• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征

    王键 孙丰月 禹禄 姜和芳 王飞 宁传奇

    王键, 孙丰月, 禹禄, 姜和芳, 王飞, 宁传奇, 2017. 青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征. 地球科学, 42(6): 941-956. doi: 10.3799/dqkx.2017.074
    引用本文: 王键, 孙丰月, 禹禄, 姜和芳, 王飞, 宁传奇, 2017. 青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征. 地球科学, 42(6): 941-956. doi: 10.3799/dqkx.2017.074
    Wang Jian, Sun Fengyue, Yu Lu, Jiang Hefang, Wang Fei, Ning Chuanqi, 2017. Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Science, 42(6): 941-956. doi: 10.3799/dqkx.2017.074
    Citation: Wang Jian, Sun Fengyue, Yu Lu, Jiang Hefang, Wang Fei, Ning Chuanqi, 2017. Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Science, 42(6): 941-956. doi: 10.3799/dqkx.2017.074

    青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征

    doi: 10.3799/dqkx.2017.074
    基金项目: 

    中国地质调查局项目 12120113098300

    国家自然科学基金项目 41272093

    详细信息
      作者简介:

      王键(1987-),男,博士研究生,岩石学、矿物学、矿床学专业.ORCID: 0000-0002-8994-9823.E-mail: wjian118@hotmail.com

      通讯作者:

      孙丰月,E-mail: sunfy_66@126.com

    • 中图分类号: P611

    Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China

    • 摘要: 为确定中国三江成矿带北段尕龙格玛VMS(volcanogenic massive sulfide)型矿床的成矿物理化学条件、成矿物质来源、成矿流体来源,探讨成矿机制,对矿体特征、流体包裹体显微测温和激光拉曼光谱分析以及S、Pb、H、O同位素进行了系统研究.矿体赋存于晚三叠世巴塘群英安质火山岩中,具有VMS型矿床的双层结构,由下部热液流体补给通道相的脉状-网脉状矿化系统和上部海底盆地卤水池喷气-化学沉积系统组成.通道相中流体包裹体可分为富气相包裹体和水溶液包裹体,均一温度为175.6~263.3 ℃,盐度为1.05%~6.29% NaCl eqv.,密度为0.820~0.935 g/cm3,激光拉曼光谱分析包裹体气相成分为H2O、CO2和少量N2;沉积相重晶石中仅发育水溶液包裹体,均一温度为105.2~157.1 ℃,盐度为0.18%~5.55% NaCl eqv.,密度为0.735~1.173 g/cm3,显示了流体由通道相向沉积相温度显著降低,盐度保持不变,密度变大的趋势,与典型VMS型矿床流体特征相似.氢氧同位素(δ18OH2O:0.25‰~1.75‰,δD:-103.2‰~-65.3‰)研究表明,成矿流体主要来源于岩浆水和海水的混合.综合分析前人硫同位素研究结果(δ34S:1.13‰~2.45‰,12.36‰~12.37‰)及本次获得硫同位素结果(δ34S:-22.9‰~-14.7‰)表明硫来源于岩浆和细菌还原的海水硫酸盐或基底岩石.硫化物方铅矿的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.449~18.519、15.699~15.777和38.875~39.141,具有高放射性铅的特征,μ值为9.65~9.80,结果显示Pb等成矿物质主要来自于上地壳,并有岩浆物质参与成矿.成矿流体与海水的混合作用是尕龙格玛矿床形成的主要机制.

