• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布

    夏群科 程徽 刘佳

    夏群科, 程徽, 刘佳, 2017. 山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布. 地球科学, 42(6): 853-861. doi: 10.3799/dqkx.2017.075
    引用本文: 夏群科, 程徽, 刘佳, 2017. 山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布. 地球科学, 42(6): 853-861. doi: 10.3799/dqkx.2017.075
    Xia Qunke, Cheng Hui, Liu Jia, 2017. The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton: Constraints from Water Content in Peridotites of Tietonggou. Earth Science, 42(6): 853-861. doi: 10.3799/dqkx.2017.075
    Citation: Xia Qunke, Cheng Hui, Liu Jia, 2017. The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton: Constraints from Water Content in Peridotites of Tietonggou. Earth Science, 42(6): 853-861. doi: 10.3799/dqkx.2017.075

    山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布

    doi: 10.3799/dqkx.2017.075
    基金项目: 

    国家自然科学基金项目 41472057

    详细信息
      作者简介:

      夏群科(1972-),男,教授,从事地幔岩石地球化学和地球内部挥发分研究.ORCID:0000-0003-1256-7568.E-mail:qkxia@zju.edu.cn

    • 中图分类号: P584; P595

    The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton: Constraints from Water Content in Peridotites of Tietonggou

    • 摘要: 已有研究表明,华北克拉通东部的山东费县岩石圈地幔在克拉通破坏峰期(早白垩世)时是高度富水的,其中橄榄石的H2O含量>180×10-6;而同期克拉通西部的太行山符山地区岩石圈地幔具有贫水特征,其中橄榄石的H2O含量为~10×10-6.这表明西向俯冲的古太平洋板块造成了华北东部早白垩世岩石圈地幔的富水特征,为克拉通破坏提供了力学前提.为了解古太平洋板块俯冲的影响范围,对介于费县和符山之间的山东铁铜沟地区早白垩世高镁闪长岩中的橄榄岩捕掳体进行了含水性分析,橄榄石的原始H2O含量(6×10-6~24×10-6,平均值为(15±7)×10-6)与符山地区相当,暗示太平洋板块俯冲造成的岩石圈富水效应可能仅局限在华北最东部,这和最东部地区克拉通破坏程度最高是一致的.

       

    • 图  1  华北早白垩世岩石圈地幔样品地点

      Fig.  1.  Localities of the Early Cretaceous lithospheric mantle samples in the North China Craton

      图  2  代表性的铁铜沟纯橄岩样品及分析颗粒的Mg#值和H2O含量

      Fig.  2.  Mg# values and H2O contents of olivines in two representative peridotite xenoliths hosted by diorites of Tietonggou

      图  3  代表性橄榄石和单斜辉石的红外光谱图

      虚线标出的是基线以及OH峰位,谱图标准化至1 cm厚度;箭头所指的小峰是由于干涉引起的干扰峰

      Fig.  3.  Representative IR(infrared radiation) spectra of olivines and clinopyroxenes

      表  1  铁铜沟纯橄岩和辉石岩中矿物的化学成分和水含量

      Table  1.   Chemical composition and H2O content of minerals in Tietonggou peridotites and pyroxenite

