The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton: Constraints from Water Content in Peridotites of Tietonggou
-
摘要: 已有研究表明,华北克拉通东部的山东费县岩石圈地幔在克拉通破坏峰期(早白垩世)时是高度富水的,其中橄榄石的H2O含量>180×10-6;而同期克拉通西部的太行山符山地区岩石圈地幔具有贫水特征,其中橄榄石的H2O含量为~10×10-6.这表明西向俯冲的古太平洋板块造成了华北东部早白垩世岩石圈地幔的富水特征,为克拉通破坏提供了力学前提.为了解古太平洋板块俯冲的影响范围,对介于费县和符山之间的山东铁铜沟地区早白垩世高镁闪长岩中的橄榄岩捕掳体进行了含水性分析,橄榄石的原始H2O含量(6×10-6~24×10-6,平均值为(15±7)×10-6)与符山地区相当,暗示太平洋板块俯冲造成的岩石圈富水效应可能仅局限在华北最东部,这和最东部地区克拉通破坏程度最高是一致的.Abstract: Previous studies show that the Early Cretaceous lithospheric mantle beneath Feixian (Shandong Province) in the eastern part of the North China Craton (NCC) was highly hydrous ( > 1 000×10-6, H2O wt.), in which the H2O content of olivine was > 180×10-6. Meanwhile the Early Cretaceous lithospheric mantle beneath Fushan (Shanxi Province) in the western part of the NCC was relatively dry, in which the H2O content of olivine was ~10×10-6. This contrast demonstrates that the hydration of the Early Cretaceous lithospheric mantle of eastern NCC was probably due to the westward subduction of the Pacific plate, and this high water content had significantly reduced the viscosity of the lithospheric mantle and provided a prerequisite for the destruction of the NCC. To explore the distribution of hydrous lithospheric mantle in the NCC, we measured the H2O content of the peridotite xenoliths hosted by the Early Cretaceous high-magnesium diorites of Tietonggou (Shandong Province) that is located between Feixian and Fushan.The H2O content of olivine in the Tietonggou peridotites is (6-24)×10-6 (average (15±7)×10-6) and comparable with that of the Fushan olivine, suggesting that the Early Cretaceous hydrous lithospheric mantle caused by the westward subduction of the Pacific plate was likely limited to the most eastern part of the NCC.
-
Key words:
- water content /
- peridotite /
- Early Cretaceous /
- Tietonggou /
- destruction of NCC /
- petrology /
- geochemistry
-
表 1 铁铜沟纯橄岩和辉石岩中矿物的化学成分和水含量
Table 1. Chemical composition and H2O content of minerals in Tietonggou peridotites and pyroxenite
样品号 分析点 位置 SiO2 MgO Al2O3 CaO FeO Cr2O3 MnO TiO2 NiO Total Mg# H2O(10-6) 1-1 39.62 41.81 0.00 0.05 17.95 0.06 0.25 0.02 0.19 99.96 80.7 13 1-2 39.21 42.14 0.00 0.03 17.26 0.03 0.27 0.02 0.25 99.22 81.5 26 1-3 39.45 41.92 0.03 0.12 17.73 0.05 0.18 0.00 0.27 99.75 81.0 28 1-4 靠近寄主岩 39.35 41.68 0.02 0.04 17.90 0.04 0.23 0.02 0.28 99.57 80.7 9 1-5 39.34 42.30 0.00 0.03 17.23 0.03 0.22 0.00 0.26 99.42 81.5 9 平均值 39.39 41.97 0.01 0.06 17.61 0.04 0.23 0.01 0.25 99.58 81.1 17 TTG1 SD 0.13 0.22 0.01 0.03 0.31 0.01 0.03 0.01 0.03 0.26 0.4 9 1-6 39.70 44.53 0.00 0.06 14.29 0.05 0.19 0.03 0.27 99.12 84.9 7 1-7 40.36 45.24 0.00 0.02 12.54 0.01 0.16 0.00 0.28 98.61 86.7 13 1-8 