       

    • 图  1  中国三江成矿带北段大地构造位置略图

      Yin and Harrison(2000)Spurlin et al.(2005)修改

      Fig.  1.  Simplified geological map of the northern Sanjiang metallogenic belt in China showing major structures

      图  2  尕龙格玛矿床区域地质图

      Fig.  2.  Regional geological map of Galonggema deposit

      图  3  尕龙格玛东矿区地质图

      Fig.  3.  Geological map in the east ore district of Galonggema deposit

      图  4  尕龙格玛东矿区56线勘探线剖面

      Fig.  4.  Cross section along exploration line 56 in the east ore district of Galonggema deposit

      图  5  尕龙格玛铜多金属矿床主要矿石矿物特征及显微照片

      a, b.重晶石中条带状硫化物矿石;c, d.2号矿体中沉积相中块状硫化物矿石;e, f.通道相石英硫化物脉穿切如沉积相块状矿石中;g.重晶石层中条带状矿石中黄铜矿和方铅矿,正交偏光;h.沉积相中块状硫化物矿石草莓状黄铁矿,正交偏光;i.沉积相中,黄铜矿沿黄铁矿裂隙分布,正交偏光;j.沉积相块状矿石中,黄铜矿、方铅矿、闪锌矿交代草莓状黄铁矿,正交偏光;k.沉积相块状矿石中方铅矿、闪锌矿、黄铜矿共生,固溶体分离结构,正交偏光;l.沉积相浸染状矿石中方铅矿交代闪锌矿;m.通道相矿石中的黄铜矿脉;n.沉积相中黝铜矿包裹闪锌矿,正交偏光;o.通道相中黝铜矿与黄铜矿共同产出,正交偏光;Py.黄铁矿;Ccp.黄铜矿;Gn.方铅矿;Sp.闪锌矿;Thr.黝铜矿;Brt.重晶石;Qtz.石英

      Fig.  5.  Representative photograph of ores from the Galonggema deposit

      图  6  尕龙格玛东矿区重晶石和石英中流体包裹体显微照片

      a, b, c.重晶石中气液两相包裹体;d, e, f.石英中气液两相包裹体;g, h, i.石英中富气相包裹体

      Fig.  6.  Photomicrographs of representative FIs from the Galonggema deposit

      图  7  尕龙格玛矿床流体包裹体均一温度盐度直方图

      a.通道相石英中流体包裹体均一温度直方图;b.通道相石英中流体包裹体盐度直方图;c.沉积相重晶石中流体包裹体均一温度直方图;d.沉积相重晶石中流体包裹体盐度直方图;盐度为质量百分含量

      Fig.  7.  Histograms of salinities and homogenization temperatures of FIs in Galonggema VMS deposit

      图  8  尕龙格玛通道相石英中流体包裹体激光拉曼光谱分析结果

      a, b, c.通道相石英中富气相包裹体;d.通道相石英中气液两相包裹体

      Fig.  8.  Laser Raman spectra of FIs the Galonggema deposit

      图  9  尕龙格玛铜多金属及邻区热液矿床δD-δ18OH2O图解

      底图据Taylor(1974);西藏地区雨水、地表水和湖水数据郑淑蕙等(1982);大屏掌数据钟宏等(2000);鲁春数据杨喜安(2012);呷村数据党院等(2014);SMOW.标准平均大洋水

      Fig.  9.  δD-δ18OH2O diagram of the Galonggema deposit

      图  10  青海三江成矿带典型热液矿床硫化物中δ34S分布

      大屏掌钟宏等(2000);伊比利亚黄铁矿带引自Tornos et al.(2008);阿尔泰成矿带引自Wan et al.(2010);尕龙格玛部分数据引自郑宗学,2010.《治多多彩地区铜多金属矿普查阶段性总结》报告.青海;东莫扎抓田世洪等(2011a);莫海拉亨田世洪等(2011b);鲁村杨喜安等(2012);呷村党院等(2014);多日茸、查涌、撒纳龙哇引自于作者未发表数据

      Fig.  10.  Distribution range of sulfur isotope data in the Galonggema deposit

      图  11  尕龙格玛矿床硫化物铅同位素组成

      底图据Zartman and Doe(1981);呷村数据朱维光等(2001);鲁春数据杨喜安等(2012);UC.上地壳;O.造山带;M.地幔;LC.下地壳

      Fig.  11.  Lead isotopic compositions of sulfides in the Galonggema deposit

      表  1  矿床流体包裹体显微测温结果及参数

      Table  1.   Microther mometric data and relative parameters of fluid inclusions of the Galonggema deposit

