-0、2C-1) 单颗粒锆石LA-ICP-MS U-Pb同位素结果
Table 2. The results of the LA-ICP-MS U-Pb isotopic dating for the single-grain zircon of gneissic monzonitic granite from the Gongzhu Co area
测点编号 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 同位素年龄(Ma) 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 2C-0(第1~10行为锆石继承核,第11~26行为锆石边部) 1 74.3 82.9 623 0.13 0.063 0 0.002 0 0.782 2 0.017 6 0.089 6 0.000 7 709 55.0 587 10.0 553 4.0 2 503.0 410.0 906 0.45 0.081 3 0.002 0 2.332 0 0.044 4 0.206 8 0.001 9 1 229 36.0 1 222 14.0 1 212 10.0 3 75.7 69.3 359 0.19 0.067 2 0.002 0 1.165 9 0.028 4 0.125 5 0.001 2 843 52.0 785 13.0 762 7.0 4 289.0 288.0 242 1.19 0.080 2 0.002 0 2.379 0 0.057 9 0.213 9 0.001 8 1 267 50.0 1 236 17.0 1 250 10.0 5 44.3 58.1 413 0.14 0.060 6 0.002 0 0.724 6 0.022 6 0.086 0 0.001 0 633 60.0 553 13.0 532 6.0 6 178.0 152.0 240 0.64 0.078 1 0.002 0 2.283 8 0.054 2 0.210 3 0.002 0 1 150 46.0 1 207 17.0 1 230 10.0 7 404.0 225.0 280 0.80 0.119 6 0.002 0 5.578 1 0.107 4 0.335 4 0.002 6 1 950 34.0 1 913 17.0 1 865 13.0 8 244.0 171.0 206 0.83 0.105 6 0.003 0 3.270 1 0.090 6 0.222 1 0.002 5 1 726 50.0 1 474 22.0 1 293 13.0 9 578.0 78.8 1 112 0.07 0.178 2 0.004 0 10.020 0 0.220 3 0.403 4 0.003 5 2 636 36.0 2 437 20.0 2 185 16.0 10 165.0 225.0 354 0.63 0.070 6 0.002 0 1.338 1 0.036 2 0.136 4 0.001 9 946 52.0 862 16.0 824 11.0 11 76.1 84.5 897 0.09 0.057 0 0.001 0 0.608 6 0.015 2 0.076 9 0.000 6 500 56.0 483 10.0 477 4.0 12 82.7 81.8 1 038 0.08 0.056 2 0.001 0 0.604 2 0.014 4 0.077 3 0.000 7 457 50.0 480 9.0 480 4.0 13 54.7 82.9 514 0.16 0.056 9 0.002 0 0.605 9 0.016 6 0.076 8 0.000 8 487 59.0 481 11.0 477 5.0 14 79.7 114.0 730 0.16 0.057 4 0.001 0 0.617 4 0.014 4 0.077 5 0.000 6 506 57.0 488 9.0 481 4.0 15 215.0 507.0 722 0.70 0.054 6 0.001 0 0.585 6 0.015 2 0.077 4 0.000 7 394 55.0 468 10.0 481 4.0 16 88.7 92.0 1 085 0.08 0.055 5 0.001 0 0.582 4 0.013 7 0.075 7 0.000 6 432 47.0 466 9.0 470 4.0 17 163.0 103.0 2 393 0.04 0.055 8 0.001 0 0.609 4 0.011 3 0.078 6 0.000 6 443 8.0 483 7.0 488 4.0 18 67.2 118.0 555 0.21 0.054 7 0.002 0 0.575 1 0.015 3 0.076 0 0.000 7 467 61.0 461 10.0 472 4.0 19 51.5 75.9 467 0.16 0.055 6 0.002 0 0.586 8 0.015 8 0.076 1 0.000 7 435 59.0 469 10.0 473 4.0 20 55.2 78.0 487 0.16 0.056 2 0.002 0 0.602 4 0.017 7 0.077 2 0.000 8 461 67.0 479 11.0 480 5.0 21 94.8 104.0 1 084 0.10 0.055 9 0.001 0 0.596 1 0.013 5 0.076 6 0.000 5 450 50.0 475 9.0 475 3.0 22 74.1 78.1 841 0.09 0.058 6 0.002 0 0.632 6 0.015 8 0.077 4 0.000 6 554 57.0 498 10.0 481 4.0 23 52.4 60.2 571 0.11 0.056 9 0.002 0 0.608 7 0.016 5 0.077 0 0.000 7 487 57.0 483 10.0 478 4.0 24 63.4 55.3 839 0.07 0.057 3 0.002 0 0.613 0 0.015 7 0.077 3 0.000 7 506 53.0 485 10.0 480 4.0 25 77.3 82.9 894 0.09 0.058 5 0.001 0 0.620 8 0.014 7 0.076 7 0.000 6 546 52.0 490 9.0 477 3.0 26 70.0 91.6 676 0.14 0.055 9 0.001 6 0.598 2 0.016 9 0.077 3 0.000 7 456 63.0 476 10.7 480 3.9 2C-1(第1行为锆石继承核,第2~18行为锆石边部,第19~21行为暗灰色锆石边缘部位) 1 191.0 203.0 1 029 0.20 0.069 6 0.001 2 1.225 2 0.022 3 0.126 9 0.001 2 917 34.1 812 10.2 770 6.9 2 129.0 219.0 1 249 0.18 0.056 8 0.001 2 0.607 0 0.013 8 0.076 9 0.000 7 487 46.0 482 9.0 477 4.0 3 151.0 258.0 1 478 0.17 0.055 6 0.001 0 0.595 3 0.011 