40.91 47.06 0.01 0.05 11.53 0.08 0.16 0.00 0.21 99.99 88.0 12 1-9 样品内部 40.17 46.92 0.02 0.05 11.66 0.06 0.13 0.01 0.32 99.34 87.9 10 1-10 40.18 45.05 0.00 0.04 13.51 0.00 0.22 0.02 0.24 99.27 85.7 13 平均值 40.26 45.76 0.01 0.04 12.70 0.04 0.17 0.01 0.26 99.27 86.6 11 SD 0.39 1.03 0.01 0.01 1.06 0.03 0.03 0.01 0.04 0.44 1.4 2 1'-1 39.17 41.51 0.01 0.02 17.94 0.03 0.26 0.02 0.25 99.21 80.6 n.d. 1'-2 39.65 41.76 0.00 0.03 17.86 0.03 0.25 0.00 0.26 99.84 80.8 9 1'-3 靠近寄主岩 39.51 41.95 0.00 0.04 17.31 0.02 0.22 0.00 0.28 99.33 81.4 12 1'-4 39.10 42.16 0.00 0.03 17.29 0.00 0.29 0.00 0.22 99.09 81.4 14 平均值 39.36 41.85 0.00 0.03 17.60 0.02 0.26 0.01 0.25 99.37 81.1 12 SD 0.23 0.24 0.01 0.01 0.30 0.01 0.02 0.01 0.02 0.29 0.4 6 TTG1' 1'-5 39.64 44.83 0.00 0.04 14.25 0.00 0.22 0.01 0.25 99.23 85.0 17 1'-6 39.91 46.24 0.00 0.03 12.17 0.00 0.19 0.01 0.25 98.81 87.2 19 1'-7 40.42 46.28 0.01 0.03 11.81 0.01 0.15 0.00 0.25 98.95 87.6 20 1'-8 样品内部 39.94 46.07 0.00 0.03 11.80 0.02 0.18 0.01 0.33 98.37 87.5 6 1'-9 39.88 46.58 0.00 0.02 11.76 0.00 0.16 0.05 0.34 98.77 87.7 18 1'-10 40.15 46.86 0.00 0.03 11.63 0.01 0.15 0.01 0.27 99.11 87.9 14 平均值 39.99 46.14 0.00 0.03 12.24 0.01 0.17 0.01 0.28 98.87 87.2 16 SD 0.24 0.64 0.00 0.01 0.91 0.01 0.03 0.01 0.04 0.28 1.1 5 4-1 38.36 39.79 0.00 0.03 20.53 0.00 0.24 0.01 0.26 99.22 77.7 6 4-2 38.33 40.08 0.00 0.03 20.08 0.02 0.23 0.02 0.22 99.01 78.2 9 4-3 38.36 40.42 0.00 0.04 19.51 0.03 0.24 0.02 0.20 98.82 78.9 22 4-4 38.55 39.15 0.01 0.03 20.65 0.03 0.25 0.03 0.19 98.88 77.3 8 4-5 38.64 39.40 0.00 0.02 20.67 0.00 0.33 0.00 0.22 99.27 77.4 18 TTG4 4-6 靠近寄主岩 38.06 39.60 0.00 0.02 20.80 0.00 0.25 0.00 0.25 98.98 77.4 9 4-7 38.19 39.81 0.00 0.04 20.09 0.01 0.24 0.00 0.26 98.63 78.1 10 4-8 38.71 40.42 0.00 0.02 19.34 0.00 0.27 0.03 0.27 99.05 79.0 18 4-9 38.71 40.34 0.00 0.04 19.68 0.02 0.30 0.00 0.26 99.35 78.7 18 4-10 38.16 39.72 0.02 0.04 20.69 0.02 0.28 0.01 0.23 99.16 77.6 7 平均值 38.41 39.87 0.00 0.03 20.20 0.01 0.26 0.01 0.23 99.03 78.0 12 SD 0.22 0.41 0.01 0.01 0.51 0.01 0.03 0.01 0.03 0.21 0.6 6 6-1 38.86 42.37 0.00 0.06 17.46 0.00 0.24 0.01 0.30 99.30 81.4 12 6-2 39.02 41.61 0.02 0.01 17.83 0.01 0.28 0.00 0.27 99.04 80.8 24 6-3 39.54 43.86 0.02 0.03 15.40 0.04 0.18 0.01 0.19 99.27 83.7 20 6-5 靠近寄主岩 39.90 43.59 0.01 0.05 15.39 0.14 0.25 0.00 0.35 99.67 83.6 10 6-9 39.79 44.09 0.00 0.04 15.66 0.04 0.15 0.00 0.28 100.05 83.5 n.d. 6-10 39.23 42.31 0.01 0.02 17.44 0.04 0.25 0.00 0.28 99.57 81.4 21 TTG6 平均值 39.39 42.97 0.01 0.04 16.53 0.04 0.23 0.00 0.28 99.49 82.4 18 SD 0.38 0.92 0.01 0.02 1.06 0.05 0.04 0.01 0.05 0.33 1.3 9 6-4 39.44 45.22 0.00 0.04 13.72 0.00 0.25 0.04 0.26 98.96 85.6 14 6-6 40.03 46.98 0.00 0.05 11.59 0.03 0.16 0.00 0.30 99.13 87.9 20 6-7 样品内部 39.69 