      矿石类型 包体类型 大小(μm) 气液比(%) 冰点温度Ti(℃) 均一温度Th(℃) S(%NaCl) ρ(g/cm3)
      通道相 V型 6~12 60~90 -1.6~-0.6 241.7~263.3(9) 1.05~2.73 0.820~0.882
      通道相L-V型4~205~30-3.9~-1.2175.6~259.8(67)2.06~6.290.838~0.935
      沉积相 L-V型 4~10 5~20 -3.4~-0.1 105.2~157.1(34) 0.18~5.55 0.735~1.173
      注:括号内数字为流体包裹体个数.
      下载: 导出CSV

      表  2  尕龙格玛铜多金属矿床主成矿阶段石英中氢、氧同位素组成

      Table  2.   Hydrogen and oxygen isotope compositions of the Galonggema deposit

      样品号 δDV-SMOW(‰) δ18OV-SMOW(‰) 计算温度(℃) δ18OH2O(‰)
      GLGM-CK-B1 -65.9 10.7 250 1.75
      GLGM-CK-B2-65.39.22500.25
      GLGM-KSD-W6-103.29.42500.45
      GLGM-KSD-B10 -93.3 9.9 250 0.95
      下载: 导出CSV

      表  3  尕龙格玛铜多金属矿床硫同位素结果

      Table  3.   Sulphur isotopic compositions of the Galonggema deposit

      样品编号 测试矿物 δ34SV-CDT(‰)
      GLGM-CK-B2 黄铜矿 -16.6
      GLGM-CK-B3黄铜矿-17.2
      GLGM-CK-B4黄铁矿-14.7
      GLGM-KSD-B1黄铁矿-15.4
      GLGM-KSD-B1方铅矿-19.7
      GLGM-KSD-B2方铅矿-22.9
      GLGM-KSD-B5 黄铁矿 -16.4
      下载: 导出CSV

