Application of Hydrogen and Oxygen Stable Isotopes for Determining Water Sources Used by Cotton in Xinjiang Arid Region
-
摘要: 棉花是我国西北内陆干旱地区主要的农作物,研究干旱区棉花的水分利用来源对合理制定灌溉制度、实现农业节水灌溉和保证作物稳产高产具有重要意义.在新疆生产建设兵团炮台土壤改良试验站,基于水文监测和氢氧稳定同位素方法分析膜下滴灌棉田土壤水中氢氧同位素的动态变化特征,确定棉花不同生育期及灌溉后的水分利用来源,并应用多水源混合模型(IsoSource模型)定量计算了棉花对不同深度土壤水的利用率.研究结果表明:棉花在蕾期、花期、铃期和吐絮期主要的水分利用来源及利用率分别为0~30 cm(78.2%)、30~60 cm(31.9%)、60~110 cm(32%)、110~220 cm(47.3%),整个生育期内水分利用来源存在由浅变深的规律.膜下滴灌后,棉花调整其水分利用来源,显著增加了0~30 cm浅层土壤水的利用率.综合试验结果表明低额高频的灌溉制度可以提高棉花对灌溉水的利用率.Abstract: Cotton is the main crop in arid areas of Northwest China. Study on the water sources of crops is of great significance to make proper irrigation schedules and realize agricultural water-saving irrigation in arid regions. In this study, precipitation, irrigation water, soil water and cotton stem water were sampled for stable isotope analysis in the Paotai Soil Improvement Test Station in Xinjiang Production and Construction Corps. Based on the stable hydrogen and oxygen isotopic tracing method and hydrological observations, the dynamic variation of stable isotope values in soil water under mulched drip irrigation was analyzed to determine the water sources of the cotton in different growth stages and the sources after irrigation pulse. The contributions of soil water at different depths to cotton water uptake were quantified by the IsoSource model. Results show that the main uptake depth of soil water in bud stage, blooming stage, boll stage and open boll stage are distributed in 0 to 30 cm layer (78.2%), 30 to 60 cm layer(31.9%), 60 to 110 cm layer(32%)and 110 to 220 cm(47.3%), respectively. The main sources of water used by cotton gradually increase with the advance of growth stage. Cotton adjusts rapidly water sources after mulched drip irrigation, by significantly increasing the proportions of water use in 0 to 30 cm soil. The results also indicate that the proper irrigation schedule with low irrigation volume and high irrigation frequency can improve the utilization efficiency of irrigation water in arid regions.
-
Key words:
- hydrogen and oxygen stable isotopes /
- water use /
- IsoSource model /
- cotton /
- arid region /
- hydrogeology
-
表 1 试验田土壤的理化性质
Table 1. Soil properties in the experimental area
深度(cm) 土壤质地 粒径分布(%) pH 土壤易溶盐
(mg·kg-1)<0.002 mm 0.002~0.020 mm 0.020~2.000 mm 0~30 砂质壤土 1.31 34.22 64.47 8.93 1 045 30~60 壤质砂土 0.74 13.77 85.49 9.21 3 510 60~80 粉砂质黏土 27.12 49.89 22.99 8.74 1 730 80~110 粉砂质黏壤土 23.85 54.88 21.27 8.68 1 680 110~150 砂质壤土 2.17 16.04 81.79 8.92 850 150~220 粉砂质黏土 29.02 59.09 11.89 9.12 1 360 -
[1] Asbjornsen, H., Mora, G., Helmers, M.J., 2007.Variation in Water Uptake Dynamics among Contrasting Agricultural and Native Plant Communities in the Midwestern U.S..Agriculture, Ecosystems & Environment, 121(4):343-356.doi: 10.1016/j.agee.2006.11.009 [2] Craig, H., 1961.Isotopic Variations in Meteoric Waters.Science, 133(3465):1702-1703.doi: 10.1126/science.133.3465.1702 [3] Dawson, T.E., Mambelli, S., Plamboeck, A.H., et al., 2002.Stable Isotopes in Plant Ecology.Annual Review of Ecology and Systematics, 33(1):507-559.doi: 10.1146/annurev.ecolsys.33.020602.095451 [4] Duan, D.Y., Ouyang, H., Song, M.H., et al., 2008.Water Sources of Dominant Species in Three Alpine Ecosystems on the Tibetan Plateau, China.Journal of Integrative Plant Biology, 50(3):257-264.doi: 10.1111/j.1744-7909.2007.00633.x [5] Ehleringer, J.R., Dawson, T.E., 1992.Water Uptake by Plants:Perspectives from Stable Isotope Composition.Plant, Cell and Environment, 15(9):1073-1082.doi: 10.1111/j.1365-3040.1992.tb01657.x [6] Ellsworth, P.Z., Williams, D.G., 2007.Hydrogen Isotope Fractionation during Water Uptake by Woody Xerophytes.Plant and Soil, 291(1-2):93-107.doi: 10.1007/s11104-006-9177-1 [7] Guo, F., Ma, J.J., Zheng, L.J., et al., 2016.Estimating Distribution of Water Uptake with Depth of Winter Wheat by Hydrogen and Oxygen Stable Isotopes under Different Irrigation Depths.Journal of Integrative Agriculture, 15(4):891-906.doi: 10.1016/s2095-3119(15)61258-8 [8] He, X.L., Yang, G., Zhang, Z.Y., et al., 2016.Study Atlas of Response Mechanism of Oasis Desertification in Manas River Basin.China Water & Power Press, Beijing, 31(in Chinese). [9] He, Y.J., Jin, M.G., Wang, Z.M., et al., 2010.Characteristics of Cotton Root Development under Mulch Drip Irrigation and Their Relationship with Soil Water and Salt Distribution.Geological Journal of China Universities, 