      样品号分析点位置SiO2MgOAl2O3CaOFeOCr2O3MnOTiO2NiOTotalMg#H2O(10-6)
      1-139.6241.810.000.0517.950.060.250.020.1999.9680.713
      1-239.2142.140.000.0317.260.030.270.020.2599.2281.526
      1-339.4541.920.030.1217.730.050.180.000.2799.7581.028
      1-4靠近寄主岩39.3541.680.020.0417.900.040.230.020.2899.5780.79
      1-539.3442.300.000.0317.230.030.220.000.2699.4281.59
      平均值39.3941.970.010.0617.610.040.230.010.2599.5881.117
      TTG1SD0.130.220.010.030.310.010.030.010.030.260.49
      1-639.7044.530.000.0614.290.050.190.030.2799.1284.97
      1-740.3645.240.000.0212.540.010.160.000.2898.6186.713
      1-840.9147.060.010.0511.530.080.160.000.2199.9988.012
      1-9样品内部40.1746.920.020.0511.660.060.130.010.3299.3487.910
      1-1040.1845.050.000.0413.510.000.220.020.2499.2785.713
      平均值40.2645.760.010.0412.700.040.170.010.2699.2786.611
      SD0.391.030.010.011.060.030.030.010.040.441.42
      1'-139.1741.510.010.0217.940.030.260.020.2599.2180.6n.d.
      1'-239.6541.760.000.0317.860.030.250.000.2699.8480.89
      1'-3靠近寄主岩39.5141.950.000.0417.310.020.220.000.2899.3381.412
      1'-439.1042.160.000.0317.290.000.290.000.2299.0981.414
      平均值39.3641.850.000.0317.600.020.260.010.2599.3781.112
      SD0.230.240.010.010.300.010.020.010.020.290.46
      TTG1'1'-539.6444.830.000.0414.250.000.220.010.2599.2385.017
      1'-639.9146.240.000.0312.170.000.190.010.2598.8187.219
      1'-740.4246.280.010.0311.810.010.150.000.2598.9587.620
      1'-8样品内部39.9446.070.000.0311.800.020.180.010.3398.3787.56
      1'-939.8846.580.000.0211.760.000.160.050.3498.7787.718
      1'-1040.1546.860.000.0311.630.010.150.010.2799.1187.914
      平均值39.9946.140.000.0312.240.010.170.010.2898.8787.216
      SD0.240.640.000.010.910.010.030.010.040.281.15
      4-138.3639.790.000.0320.530.000.240.010.2699.2277.76
      4-238.3340.080.000.0320.080.020.230.020.2299.0178.29
      4-338.3640.420.000.0419.510.030.240.020.2098.8278.922
      4-438.5539.150.010.0320.650.030.250.030.1998.8877.38
      4-538.6439.400.000.0220.670.000.330.000.2299.2777.418
      TTG44-6靠近寄主岩38.0639.600.000.0220.800.000.250.000.2598.9877.49
      4-738.1939.810.000.0420.090.010.240.000.2698.6378.110
      4-838.7140.420.000.0219.340.000.270.030.2799.0579.018
      4-938.7140.340.000.0419.680.020.300.000.2699.3578.718
      4-1038.1639.720.020.0420.690.020.280.010.2399.1677.67
      平均值38.4139.870.000.0320.200.010.260.010.2399.0378.012
      SD0.220.410.010.010.510.010.030.010.030.210.66
      6-138.8642.370.000.0617.460.000.240.010.3099.3081.412
      6-2 39.0241.610.020.0117.830.010.280.000.2799.0480.824
      6-339.5443.860.020.0315.400.040.180.010.1999.2783.720
      6-5靠近寄主岩39.9043.590.010.0515.390.140.250.000.3599.6783.610
      6-939.7944.090.000.0415.660.040.150.000.28100.0583.5n.d.
      6-10 39.2342.310.010.0217.440.040.250.000.2899.5781.421
      TTG6 平均值 39.3942.970.010.0416.530.040.230.000.2899.4982.418
      SD 0.380.920.010.021.060.050.040.010.050.331.39
      6-439.4445.220.000.0413.720.000.250.040.2698.9685.614
      6-640.0346.980.000.0511.590.030.160.000.3099.1387.920
      6-7样品内部39.6944.340.000.0114.700.000.190.000.2899.2084.424
      6-840.7146.900.010.0612.110.050.170.000.380.3987.539
      平均值39.9745.860.000.0413.030.020.190.010.3074.4286.424
      SD0.481.120.000.021.240.020.040.020.0542.741.611
      8-139.3641.480.000.0417.810.020.260.000.2199.1980.7n.d.