      表  4  尕龙格玛铜多金属矿床铅同位素结果

      Table  4.   Lead isotopic compositions of the Galonggema deposit

      样品号 样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ
      GLGM-CK-B2 方铅矿 18.519 15.777 39.141 9.80
      GLGM-CK-B3方铅矿18.50015.75539.0659.76
      GLGM-KSD-B1方铅矿18.44915.69938.8759.65
      GLGM-KSD-B2方铅矿18.46415.72038.9499.69
      GLGM-KSD-B5 方铅矿 18.497 15.763 39.091 9.78
      注:μ=238U/204Pb.
      下载: 导出CSV
    • [1] Bai, Y.S., Zhu, Z.J., Duan, Q.F., et al., 2014.Geochemical Characteristics and Its Tectonic Significance of Upper Triassic Batang Group Volcano Rocks in Zhahe Area, Zhiduo County, Southern Qinghai Province.Geology and Mineral Resources of South China, 30(4):319-327 (in Chinese with English abstract).
      [2] Barrie, T.C., Amelin, Y., Pascual, E., 2002.U-Pb Geochronology of VMS Mineralization in the Iberian Pyrite Belt.Mineralium Deposita, 37(8):684-703.doi: 10.1007/s00126-002-0302-7
      [3] Bodnar, R.J., 1983.A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids.Economic Geology, 78(3):535-542.doi: 10.2113/gsecongeo.78.3.535
      [4] Bozkaya, G., 2011.Sulphur-and Lead-Isotope Geochemistry of the Arapuçandere Lead-Zinc-Copper Deposit, Biga Peninsula, Northwest Turkey.International Geology Review, 53(1):116-129.doi: 10.1080/00206810902945090
      [5] Calagari, A.A., 2003.Stable Isotope (S, O, H and C) Studies of the Phyllic and Potassic-Phyllic Alteration Zones of the Porphyry Copper Deposit at Sungun, East Azarbaidjan, Iran.Journal of Asian Earth Sciences, 21(7):767-780.doi: 10.1016/s1367-9120(02)00083-4
      [6] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water.Journal of Geophysical Research, 77(17):3057-3067.doi: 10.1029/jb077i017p03057
      [7] Dang, Y., Chen, M.H., Mao, J.W., et al., 2014.Geochemistry of Ore-Forming Fluid of Gacun-Youre Ore District in Baiyu County, Sichuan Province.Acta Petrologica Sinica, 30(1):221-236(in Chinese with English abstract). https://www.researchgate.net/publication/299238361_Composition_characteristics_of_rare_earth_elements_in_metallogenetic_fluid_of_the_Gacun_superlarge_Kuroko-type_deposit
      [8] Giesemann, A., Jaeger, H.J., Norman, A.L., et al., 1994.Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer.Analytical Chemistry, 66(18):2816-2819.doi: 10.1021/ac00090a005
      [9] Goldfarb, R.J., 2004.The Late Cretaceous Donlin Creek Gold Deposit, Southwestern Alaska:Controls on Epizonal Ore Formation.Economic Geology, 99(4):643-671.doi: 10.2113/99.4.643
      [10] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.doi: 10.2113/gsecongeo.83.1.197
      [11] Haymon, R.M., Kastner, M., 1981.Hot Spring Deposits on the East Pacific Rise at 21°N:Preliminary Description of Mineralogy and Genesis.Earth and Planetary Science Letters, 53(3):363-381.doi: 10.1016/0012-821x(81)90041-8
      [12] He, L.Q., Song, Y.C., Chen, K.X., et al., 2009.Thrust-Controlled, Sediment-Hosted, Himalayan Zn-Pb-Cu-Ag Deposits in the Lanping Foreland Fold Belt, Eastern Margin of Tibetan Plateau.Ore Geology Reviews, 36(1-3):106-132.doi: 10.1016/j.oregeorev.2008.11.001
      [13] Herzig, P.M., Hannington, M.D., Fouquet, Y., et al., 1993.Gold-Rich Polymetallic Sulfides from the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific.Economic Geology, 88(8):2182-2209.doi: 10.2113/gsecongeo.88.8.2182
      [14] Hou, Z.Q., 1991.Ore Fluid Chemistry, Thermal Evolution History and Ore-Forming Process of the Gacun Kuroko Type Polymetallic Deposit in Western Sichuan.Mineral Deposits, 10(4):313-324 (in Chinese with English abstract).