44.34 0.00 0.01 14.70 0.00 0.19 0.00 0.28 99.20 84.4 24 6-8 40.71 46.90 0.01 0.06 12.11 0.05 0.17 0.00 0.38 0.39 87.5 39 平均值 39.97 45.86 0.00 0.04 13.03 0.02 0.19 0.01 0.30 74.42 86.4 24 SD 0.48 1.12 0.00 0.02 1.24 0.02 0.04 0.02 0.05 42.74 1.6 11 8-1 39.36 41.48 0.00 0.04 17.81 0.02 0.26 0.00 0.21 99.19 80.7 n.d. 8-2 39.32 41.67 0.01 0.05 17.81 0.08 0.25 0.00 0.24 99.44 80.8 9 8-3 38.94 39.85 0.02 0.02 20.49 0.06 0.23 0.01 0.21 99.82 77.8 18 8-4 靠近寄主岩 38.14 38.41 0.00 0.04 22.99 0.00 0.31 0.00 0.20 100.09 75.0 2 8-5 38.72 39.86 0.00 0.02 19.98 0.00 0.28 0.00 0.29 99.15 78.2 15 平均值 38.90 40.25 0.01 0.03 19.82 0.03 0.26 0.00 0.23 99.54 78.5 11 TTG8 SD 0.45 1.20 0.00 0.01 1.93 0.03 0.03 0.00 0.03 0.37 2.4 8 8-6 39.57 44.14 0.00 0.02 14.64 0.04 0.20 0.01 0.28 98.89 84.4 16 8-7 40.23 45.35 0.00 0.03 13.51 0.03 0.22 0.00 0.30 99.66 85.8 20 8-8 40.19 46.39 0.01 0.06 12.44 0.03 0.21 0.00 0.25 99.57 87.0 13 8-9 样品内部 40.08 46.84 0.00 0.05 11.57 0.01 0.17 0.04 0.26 99.03 87.9 15 8-10 40.83 46.53 0.01 0.04 11.81 0.03 0.18 0.01 0.32 99.74 87.6 21 平均值 40.18 45.85 0.00 0.04 12.79 0.03 0.19 0.01 0.28 99.38 86.6 17 SD 0.40 0.99 0.00 0.01 1.14 0.01 0.02 0.02 0.03 0.35 1.4 3 9-1 38.61 38.41 0.01 0.01 22.71 0.01 0.28 0.00 0.23 100.28 75.3 5 9-2 37.96 37.94 0.01 0.03 22.48 0.03 0.32 0.03 0.28 99.06 75.2 15 9-3 38.39 38.35 0.01 0.00 22.62 0.01 0.29 0.00 0.31 99.97 75.3 7 9-4 38.13 38.43 0.02 0.01 22.07 0.00 0.29 0.00 0.25 99.20 75.8 12 9-5 38.14 36.84 0.00 0.03 23.77 0.00 0.34 0.00 0.24 99.35 73.6 18 TTG9 9-6 靠近寄主岩 38.37 38.03 0.02 0.03 22.72 0.00 0.28 0.02 0.16 99.62 75.1 17 9-7 39.65 42.31 0.02 0.03 17.54 0.04 0.23 0.02 0.32 100.16 81.3 9 9-8 39.53 42.76 0.01 0.03 17.11 0.03 0.23 0.00 0.30 99.99 81.8 9 9-9 39.26 42.20 0.03 0.00 18.14 0.01 0.24 0.03 0.27 100.17 80.7 15 9-10 39.35 40.89 0.00 0.01 19.51 0.03 0.28 0.00 0.26 100.33 79.0 n.d. 平均值 38.74 39.62 0.01 0.02 20.87 0.01 0.28 0.01 0.26 99.81 77.3 12 SD 0.61 2.07 0.01 0.01 2.38 0.01 0.03 0.01 0.04 0.44 3.1 6 12-1 40.36 46.16 0.01 0.04 13.15 0.01 0.17 0.00 0.33 100.22 86.3 17 12-2 40.19 46.30 0.00 0.03 12.77 0.01 0.17 0.00 0.35 99.82 86.7 17 12-3 样品内部 40.11 45.93 0.00 0.04 13.00 0.00 0.16 0.00 0.25 99.49 86.4 13 平均值 40.22 46.13 0.00 0.04 12.97 0.01 0.17 0.00 0.31 99.84 86.5 16 SD 0.10 0.15 0.00 0.01 0.16 0.01 0.01 0.00 0.04 0.30 0.2 2 12-4 39.09 40.28 0.01 0.03 19.25 0.00 0.25 0.00 0.26 99.16 79.0 16 TTG12 12-5 38.82 40.50 0.01 0.05 19.75 0.03 0.30 0.00 0.22 99.68 78.7 9 12-6 40.12 43.98 0.01 0.04 14.98 0.03 0.20 0.00 0.24 99.61 84.1 19 12-7 39.61 43.72 0.00 0.04 15.48 0.15 0.19 0.02 0.29 99.50 83.6 18 12-8 靠近寄主岩 40.02 44.25 0.01 0.03 15.19 0.00 0.19 0.04 0.34 100.06 84.0 15 12-9 39.43 43.84 0.00 0.04 16.00 0.04 0.23 0.03 0.32 99.93 83.1 8 12-10 39.31 43.34 0.00 