      8-2 39.3241.670.010.0517.810.080.250.000.2499.4480.89
      8-3 38.9439.850.020.0220.490.060.230.010.2199.8277.818
      8-4 靠近寄主岩 38.1438.410.000.0422.990.000.310.000.20100.0975.02
      8-5 38.7239.860.000.0219.980.000.280.000.2999.1578.215
      平均值 38.9040.250.010.0319.820.030.260.000.2399.5478.511
      TTG8SD 0.451.200.000.011.930.030.030.000.030.372.48
      8-6 39.5744.140.000.0214.640.040.200.010.2898.8984.416
      8-7 40.2345.350.000.0313.510.030.220.000.3099.6685.820
      8-8 40.1946.390.010.0612.440.030.210.000.2599.5787.013
      8-9样品内部 40.0846.840.000.0511.570.010.170.040.2699.0387.915
      8-10 40.8346.530.010.0411.810.030.180.010.3299.7487.621
      平均值 40.1845.850.000.0412.790.030.190.010.2899.3886.617
      SD 0.400.990.000.011.140.010.020.020.030.351.43
      9-1 38.6138.410.010.0122.710.010.280.000.23100.2875.35
      9-2 37.9637.940.010.0322.480.030.320.030.2899.0675.215
      9-3 38.3938.350.010.0022.620.010.290.000.3199.9775.37
      9-4 38.1338.430.020.0122.070.000.290.000.2599.2075.812
      9-5 38.1436.840.000.0323.770.000.340.000.2499.3573.618
      TTG9 9-6 靠近寄主岩 38.3738.030.020.0322.720.000.280.020.1699.6275.117
      9-7 39.6542.310.020.0317.540.040.230.020.32100.1681.39
      9-8 39.5342.760.010.0317.110.030.230.000.3099.9981.89
      9-9 39.2642.200.030.0018.140.010.240.030.27100.1780.715
      9-10 39.3540.890.000.0119.510.030.280.000.26100.3379.0n.d.
      平均值 38.7439.620.010.0220.870.010.280.010.2699.8177.312
      SD 0.612.070.010.012.380.010.030.010.040.443.16
      12-1 40.3646.160.010.0413.150.010.170.000.33100.2286.317
      12-2 40.1946.300.000.0312.770.010.170.000.3599.8286.717
      12-3 样品内部 40.1145.930.000.0413.000.000.160.000.2599.4986.413
      平均值 40.2246.130.000.0412.970.010.170.000.3199.8486.516
      SD 0.100.150.000.010.160.010.010.000.040.300.22
      12-4 39.0940.280.010.0319.250.000.250.000.2699.1679.016
      TTG12 12-5 38.8240.500.010.0519.750.030.300.000.2299.6878.79
      12-6 40.1243.980.010.0414.980.030.200.000.2499.6184.119
      12-7 39.6143.720.000.0415.480.150.190.020.2999.5083.618
      12-8 靠近寄主岩 40.0244.250.010.0315.190.000.190.040.34100.0684.015
      12-9 39.4343.840.000.0416.000.040.230.030.3299.9383.18
      12-10 39.3143.340.000.0616.490.000.240.000.2299.6582.613
      平均值 39.4942.850.010.0416.730.040.230.010.2799.6682.114
      SD 0.441.570.010.011.810.050.040.020.050.272.34
      15-1 38.7942.240.000.0417.410.000.180.040.2999.0181.4n.d.
      15-2 39.1342.120.010.0417.770.000.190.000.3699.6181.07
      15-3靠近寄主岩 39.2741.710.010.0117.710.050.170.000.2699.2080.913
      15-4 39.3542.410.040.0417.210.020.230.000.2999.5881.67
      TTG15平均值 39.1442.120.010.0317.530.020.190.010.3099.3581.29
      SD 0.210.260.010.010.230.020.020.020.030.260.35
      15-5 40.0443.560.000.0116.560.000.210.000.31100.6882.67
      15-6样品内部 39.7343.360.000.0416.080.010.200.000.3499.7682.96
      平均值 39.8943.460.000.0216.320.010.210.000.32100.2282.76
      SD 0.150.100.000.010.240.010.000.000.020.460.31
      16-1 39.7346.120.000.0411.950.020.200.030.2398.3287.416
      16-2样品内部 40.6546.690.000.0711.410.040.120.020.2499.2588.035
      16-3 40.7246.580.000.0311.570.000.120.020.2699.2987.922
      16-8 40.6247.370.000.0511.100.010.160.010.3499.6688.518
      16-9 40.3247.670.020.0410.910.000.160.010.3499.4788.722