      [15] Hou, Z.Q., Song, Y.C., Li, Z., et al., 2008.Thrust-Controlled, Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt:Geological Features and Tectonic Model.Mineral Deposits, 27(2):123-144 (in Chinese with English abstract). https://www.researchgate.net/publication/284823304_Thrust-controlled_sediments-hosted_Pb-Zn-Ag-Cu_deposits_in_eastern_and_northern_margins_of_Tibetan_orogenic_belt_geological_features_and_tectonic_model
      [16] Hou, Z.Q., Yang, Z.S, Xu, W.Y., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract).
      [17] Huston, D.L., Brauhart, C.W., Drieberg, S.L., et al., 2001.Metal Leaching and Inorganic Sulfate Reduction in Volcanic-Hosted Massive Sulfide Mineral Systems:Evidence from the Paleo-Archean Panorama District, Western Australia.Geology, 29(8):687-690.doi:10.1130/0091-7613(2001)029 <0687:mlaisr>2.0.co;2
      [18] Ishihara, S., 1974.Geology of Kuroko Deposits.Mining Geology Special Issue, 6:1-435.
      [19] Ishikawa, H., Kuroda, R., Sudo, T., 1962.Minor Elements in Some Altered Zones of "Kuroko" (Black Ore) Deposits in Japan.Economic Geology, 57(5):785-798.doi: 10.2113/gsecongeo.57.5.785
      [20] Jia, Q.Z., 1996.Geological Characteristics and Metallogenic Environment of the Ashele Volcanogenic Massive Sulfide Deposit, Xinjiang.Mineral Deposits, 15(3):267-277(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ603.008.htm
      [21] Kelley, K.D., 2004.Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska:Implications for Ore Formation.Economic Geology, 99(7):1509-1532.doi: 10.2113/99.7.1509
      [22] Large, R.R., McPhie, J., Gemmell, J.B., et al., 2001.The Spectrum of Ore Deposit Types, Volcanic Environments, Alteration Halos, and Related Exploration Vectors in Submarine Volcanic Successions:Some Examples from Australia.Economic Geology, 96(5):913-938.doi: 10.2113/gsecongeo.96.5.913
      [23] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing, 168-169 (in Chinese).
      [24] McNaughton, N.J., Groves, D.I., 1996.A Review of Pb-Isotope Constraints on the Genesis of Lode-Gold Deposits in the Yilgarn Craton, Western Australia.J.R.Soc.West. Aust., 79(1):123-129. https://www.researchgate.net/publication/289258251_A_review_of_Pb-isotope_constraints_on_the_genesis_of_lode-gold_deposits_in_the_Yilgarn_Craton_Western_Australia
      [25] Mortensen, J.K., Craw, D., MacKenzie, D.J., et al., 2010.Age and Origin of Orogenic Gold Mineralization in the Otago Schist Belt, South Island, New Zealand:Constraints from Lead Isotope and 40Ar/39Ar Dating Studies.Economic Geology, 105(4):777-793.doi: 10.2113/gsecongeo.105.4.777
      [26] Mortensen, J.K., Hall, B.V., Bissig, T., et al., 2008.Age and Paleotectonic Setting of Volcanogenic Massive Sulfide Deposits in the Guerrero Terrane of Central Mexico:Constraints from U-Pb Age and Pb Isotope Studies.Economic Geology, 103(1):117-140.doi: 10.2113/gsecongeo.103.1.117
      [27] Ohmoto, H., 1986.Stable Isotope Geochemistry of Ore Deposits.Reviews in Mineralogy and Geochemistry, 16(1):491-559.
      [28] Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Netherlands, Germany.doi: 10.1007/978-1-4020-8613-7
      [29] Rye, R.O., 1993.The Evolution of Magmatic Fluids in the Epithermal Environment:The Stable Isotope Perspective.Economic Geology, 88(3):733-752.doi: 10.2113/gsecongeo.88.3.733
      [30] Rye, R.O., Roberts, R.J., Snyder, W.S., et al., 1984.Textural and Stable Isotope Studies of the Big Mike Cupriferous Volcanogenic Massive Sulfide Deposit, Pershing County, Nevada.Economic Geology, 79(1):124-140.doi: 10.2113/gsecongeo.79.1.124