4 0.077 1 0.000 6 439 43.0 474 7.0 479 4.0 4 99.0 162.0 1 048 0.16 0.053 5 0.001 4 0.569 4 0.016 6 0.076 9 0.000 9 350 61.0 458 11.0 478 5.0 5 165.0 197.0 2 067 0.10 0.053 9 0.001 0 0.575 0 0.010 8 0.077 0 0.000 7 369 41.0 461 7.0 478 4.0 6 178.0 239.0 2 031 0.12 0.060 6 0.003 0 0.623 2 0.016 6 0.077 1 0.001 0 633 103.0 492 10.0 479 6.0 7 104.0 177.0 1 023 0.17 0.056 4 0.001 4 0.602 4 0.017 4 0.077 0 0.001 2 478 54.0 479 11.0 478 7.0 8 112.0 190.0 1 123 0.17 0.055 0 0.001 6 0.581 0 0.016 8 0.077 1 0.001 1 413 67.0 465 11.0 479 7.0 9 133.0 195.0 1 384 0.14 0.055 6 0.001 2 0.590 2 0.013 0 0.076 8 0.000 7 435 48.0 471 8.0 477 4.0 10 108.0 186.0 1 059 0.18 0.054 7 0.001 5 0.579 1 0.015 4 0.076 9 0.000 9 467 61.0 464 10.0 478 5.0 11 85.0 179.0 1 662 0.11 0.054 1 0.000 9 0.578 4 0.011 3 0.077 2 0.000 9 372 34.0 463 7.0 479 5.0 12 80.0 122.0 855 0.14 0.055 4 0.001 5 0.588 2 0.015 5 0.076 9 0.000 6 428 59.0 470 10.0 478 4.0 13 99.0 121.0 1 212 0.10 0.052 7 0.000 9 0.565 8 0.011 0 0.077 3 0.000 7 317 44.0 455 7.0 480 4.0 14 128.0 206.0 1 309 0.16 0.053 9 0.001 1 0.578 2 0.012 2 0.077 4 0.000 6 365 48.0 463 8.0 481 4.0 15 182.0 341.0 1 563 0.22 0.054 3 0.001 1 0.576 7 0.011 0 0.076 8 0.000 5 383 44.0 462 7.0 477 3.0 16 111.0 204.0 992 0.21 0.056 4 0.001 4 0.601 9 0.015 5 0.076 8 0.000 7 478 52.0 478 10.0 477 4.0 17 143.0 217.0 1 639 0.13 0.053 4 0.000 7 0.571 2 0.010 1 0.077 0 0.001 0 346 27.0 459 7.0 478 6.0 18 157.0 273.0 1 541 0.18 0.055 0 0.001 1 0.585 9 0.011 2 0.076 9 0.000 7 413 44.4 468 7.2 478 4.4 19 672.0 297.0 11 972 0.02 0.053 8 0.000 7 0.521 6 0.007 8 0.069 8 0.000 6 365 25.0 426 5.0 435 4.0 20 490.0 266.0 7 980 0.03 0.054 2 0.000 5 0.526 6 0.006 7 0.069 9 0.000 6 389 53.0 430 5.0 435 4.0 21 541.0 315.0 8 649 0.04 0.054 2 0.001 0 0.552 8 0.011 1 0.073 3 0.000 6 389 41.0 447 7.0 456 3.0 -
[1] Cawood, P.A., Johnson, M.R.W., Nemchin, A.A., 2007.Early Palaeozoic Orogenesis along the Indian Margin of Gondwana:Tectonic Response to Gondwana Assembly.Earth and Planetary Science Letters, 255(1-2):70-84.doi: 10.1016/j.epsl.2006.12.006 [2] Chen, J.J., Fu L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882(in Chinese with English abstract). [3] Dong, X., Zhang, Z.M., 2015.Cambrian Granitoids from the Southeastern Tibetan Plateau:Research on Petrology and Zircon Hf Isotope.Acta Petrologica Sinica, 31(5):1183-1199 (in Chinese with English abstract). https://www.researchgate.net/publication/281786735_Cambrian_granitoids_from_the_southeastern_Tibetan_Plateau_Research_on_petrology_and_zircon_Hf_isotope [4] Gou, Z.B., Zhang, Z.M., Dong, X., et al., 2015.Petrogenesis and Tectonic Significance of the Early Paleozoic Granitic Gneisses from the Yadong Area, Southern Tibet.Acta Petrologica Sinica, 31(12):3674-3686(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201512012.htm [5] Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768(in Chinese with English abstract). https://www.researchgate.net/publication/286106345_Geochemical_features_and_tectonic_significance_of_granitic_gneiss_of_Laguigangri_metamorphic_core_complexes_in_southern_Tibet [6] Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397.doi: 10.1016/j.gr.2011.10.013 [7] Hu, P.Y., Zhai, Q.G., Jahn, B.M., et al., 2015.Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet:Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin.Lithos, 220-223:318-338.doi: 10.1016/j.lithos.2014.12.020 [8] Jiang, Z.Q., Wang, Q., Wyman, D.A., et al., 2014.Transition from Oceanic to Continental Lithosphere Subduction in Southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) Intrusive Rocks in the Chanang-Zedong Area, Southern Gangdese.Lithos, 196-197:213-231.doi: 10.1016/j.lithos.2014.03.001 [9] Kusky, T.M., Abdelsalam, M., Tucker, R.D., et al., 2003.Evolution of the East African and Related Orogens, and the Assembly of Gondwana.Precambrian Research, 123(2-4):81-85.doi: 10.1016/s0301-9268(03)00062-7 [10] Li, C., Wu, Y.W., Wang, M., et al., 2010.Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau—Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China.Geological Bulletin of China, 29(12):1733-1736 (in Chinese with English abstract). https://www.researchgate.net/publication/288859695_Significant_progress_on_Pan-African_and_Early_Paleozoic_orogenic_events_in_Qinghai-Tibet_Plateau_discovery_of_Pan-African_orogenic_unconformity_and_Cambrian_System_in_the_Gangdese_area_Tibet_China [11] Li, C., Zhai, Q.G., Dong, Y.S., et al., 2008.Oceanic Crust on the Northern Margin of Gondwana—Evidence from Early Paleozoic Ophiolite in Central Qiangtang, Qinghai-Tibet Plateau.Geological Bulletin of China, 27(10):1605-1612(in Chinese with English abstract). https://www.researchgate.net/publication/286959328_Oceanic_crust_on_the_northern_margin_of_Gond-wana-evidence_from_Early_Paleozoic_ophiolite_in_central_Qiangtang_Qinghai-Tibet_Plateau [12] Li, X.H., Wang, C.S., Li, Y.L., et al., 2014.Definition and Composition of the Zhongba Microterrane in Southwest Tibet.Acta Geologica Sinica, 88(8):1372-1381(in Chinese with English abstract). [13] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015.Genesis and Characteristics of the Western Part of the Yarlung Zangbo Ophiolites, Tibet.Acta Petrologica Sinica, 31(12):3609-3628(in Chinese with English abstract). https://www.researchgate.net/publication/292630230_Genesis_and_characteristics_of_the_western_part_of_the_Yarlung_Zangbo_ophiolites_Tibet [14] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [15] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4 [16] Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354.doi: 10.1016/j.lithos.2015.11.026 [17] Pullen, A., Kapp, P., DeCelles, P.G., et al., 2011.Cenozoic Anatexis and Exhumation of Tethyan Sequence Rocks in the Xiao Gurla Range, Southwest Tibet.Tectonophysics, 501(1-4):28-40.doi: 10.1016/j.tecto.2011.01.008 [18] Quigley, M.C., Liangjun, Y., Gregory, C., et al., 2008.U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet.Tectonophysics, 446(1-4):97-113.doi: 10.1016/j.tecto.2007.11.004 [19] Spencer, C.J., Harris, R.A., Dorais, M.J., 2012.Depositional Provenance of the Himalayan Metamorphic Core of Garhwal Region, India:Constrained by U-Pb and Hf Isotopes in Zircons.Gondwana Research, 22(1):26-35.doi: 10.1016/j.gr.2011.10.004 [20] Sun, G.Y., Hu, X.M., 2012.Tectonic Affinity of Zhongba Terrane:Evidences from the Detrital