0.06 16.49 0.00 0.24 0.00 0.22 99.65 82.6 13 平均值 39.49 42.85 0.01 0.04 16.73 0.04 0.23 0.01 0.27 99.66 82.1 14 SD 0.44 1.57 0.01 0.01 1.81 0.05 0.04 0.02 0.05 0.27 2.3 4 15-1 38.79 42.24 0.00 0.04 17.41 0.00 0.18 0.04 0.29 99.01 81.4 n.d. 15-2 39.13 42.12 0.01 0.04 17.77 0.00 0.19 0.00 0.36 99.61 81.0 7 15-3 靠近寄主岩 39.27 41.71 0.01 0.01 17.71 0.05 0.17 0.00 0.26 99.20 80.9 13 15-4 39.35 42.41 0.04 0.04 17.21 0.02 0.23 0.00 0.29 99.58 81.6 7 TTG15 平均值 39.14 42.12 0.01 0.03 17.53 0.02 0.19 0.01 0.30 99.35 81.2 9 SD 0.21 0.26 0.01 0.01 0.23 0.02 0.02 0.02 0.03 0.26 0.3 5 15-5 40.04 43.56 0.00 0.01 16.56 0.00 0.21 0.00 0.31 100.68 82.6 7 15-6 样品内部 39.73 43.36 0.00 0.04 16.08 0.01 0.20 0.00 0.34 99.76 82.9 6 平均值 39.89 43.46 0.00 0.02 16.32 0.01 0.21 0.00 0.32 100.22 82.7 6 SD 0.15 0.10 0.00 0.01 0.24 0.01 0.00 0.00 0.02 0.46 0.3 1 16-1 39.73 46.12 0.00 0.04 11.95 0.02 0.20 0.03 0.23 98.32 87.4 16 16-2 样品内部 40.65 46.69 0.00 0.07 11.41 0.04 0.12 0.02 0.24 99.25 88.0 35 16-3 40.72 46.58 0.00 0.03 11.57 0.00 0.12 0.02 0.26 99.29 87.9 22 16-8 40.62 47.37 0.00 0.05 11.10 0.01 0.16 0.01 0.34 99.66 88.5 18 16-9 40.32 47.67 0.02 0.04 10.91 0.00 0.16 0.01 0.34 99.47 88.7 22 16-10 40.06 45.40 0.00 0.04 13.23 0.00 0.14 0.00 0.24 99.11 86.1 18 16-11 样品内部 41.02 47.27 0.00 0.06 10.70 0.03 0.16 0.00 0.30 99.53 88.8 8 16-12 40.45 47.20 0.00 0.03 11.07 0.00 0.11 0.01 0.29 99.16 88.5 22 平均值 40.45 46.79 0.00 0.04 11.49 0.01 0.15 0.01 0.28 99.22 88.0 20 TTG16 SD 0.38 0.70 0.00 0.01 0.75 0.01 0.03 0.01 0.04 0.38 0.9 8 16-4 39.75 44.12 0.00 0.04 14.96 0.00 0.16 0.00 0.30 99.33 84.1 29 16-5 40.10 44.51 0.00 0.06 14.69 0.00 0.18 0.01 0.18 99.73 84.5 15 16-6 靠近寄主岩 39.73 44.63 0.00 0.02 14.14 0.02 0.22 0.01 0.22 98.99 85.0 11 16-7 40.24 44.98 0.00 0.01 13.86 0.03 0.16 0.01 0.20 99.49 85.4 n.d. 平均值 39.95 44.56 0.00 0.03 14.41 0.01 0.18 0.01 0.23 99.38 84.8 18 SD 0.22 0.31 0.00 0.02 0.44 0.01 0.03 0.00 0.04 0.27 0.6 10 17-1 52.58 16.51 1.94 21.48 5.65 0.45 0.11 0.18 0.00 98.90 84.0 205 17-2 53.10 16.30 1.48 22.52 5.27 0.31 0.11 0.13 0.00 99.22 84.8 134 TTG17 17-3 37.82 37.27 0.00 0.03 23.39 0.04 0.24 0.01 0.15 98.96 74.1 19 平均值 52.84 16.41 1.71 22.00 5.46 0.38 0.11 0.15 0.00 99.06 84.4 169 SD 0.26 0.11 0.23 0.52 0.19 0.07 0.00 0.02 0.00 0.16 0.5 50 注:(1) 除样品TTG17为辉石岩外,其余均为纯橄岩;(2) 除TTG17中的17-1和17-2为单斜辉石外,其余颗粒均为橄榄石;(2)SD为标准偏差(standard deviation),n.d.表示未测;(3) Mg#=100×Mg/(Mg+Fe),原子数计算对于橄榄石基于4个氧原子,对于辉石基于6个氧原子;(4) 第4~13列数值的单位为%. -