      [31] Spurlin, M.S., Yin, A., Horton, B.K., et al., 2005.Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity, East-Central Tibet.Geological Society of America Bulletin, 117(9):1293-1317.doi: 10.1130/b25572.1
      [32] Sun, H.S., Wu, G.B., Liu, L., et al., 2011.Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits.Earth Science, 36(2):299-306(in Chinese with English abstract). https://www.researchgate.net/publication/282174415_Research_advances_in_metallogenic_tectonic_environment_of_massive_sulfide_deposits
      [33] Tang, J.X., Wang, C.H., Qu, W.J., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Yulong Porphyry Copper-Molybdenum Deposit in Tibet and Its Metallogenic Significance.Rock and Mineral Analysis, 28(3):215-218(in Chinese with English abstract). https://www.researchgate.net/publication/284603626_Re-Os_isotopic_dating_of_molybdenite_from_the_Yulong_porphyry_copper-molybdenum_deposit_in_Tibet_and_its_metallogenic_significance
      [34] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843
      [35] Thomas, H.V., Large, R.R., Bull, S.W., et al., 2011.Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia:Insights for Ore Genesis.Economic Geology, 106(1):1-31.doi: 10.2113/econgeo.106.1.1
      [36] Tian, S.H., Yang, Z.S., Hou, Z.Q., et al., 2009.Rb-Sr and Sm-Nd Isochron Ages of Dongmozhazhua and Mohailaheng Pb-Zn Ore Deposits in Yushu Area, Southern Qinghai and Their Geological Implications.Mineral Deposits, 28(6):747-758(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200906003.htm
      [37] Tian, S.H., Yang, Z.S., Hou, Z.Q., et al., 2011a.Sulfnr, Lead, Strontium and Neodymium Isotope Compositions of the Dongmozhazhua Lead-Zinc Ore Deposit in the Yushu Area, Southern Qinghai:Implications for the Sources of Ore-Forming Material in the Deposit.Acta Petrologica Sinica, 27(7):2173-2183(in Chinese with English abstract).
      [38] Tian, S.H., Hou, Z.Q., Yang, Z.S., et al., 2011b.Sulfur, Lead, Strontium and Neodymium Isotope Compositions of the Mohailaheng Lead-Zinc Ore Deposit in the Yushu Area, Southern Qinghai:Implications for the Sources of Ore-Forming Material in the Deposit and Comparison with Those of Dongmozhazhua Lead-Zinc Ore Deposit.Acta Petrologica Sinica, 27(9):2709-2720 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110919&journal_id=ysxb
      [39] Tornos, F., Solomon, M., Conde, C., et al., 2008.Formation of the Tharsis Massive Sulfide Deposit, Iberian Pyrite Belt:Geological, Lithogeochemical, and Stable Isotope Evidence for Deposition in a Brine Pool.Economic Geology, 103(1):185-214.doi: 10.2113/gsecongeo.103.1.185
      [40] Ulrich, T., Golding, S.D., Kamber, B.S., et al., 2003.Different Mineralization Styles in a Volcanic-Hosted Ore Deposit:The Fluid and Isotopic Signatures of the Mt Morgan Au-Cu Deposit, Australia.Ore Geology Reviews, 22(1-2):61-90.doi: 10.1016/s0169-1368(02)00109-9
      [41] Urabe, T., Sato, T., 1978.Kuroko Deposits of the Kosaka Mine, Northeast Honshu, Japan:Products of Submarine Hot Springs on Miocene Sea Floor.Economic Geology, 73(2):161-179.doi: 10.2113/gsecongeo.73.2.161
      [42] Uyeda, S., Kanamori, H., 1979.Back-Arc Opening and the Mode of Subduction.Journal of Geophysical Research, 84(B3):1049-1061.doi: 10.1029/jb084ib03p01049
      [43] Visut, P.A., Hiroshi, O., 1983.Thermal History, and Chemical and Isotopic Compositions of the Ore-Forming Fluids Responsible for the Kuriko Massive Sulfide Deposits in the Hokuroku District of Japan.Economic Geology(Monograph), (5):523-558.