      16-10 40.0645.400.000.0413.230.000.140.000.2499.1186.118
      16-11样品内部 41.0247.270.000.0610.700.030.160.000.3099.5388.88
      16-12 40.4547.200.000.0311.070.000.110.010.2999.1688.522
      平均值 40.4546.790.000.0411.490.010.150.010.2899.2288.020
      TTG16 SD 0.380.700.000.010.750.010.030.010.040.380.98
      16-4 39.7544.120.000.0414.960.000.160.000.3099.3384.129
      16-5 40.1044.510.000.0614.690.000.180.010.1899.7384.515
      16-6靠近寄主岩 39.7344.630.000.0214.140.020.220.010.2298.9985.011
      16-7 40.2444.980.000.0113.860.030.160.010.2099.4985.4n.d.
      平均值 39.9544.560.000.0314.410.010.180.010.2399.3884.818
      SD 0.220.310.000.020.440.010.030.000.040.270.610
      17-1 52.5816.511.9421.485.650.450.110.180.0098.9084.0205
      17-2 53.1016.301.4822.525.270.310.110.130.0099.2284.8134
      TTG17 17-3 37.8237.270.000.0323.390.040.240.010.1598.9674.119
      平均值 52.8416.411.7122.005.460.380.110.150.0099.0684.4169
      SD 0.260.110.230.520.190.070.000.020.000.160.550
      注:(1) 除样品TTG17为辉石岩外,其余均为纯橄岩;(2) 除TTG17中的17-1和17-2为单斜辉石外,其余颗粒均为橄榄石;(2)SD为标准偏差(standard deviation),n.d.表示未测;(3) Mg#=100×Mg/(Mg+Fe),原子数计算对于橄榄石基于4个氧原子,对于辉石基于6个氧原子;(4) 第4~13列数值的单位为%.
      下载: 导出CSV
    • [1] Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995.Quantitative and Analysis of Trace OH in Garnet and Pyroxenes.Am. Mineral., 80(5-6):465-474. doi: 10.2138/am-1995-5-607
      [2] Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Minerals.Science, 255(5050):1391-1397. doi: 10.1126/science.255.5050.1391
      [3] Bell, D.R., Rossman, G.R., Maldener, J., et al., 2003.Hydroxide in Olivine:A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum.Journal of Geophysical Research, 108(B2):998-1003, doi: 10.1029/2001JB000679
      [4] Berry, A.J., Hermann, J., O'Neill, H.S.C., et al., 2005.Fingerprinting the Water Site in Mantle Olivine.Geology, 33(11):869-872.doi: 10.1130/G21759.1
      [5] Chen, L.H., Zhou, X.H., 2005.Subduction-Related Metasomatism in the Thinning Lithosphere:Evidence from a Composite Dunite-Orthopyroxenite Xenolith Entrained in Mesozoic Laiwu High-Mg Diorite, North China Craton.Geochem. Geophys. Geosyst., 6(6):453-468.doi: 10.1029/2005GC000938
      [6] Denis, C.M.M., Alard, O., Demouchy, S., 2015.Water Content and Hydrogen Behavior during Metasomatism in the Uppermost Mantle beneath Ray Pic Volcano (Massif Central, France).Lithos, 237:256-274. https://www.researchgate.net/profile/Carole_Denis/publication/282333223_Water_content_and_hydrogen_behaviour_during_metasomatism_in_the_uppermost_mantle_beneath_Ray_Pic_volcano_Massif_Central_France/links/560cef7308aed543358d54ed/Water-content-and-hydrogen-behaviour-during-metasomatism-in-the-uppermost-mantle-beneath-Ray-Pic-volcano-Massif-Central-France.pdf
      [7] Dixon, J.E., Dixon, T.H., Bell, D.R., 2004.Lateral Variation in Upper Mantle Viscosity:Role of Water.Earth Planet. Sci. Lett., 222(2):451-467. doi: 10.1016/j.epsl.2004.03.022
      [8] Doucet, L.S., Peslier, A.H., Ionov, D., 2014.High Water Contents in the Siberian Cratonic Mantle Linked to Metasomatism:An FTIR Study of Udachnaya Peridotite Xenoliths.Geochim. Cosmochim. Acta, 137:159-187. doi: 10.1016/j.gca.2014.04.011
      [9] Downes, H., 2001.Formation and Modification of the Shallow Sub-Continental Lithospheric Mantle:A Review of Geochemical Evidence from Ultramafic Xenolith Suites and Tectonically Emplaced Ultramafic Massifs of Western and Central Europe.J. Petrol., 42(1):233-250. doi: 10.1093/petrology/42.1.233