Zircon Geochronology and Hf Isotopes.Acta Petrologica Sinica, 28(5):1635-1646(in Chinese with English abstract). [21] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalt:Implication for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins.Geological Society, Special Publications, London, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [22] Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262.doi: 10.1016/j.lithos.2012.07.011 [23] Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract). https://www.researchgate.net/publication/305417406_Geochronology_and_formation_mechanism_of_the_Paiku_granite_in_the_northern_himalaya_and_its_tectonic_implications [24] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf [25] Xie, C.M., Li, C., Su, L., et al., 2010.LA-ICP-MS U-Pb Dating of Zircon from Granite-Gneiss in the Amdo Area, Northern Tibet, China.Geological Bulletin of China, 29(12):1737-1744(in Chinese with English abstract). https://www.researchgate.net/publication/283929193_LA-ICP-MS_U-Pb_dating_of_zircon_from_granite-gneiss_in_the_Amdo_area_northern_Tibet_China [26] Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12(in Chinese with English abstract). http://www.oalib.com/paper/1472238 [27] Zhang, S.Z., Li, F.Q., Li, Y., et al., 2014.Early Ordovician Strongly Peraluminous Granite in the Middle Section of the Yarlung Zangbo Junction Zone and Its Geological Significance.Science China:Earth Sciences, 57(4):630-643.doi: 10.1007/s11430-013-4721-3 [28] Zhang, Z.M., Dong, X., Santosh, M., et al., 2012.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137.doi: 10.1016/j.gr.2011.02.002 [29] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308.doi: 10.1016/j.chemgeo.2011.12.024 [30] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384 [31] 董昕, 张泽明, 2015.青藏高原东南部寒武纪花岗岩类:岩石学和锆石Hf同位素研究.岩石学报, 31(5):1183-1199. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505001.htm [32] 苟正彬, 张泽明, 董昕, 等, 2015.藏南亚东地区早古生代花岗质片麻岩的成因与构造意义.岩石学报, 31(12):3674-3686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512012.htm [33] 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303003.htm [34] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展:冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001 [35] 李才, 翟庆国, 董永胜, 等, 2008.冈瓦纳大陆北缘早期的洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩的依据.地质通报, 27(10):1605-1612. doi: 10.3969/j.issn.1671-2552.2008.10.003 [36] 李祥辉, 王成善, 李亚林, 等, 2014.仲巴微地体之定义及构成.地质学报, 88(8):1372-1381. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm [37] 刘飞, 杨经绥, 连东洋, 等, 2015.西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨.岩石学报, 31(12):3609-3628. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htm [38] 孙高远, 胡修棉, 2012.仲巴地体的板块亲缘性:来自碎屑锆石U-Pb年代学和Hf同位素的证据.岩石学报, 28(5):1635-1646. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm [39] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. doi: 10.11764/j.issn.1672-1926.2016.06.0982 [40] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [41] 解超明, 李才, 苏黎, 等, 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年.地质通报, 29(12):1737-1744. doi: 10.3969/j.issn.1671-2552.2010.12.002 [42] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501001.htm