      [44] Wan, B., Zhang, L.C., Xiao, W.J., 2010.Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb-Zn Deposit, Southern Altai Metallogenic Belt, NW China.Ore Geology Reviews, 37(2):114-126.doi: 10.1016/j.oregeorev.2010.01.002
      [45] Wu, B.J., 2013.Metallogenic Conditions and Genesis of the Galonggema Cu-Polymetal Deposit, Qinghai Province(Disstertation).Central South University, Changsha (in Chinese with English abstract).
      [46] Wu, B.J., Lai, J.Q., Zheng, Z.X., et al., 2013.Characteristics of Volcanic Rocks from Galonggema Cu-Zn Polymetallic Mining Area.Mineral Resources and Geology, 27(4):283-291 (in Chinese with English abstract).
      [47] Xin, T.G., Zhao, S.Q., Yang, W.L., et al., 2014.Geology and Assessment of Prospecting Potential of Galonggema Copper-Polymetallic Deposit in the South of Qinghai Province.Geological Science and Technology Information, 33(3):145-153(in Chinese with English abstract).
      [48] Yang, X.A., Liu, J.J., Han, S.Y., et al., 2012.S, Pb, H, O Isotopic Characteristics of the Luchun Cu-Pb-Zn Deposit, Deqin County, Yunnan and Geological Implications.Geochimica, 41(3):240-249(in Chinese with English abstract).
      [49] Yao, F.L., Sun, F.Y., 2006.Deposits Tutorial.Geological Publishing House, Beijing (in Chinese).
      [50] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi: 10.1146/annurev.earth.28.1.211
      [51] Yoshida, T., 1979.Fluid Inclusion Study and Ore Forming Process of the Iwami Deposit, Shimane Prefecture, Japan.Mining Geol., 29(153):21-31.doi: 10.11456/shigenchishitsu1951.29.21
      [52] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics—The Model.Tectonophysics, 75(1-2):135-162. doi: 10.1016/0040-1951(81)90213-4
      [53] Zaw, K., Hunns, S.R., Large, R.R., et al., 2003.Microthermometry and Chemical Composition of Fluid Inclusions from the Mt Chalmers Volcanic-Hosted Massive Sulfide Deposits, Central Queensland, Australia:Implications for Ore Genesis.Chemical Geology, 194(1-3):225-244.doi: 10.1016/s0009-2541(02)00279-6
      [54] Zhang, L.G., 1992.Present Status and Aspects of Lead Isotope Geology.Geol.Prospect., 28:21-29. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199204004.htm
      [55] Zhang, Y.J., Sun, F.Y., Li, B.L., et al., 2014.Ore Textures and Remobilization Mechanisms of the Hongtoushan Copper-Zinc Deposit, Liaoning, China.Ore Geology Reviews, 57:78-86.doi: 10.1016/j.oregeorev.2013.09.006
      [56] Zhao, K.D., Jiang, S.Y., Ni, P., et al., 2006.Sulfur, Lead and Helium Isotopic Compositions of Sulfide Minerals from the Dachang Sn-Polymetallic Ore District in South China:Implication for Ore Genesis.Mineralogy and Petrology, 89(3-4):251-273.doi: 10.1007/s00710-006-0148-2
      [57] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Scince, 40(1):61-76(in Chinese with English abstract). https://www.researchgate.net/publication/281940790_Petrogenesis_and_geodynamic_setting_of_late_Triassic_quartz_diorites_in_Zhiduo_area_Qinghai_Province
      [58] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang.Acta Scicentiarum Naturalum Universitis Pekinesis, 18(1):99-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198201010.htm
      [59] Zheng, Y.F., Chen, J.F., 2000.Stable Isotope Geochemistry.Science Press, Beijing (in Chinese).
      [60] Zheng, Z.X., Wang, X.C., Qin, Z.L., 2012.Study of the Geological Characteristics and Melallogenetic Model of Galonggema Copper Polymetallic Deposit, Qinghai Province.Gold Science and Technology, 20(1):66-70(in Chinese with English abstract).
      [61] Zhong, H., Hu, R.Z., Ye, Z.J., 2000.Sulfur, Lead, Hydrogen and Oxygen Isotopic Geochemistry of the Dapingzhang Copper-Polymetallic Deposit, Yunnan Province.Geochimica, 29(2):136-142 (in Chinese with English abstract).