      [10] Gose, J., Schmädicke, E., Markowitz, M., et al., 2010.OH Point Defects in Olivine from Pakistan.Mineral.Petrol., 99(1):105-111. http://www.academia.edu/17782484/OH_point_defects_in_olivine_from_Pakistan
      [11] Grant, K., Ingrin, J., Lorand, J.P., et al., 2007.Water Partitioning between Mantle Minerals from Peridotite Xenoliths.Contrib. Mineral. Petrol., 154(1):15-34. doi: 10.1007/s00410-006-0177-1
      [12] Hao, Y.T., Xia, Q.K., Li, Q.W., et al., 2014.Partial Melting Control of Water Contents in the Cenozoic Lithospheric Mantle of the Cathaysia Block of South China.Chem.Geol., 380:7-19. doi: 10.1016/j.chemgeo.2014.04.017
      [13] Hao, Y.T., Xia, Q.K., Tian, Z.Z., et al., 2016.Mantle Metasomatism did not Modify the Water Content of the Peridotite Xenoliths from the Tianchang Basalts of Eastern China.Lithos, 260:315-327. doi: 10.1016/j.lithos.2016.06.003
      [14] Hirschmann, M.M., 2005.Water, Melting, and the Deep Earth H2O Cycle.Annu. Earth Planet. Sci., 2334(34):629-653.
      [15] Kovács, I., Green, D.H., Rosenthal, A., et al., 2012.An Experimental Study of Water in Nominally Anhydrous Minerals in the Upper Mantle near the Water-Saturated Solidus.J. Petrol., 53(10):2067-2093. doi: 10.1093/petrology/egs044
      [16] Kovács, I., Hermann, J., O'Neill, H.S.C., et al., 2008.Quantitative Absorbance Spectroscopy with Unpolarized Light:Part Ⅱ.Experimental Evaluation and Development of a Protocol for Quantitative Analysis of Mineral IR Spectra.Am. Mineral., 93(5-6):765-778.doi: 10.2138/am.2008.2657
      [17] Lee, C.T., Luffi, P., Chin, E.J., 2011.Building and Destroying Continental Mantle.Annual Review of Earth & Planetary Sciences, 39(39):59-90. http://www.academia.edu/14386783/Building_and_destroying_continental_mantle
      [18] Li, Z.X.A., Lee, C.T., Peslier, A.H., et al., 2008.Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity:Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere.J.Geophys.Res., 113(B9):B09210.doi: 1029/2007JB005540
      [19] Liu, S.C., Xia, Q, K., 2014.Water Content in the Early Cretaceous Lithospheric Mantle beneath the South-Central Taihang Mountains:Implications for the Destruction of the North China Craton.Chinese Science Bulletin, 59(13):1362-1365. doi: 10.1007/s11434-014-0203-z
      [20] Matveev, A., Portnyagin, M., Ballhaus, C., et al., 2005.FTIR Spectrum of Phenocryst Olivine as an Indicator of Silica Saturation in Magmas.J. Petrol., 46(3):603-614. https://www.researchgate.net/publication/235766932_FTIR_Spectrum_of_Phenocryst_Olivine_as_an_Indicator_of_Silica_Saturation_in_Magmas
      [21] Menzies, M.A., Xu, Y.G., Zhang, H.F., et al., 2007.Integration of Geology, Geophysics and Geochemistry:A Key to Understanding the North China Craton.Lithos, 96:1-21. doi: 10.1016/j.lithos.2006.09.008
      [22] Peslier, A.H., Woodland, A.B., Bell, D.R., et al., 2010.Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons.Nature, 467(7311):78-81. doi: 10.1038/nature09317
      [23] Peslier, A.H., Woodland, A.B., Bell, D.R., et al., 2012.Metasomatic Control of Water Contents in the Kaapvaal Cratonic Mantle.Geochim.Cosmochim.Acta, 97(97):213-246.
      [24] Proietti, A., Bystricky, M., Guignard, J., et al., 2016.Effect of Pressure on the Strength of Olivine at Room Temperature.Phys. Earth Planet Inter., 259:34-44. doi: 10.1016/j.pepi.2016.08.004