[1] Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995.Quantitative and Analysis of Trace OH in Garnet and Pyroxenes.Am. Mineral., 80(5-6):465-474. doi: 10.2138/am-1995-5-607 [2] Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Minerals.Science, 255(5050):1391-1397. doi: 10.1126/science.255.5050.1391 [3] Bell, D.R., Rossman, G.R., Maldener, J., et al., 2003.Hydroxide in Olivine:A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum.Journal of Geophysical Research, 108(B2):998-1003, doi: 10.1029/2001JB000679 [4] Berry, A.J., Hermann, J., O'Neill, H.S.C., et al., 2005.Fingerprinting the Water Site in Mantle Olivine.Geology, 33(11):869-872.doi: 10.1130/G21759.1 [5] Chen, L.H., Zhou, X.H., 2005.Subduction-Related Metasomatism in the Thinning Lithosphere:Evidence from a Composite Dunite-Orthopyroxenite Xenolith Entrained in Mesozoic Laiwu High-Mg Diorite, North China Craton.Geochem. Geophys. Geosyst., 6(6):453-468.doi: 10.1029/2005GC000938 [6] Denis, C.M.M., Alard, O., Demouchy, S., 2015.Water Content and Hydrogen Behavior during Metasomatism in the Uppermost Mantle beneath Ray Pic Volcano (Massif Central, France).Lithos, 237:256-274. https://www.researchgate.net/profile/Carole_Denis/publication/282333223_Water_content_and_hydrogen_behaviour_during_metasomatism_in_the_uppermost_mantle_beneath_Ray_Pic_volcano_Massif_Central_France/links/560cef7308aed543358d54ed/Water-content-and-hydrogen-behaviour-during-metasomatism-in-the-uppermost-mantle-beneath-Ray-Pic-volcano-Massif-Central-France.pdf [7] Dixon, J.E., Dixon, T.H., Bell, D.R., 2004.Lateral Variation in Upper Mantle Viscosity:Role of Water.Earth Planet. Sci. Lett., 222(2):451-467. doi: 10.1016/j.epsl.2004.03.022 [8] Doucet, L.S., Peslier, A.H., Ionov, D., 2014.High Water Contents in the Siberian Cratonic Mantle Linked to Metasomatism:An FTIR Study of Udachnaya Peridotite Xenoliths.Geochim. Cosmochim. Acta, 137:159-187. doi: 10.1016/j.gca.2014.04.011 [9] Downes, H., 2001.Formation and Modification of the Shallow Sub-Continental Lithospheric Mantle:A Review of Geochemical Evidence from Ultramafic Xenolith Suites and Tectonically Emplaced Ultramafic Massifs of Western and Central Europe.J. Petrol., 42(1):233-250. doi: 10.1093/petrology/42.1.233 [10] Gose, J., Schmädicke, E., Markowitz, M., et al., 2010.OH Point Defects in Olivine from Pakistan.Mineral.Petrol., 99(1):105-111. http://www.academia.edu/17782484/OH_point_defects_in_olivine_from_Pakistan [11] Grant, K., Ingrin, J., Lorand, J.P., et al., 2007.Water Partitioning between Mantle Minerals from Peridotite Xenoliths.Contrib. Mineral. Petrol., 154(1):15-34. doi: 10.1007/s00410-006-0177-1 [12] Hao, Y.T., Xia, Q.K., Li, Q.W., et al., 2014.Partial Melting Control of Water Contents in the Cenozoic Lithospheric Mantle of the Cathaysia Block of South China.Chem.Geol., 380:7-19. doi: 10.1016/j.chemgeo.2014.04.017 [13] Hao, Y.T., Xia, Q.K., Tian, Z.Z., et al., 2016.Mantle Metasomatism did not Modify the Water Content of the Peridotite Xenoliths from the Tianchang Basalts of Eastern China.Lithos, 