      [62] Zhu, W.G., Li, C.Y., Deng, H.L., 2001.Sulfur and Lead Isotope Geochemistry of the Xiacun Silver-Polymetallic Ore Deposit in Sichuan Province.Acta Mineralogica Sinica, 21(2):219-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200102019.htm
      [63] 白云山, 牛志军, 段其发, 等, 2014.青海南部治多县扎河一带上三叠统巴塘群火山岩特征及其构造环境.华南地质与矿床, 30(4):319-327. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201404003.htm
      [64] 党院, 陈懋弘, 毛景文, 等, 2014.四川省白玉县呷村-有热矿区成矿流体地球化学.岩石学报, 30(1):221-236. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401017.htm
      [65] 侯增谦, 1991.川西哩村黑矿型多金属矿床成矿流体化学和热演化历史与成矿过程.矿床地质, 10(4):313-324. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199104003.htm
      [66] 侯增谦, 宋玉财, 李政, 等, 2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质, 27(2):421-441. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802002.htm
      [67] 侯增谦, 杨竹森, 徐文艺, 等, 2006.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
      [68] 贾群子, 1996.新疆阿舍勒块状硫化物矿床成矿特征及形成环境.矿床地质, 15(3):267-277. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ603.008.htm
      [69] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社, 168-169.
      [70] 孙华山, 吴冠斌, 刘浏, 等, 2011.块状硫化物矿床成矿构造环境研究进展.地球科学, 36(2):299-306. http://www.earth-science.net/WebPage/Article.aspx?id=2093
      [71] 唐菊兴, 王成辉, 屈文俊, 等, 2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义.岩矿测试, 28(3):215-218. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903008.htm
      [72] 田世洪, 杨竹森, 侯增谦, 等, 2009.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义.矿床地质, 28(6):747-758. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906003.htm
      [73] 田世洪, 杨竹森, 侯增谦, 等, 2011a.青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示.岩石学报, 27(7):2173-2183 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107026.htm
      [74] 田世洪, 侯增谦, 杨竹森, 等, 2011b.青海玉树莫海拉亨铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示——兼与东莫扎抓铅锌矿床的对比.岩石学报, 27(9):2709-2720. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109020.htm
      [75] 吴碧娟, 2013. 青海尕龙格玛铜多金属矿成矿条件与矿床成因研究(学位论文). 长沙: 中南大学.
      [76] 吴碧娟, 赖健清, 郑宗学, 等, 2013.尕龙格玛铜锌多金属矿区火山岩特征.矿产与地质, 27(4):283-291. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201304004.htm
      [77] 辛天贵, 赵少卿, 杨文龙, 等, 2014.青海南部尕龙格玛铜多金属矿床地质特征及找矿潜力评价.地质科技情报, 33(3):145-153. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403021.htm
      [78] 杨喜安, 刘家军, 韩思宇, 等, 2012.云南德钦鲁春铜铅锌矿床硫铅氢氧同位素特征及地质意义.地球化学, 41(3):240-249. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201203006.htm
      [79] 姚凤良, 孙丰月, 2006.矿床学教程.北京:地质出版社.
      [80] 郑淑蕙, 张知非, 倪葆龄, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报(自然科学版), 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm
      [81] 郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社.
      [82] 郑宗学, 王旭春, 覃泽礼, 2012.青海尕龙格玛铜多金属矿床地质特征及成矿模式研究.黄金科学技术, 20(1):66-70. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201201022.htm
      [83] 钟宏, 胡瑞忠, 叶造军, 2000.云南大平掌铜多金属矿床硫、铅、氢、氧同位素地球化学.地球化学, 29(2):136-142. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200002004.htm
      [84] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1):61-76. http://www.earth-science.net/WebPage/Article.aspx?id=3025
      [85] 朱维光, 李朝阳, 邓海琳, 2001.四川西部呷村银多金属矿床硫铅同位素地球化学.矿物学报, 21(2):219-224. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200102019.htm
    • 加载中
    图(11) / 表(4)
    计量
    • 文章访问数:  3996
    • HTML全文浏览量:  1833
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-10
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回