      [25] Schmädicke, E., Gose, J., Witt-Eickschen, G., et al., 2013.Olivine from Spinel Peridotite Xenoliths:Hydroxyl Incorporation and Mineral Composition.Am.Mineral., 98(10):1870-1880. doi: 10.2138/am.2013.4440
      [26] Xia, Q.K., Hao, Y.T., Li, P., et al., 2010.Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton.J.Geophys.Res., 115(B7):1-22.doi: 10.1029/2009JB006694
      [27] Xia, Q.K., Liu, J., Kovács, I., et al., 2017.Water in the Upper Mantle and Deep Crust of Eastern China:Concentration, Distribution and Implications.National Science Review.doi:10.1093/nsr/nwx016
      [28] Xia, Q.K., Liu, J., Liu, S.C., et al., 2013.High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications for the Destruction of Cratonic Mantle Lithosphere.Earth Planet. Sci. Lett., 361(1):85-97. http://www.academia.edu/2358045/High_watercontent_in_Mesozoic_primitive_basalts_of_the_North_China_Craton_and_implications_on_the_destruction_of_cratonic_mantle_lithosphere
      [29] Xu, W.L., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth Planet.Sci.Lett., 265(1-2):123-137. doi: 10.1016/j.epsl.2007.09.041
      [30] Xu, W.L., Wang, D.Y., Wang, Q.H., et al., 2003.Petrology and Geochemisty of Two Types of Mantle-Derived Xenoliths in Mesozoic Diorite from Western Shandong Province.Acta Petrologica Sinica, 19(4):623-636(in Chinese with English abstract). https://www.researchgate.net/publication/285731412_Petrology_and_geochemistry_of_two_types_of_mantle-derived_xenoliths_in_Mesozoic_diorite_from_western_Shandong_province
      [31] Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chem.Geol., 270(1-4):257-273. doi: 10.1016/j.chemgeo.2009.12.006
      [32] Yamamoto, J., Ando, J., Kagi, H., et al., 2008.In Situ Strength Measurements on Natural Upper-Mantle Minerals.Phys. Chem. Minerals, 35:249-257.doi: 10.1007/s00269-008-0218-6
      [33] Yang, D.B., Xu, W.L., Gao, S., et al., 2012.Repeated Modification of Lithospheric Mantle in the Eastern North China Craton:Constraints from SHRIMP Zircon U-Pb Dating of Dunite Xenoliths in Western Shandong.Chinese Science Bulletin, 57(6):651-659. doi: 10.1007/s11434-011-4852-x
      [34] Zhang, J., Zhang, H.F., Ying, J.F., et al., 2005.Are the Peridotitic Xenoliths Entrained in Late Mesozoic Intermediate-Mafic Intrusive Complexes on the North China Craton the Direct Samples of Lithospheric Mantle? Acta Petrologica Sinica, 21(6):1559-1568(in Chinese with English abstract). https://www.researchgate.net/publication/305532219_Are_the_peridotitic_xenoliths_entrained_in_Late_Mesozoic_intermediate-mafic_intrusive_complexes_on_the_North_China_Craton_the_direct_samples_of_lithospheric_mantle
      [35] Zhu, R.X., Xu, Y.G, Zhu, G., et al., 2012.Destruction of the North China Craton.Sci. China:Earth Sci., 55(10):1565-1587. doi: 10.1007/s11430-012-4516-y
      [36] 许文良, 王冬艳, 王清海, 等, 2003.鲁西中生代闪长岩中两类幔源捕掳体的岩石学和地球化学.岩石学报, 19(4):623-636. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304003.htm
      [37] 张瑾, 张宏福, 英基丰, 等, 2005.华北晚中生代中基性侵入体中橄榄岩捕掳体是岩石圈地幔直接样品?岩石学报, 21(6):1559-1568. http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124978.htm
    • 加载中
    图(3) / 表(1)
    计量
    • 文章访问数:  3859
    • HTML全文浏览量:  1911
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-10
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回