260:315-327. doi: 10.1016/j.lithos.2016.06.003 [14] Hirschmann, M.M., 2005.Water, Melting, and the Deep Earth H2O Cycle.Annu. Earth Planet. Sci., 2334(34):629-653. [15] Kovács, I., Green, D.H., Rosenthal, A., et al., 2012.An Experimental Study of Water in Nominally Anhydrous Minerals in the Upper Mantle near the Water-Saturated Solidus.J. Petrol., 53(10):2067-2093. doi: 10.1093/petrology/egs044 [16] Kovács, I., Hermann, J., O'Neill, H.S.C., et al., 2008.Quantitative Absorbance Spectroscopy with Unpolarized Light:Part Ⅱ.Experimental Evaluation and Development of a Protocol for Quantitative Analysis of Mineral IR Spectra.Am. Mineral., 93(5-6):765-778.doi: 10.2138/am.2008.2657 [17] Lee, C.T., Luffi, P., Chin, E.J., 2011.Building and Destroying Continental Mantle.Annual Review of Earth & Planetary Sciences, 39(39):59-90. http://www.academia.edu/14386783/Building_and_destroying_continental_mantle [18] Li, Z.X.A., Lee, C.T., Peslier, A.H., et al., 2008.Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity:Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere.J.Geophys.Res., 113(B9):B09210.doi: 1029/2007JB005540 [19] Liu, S.C., Xia, Q, K., 2014.Water Content in the Early Cretaceous Lithospheric Mantle beneath the South-Central Taihang Mountains:Implications for the Destruction of the North China Craton.Chinese Science Bulletin, 59(13):1362-1365. doi: 10.1007/s11434-014-0203-z [20] Matveev, A., Portnyagin, M., Ballhaus, C., et al., 2005.FTIR Spectrum of Phenocryst Olivine as an Indicator of Silica Saturation in Magmas.J. Petrol., 46(3):603-614. https://www.researchgate.net/publication/235766932_FTIR_Spectrum_of_Phenocryst_Olivine_as_an_Indicator_of_Silica_Saturation_in_Magmas [21] Menzies, M.A., Xu, Y.G., Zhang, H.F., et al., 2007.Integration of Geology, Geophysics and Geochemistry:A Key to Understanding the North China Craton.Lithos, 96:1-21. doi: 10.1016/j.lithos.2006.09.008 [22] Peslier, A.H., Woodland, A.B., Bell, D.R., et al., 2010.Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons.Nature, 467(7311):78-81. doi: 10.1038/nature09317 [23] Peslier, A.H., Woodland, A.B., Bell, D.R., et al., 2012.Metasomatic Control of Water Contents in the Kaapvaal Cratonic Mantle.Geochim.Cosmochim.Acta, 97(97):213-246. [24] Proietti, A., Bystricky, M., Guignard, J., et al., 2016.Effect of Pressure on the Strength of Olivine at Room Temperature.Phys. Earth Planet Inter., 259:34-44. doi: 10.1016/j.pepi.2016.08.004 [25] Schmädicke, E., Gose, J., Witt-Eickschen, G., et al., 2013.Olivine from Spinel Peridotite Xenoliths:Hydroxyl Incorporation and Mineral Composition.Am.Mineral., 98(10):1870-1880. doi: 10.2138/am.2013.4440 [26] Xia, Q.K., Hao, Y.T., Li, P., et al., 2010.Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton.J.Geophys.Res., 115(B7):1-22.doi: 10.1029/2009JB006694 [27] Xia, Q.K., Liu, J., Kovács, I., et al., 2017.Water in the Upper Mantle and Deep Crust of Eastern China:Concentration, Distribution and Implications.National Science Review.doi:10.1093/nsr/nwx016 [28] Xia, Q.K., Liu, J., Liu, S.C., et al., 2013.High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications for the Destruction of Cratonic Mantle Lithosphere.Earth Planet. Sci. Lett., 361(1):85-97. http://www.academia.edu/2358045/High_watercontent_in_Mesozoic_primitive_basalts_of_the_North_China_Craton_and_implications_on_the_destruction_of_cratonic_mantle_lithosphere [29] Xu, W.L., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth Planet.Sci.Lett., 265(1-2):123-137. doi: 10.1016/j.epsl.2007.09.041 [30] Xu, W.L., Wang, D.Y., Wang, Q.H., et al., 2003.Petrology and Geochemisty of Two Types of Mantle-Derived Xenoliths in Mesozoic Diorite from Western Shandong Province.Acta Petrologica Sinica, 19(4):623-636(in Chinese with English abstract). https://www.researchgate.net/publication/285731412_Petrology_and_geochemistry_of_two_types_of_mantle-derived_xenoliths_in_Mesozoic_diorite_from_western_Shandong_province [31] Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chem.Geol., 270(1-4):257-273. doi: 10.1016/j.chemgeo.2009.12.006 [32] Yamamoto, J., Ando, J., Kagi, H., et al., 2008.In Situ Strength Measurements on Natural Upper-Mantle Minerals.Phys. Chem. Minerals, 35:249-257.doi: 10.1007/s00269-008-0218-6 [33] Yang, D.B., Xu, W.L., Gao, S., et al., 2012.Repeated Modification of Lithospheric Mantle in the Eastern North China Craton:Constraints from SHRIMP Zircon U-Pb Dating of Dunite Xenoliths in Western Shandong.Chinese Science Bulletin, 57(6):651-659. doi: 10.1007/s11434-011-4852-x [34] Zhang, J., Zhang, H.F., Ying, J.F., et al., 2005.Are the Peridotitic Xenoliths Entrained in Late Mesozoic Intermediate-Mafic Intrusive Complexes on the North China Craton the Direct Samples of Lithospheric Mantle? Acta Petrologica Sinica, 21(6):1559-1568(in Chinese with English abstract). https://www.researchgate.net/publication/305532219_Are_the_peridotitic_xenoliths_entrained_in_Late_Mesozoic_intermediate-mafic_intrusive_complexes_on_the_North_China_Craton_the_direct_samples_of_lithospheric_mantle [35] Zhu, R.X., Xu, Y.G, Zhu, G., et al., 2012.Destruction of the North China Craton.Sci. China:Earth Sci., 55(10):1565-1587. doi: 10.1007/s11430-012-4516-y [36] 许文良, 王冬艳, 王清海, 等, 2003.鲁西中生代闪长岩中两类幔源捕掳体的岩石学和地球化学.岩石学报, 19(4):623-636. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304003.htm [37] 张瑾, 张宏福, 英基丰, 等, 2005.华北晚中生代中基性侵入体中橄榄岩捕掳体是岩石圈地幔直接样品?岩石学报, 21(6):1559-1568. http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124978.htm