16(1):39-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201001008.htm [10] Ji, X.M., Ning, H.S., Liang, J.Y., et al., 2012.Comparison of Drought Resistance and Photosynthetic Characteristics of Haloxylon ammodendron and Tamarix hohenackeri at Seeding Stage under Different Moisture Conditions.Journal of Desert Research, 32(2):399-406(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS201202017.htm [11] Liu, J.R., Song, X.F., Yuan, G.F., et al., 2014.Stable Isotopic Compositions of Precipitation in China.Tellus B:Chemical and Physical Meteorology, 66(1):22567.doi: 10.3402/tellusb.v66.22567 [12] Ma, Y., Song, X.F., 2016.Using Stable Isotopes to Determine Seasonal Variations in Water Uptake of Summer Maize under Different Fertilization Treatments.Science of the Total Environment, 550:471-483.doi: 10.1016/j.scitotenv.2016.01.148 [13] Phillips, D.L., Gregg, J.W., 2003.Source Partitioning Using Stable Isotopes:Coping with too Many Sources.Oecologia, 136(2):261-269.doi: 10.1007/s00442-003-1218-3 [14] Schwendenmann, L., Pendall, E., Sanchez-Bragado, R., et al., 2014.Tree Water Uptake in a Tropical Plantation Varying in Tree Diversity:Interspecific Differences, Seasonal Shifts and Complementarity.Ecohydrology, 8(1):1-12.doi: 10.1002/eco.1479 [15] Sun, N.X., 2015.Study on Field Water Transformation Using Isotopes:A Case Study of Beijing(Dissertation).China University of Geosciences, Beijing, 21-22(in Chinese). [16] Tian, L.D., Yao, T.D., Shen, Y.P., et al., 2002.Study on Stable Isotope in River Water and Precipitation in Naqu River Basin, Tibetan Plateau.Advances in Water Science, 13(2):206-210(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200202012.htm [17] Wang, P., Song, X.F., Han, D.M., et al., 2010.A Study of Root Water Uptake of Crops Indicated by Hydrogen and Oxygen Stable Isotopes:A Case in Shanxi Province, China.Agricultural Water Management, 97(3):475-482.doi: 10.1016/j.agwat.2009.11.008 [18] Wang, Y.L., Liu, L.C., Gao, Y.H., et al., 2016.Analysis of Water Sources of Plants in Artificial Sand-Fixation Vegetation Area Based on Large Rainfall Events.Chinese Journal of Applied Ecology, 27(4):1053-1060 (in Chinese with English abstract). http://www.cjae.net/EN/Y2016/V27/I4/1053 [19] Williams, D.G., Ehleringer, J.R., 2000.Intra-and Interspecific Variation for Summer Precipitation Use in Pinyon-Juniper Woodlands.Ecological Monographs, 70(4):517-537.doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 [20] Wu, Y.J., Du, T.S., Li, F.S., et al., 2016.Quantification of Maize Water Uptake from Different Layers and Root Zones under Alternate Furrow Irrigation Using Stable Oxygen Isotope.Agricultural Water Management, 168:35-44.doi: 10.1016/j.agwat.2016.01.013 [21] Wu, Y., Zhou, H., Zheng, X.J., et al., 2013.Seasonal Changes in the Water Use Strategies of Three Co-Occurring Desert Shrubs.Hydrological Processes, 28(26):6265-6275.doi: 10.1002/hyp.10114 [22] Xu, Q., Liu Shirong, Wan Xianchong, et al., 2012.Effects of Rainfall on Soil Moisture and Water Movement in a Subalpine Dark Coniferous Forest in Southwestern China.Hydrological Processes, 26(25):3800-3809.doi: 10.1002/hyp.8400 [23] Yang, K.H., Yu, X.G., Chu, F.Y., et al., 2016.Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea.Earth Science, 41(7):1206-1215(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607010.htm [24] Zeng, Q., Ma, J.Y., 2013.Plant Water Sources of Different Habitats and Its Environmental Indication in Heihe River Basin.Journal of Glaciology and Geocryology, 35(1):148-155(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT201301018.htm [25] Zhang, C.Z., Zhang, J.B., Zhang, H., 2012.Contribution of Soil Water at Different Depths in Profile to Winter Wheat in Fengqiu in Huang-Huai-Hai Plain of China.Acta Pedologica Sinica, 49(4):655-664(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRXB201204005.htm [26] Zhang, L.Z., Cao, W.X., Zhang, S.P., et al., 2005.Characterizing Root Growth and Spatial Distribution in Cotton.Acta Phytoecologica Sinica, 29(2):266-273(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWSB200502012.htm [27] Zhang, Y.C., Shen, Y.J., Sun, H.Y., et al., 2011a.Evapotranspiration and Its Partitioning in an Irrigated Winter Wheat Field:A Combined Isotopic and Micrometeorologic Approach.Journal of Hydrology, 408(3-4):203-211.doi: 10.1016/j.jhydrol.2011.07.036 [28] Zhang, C.Z., Zhang, J.B., Zhao, B.Z., et al., 2011b.Coupling a Two-Tip Linear Mixing Model with a δD-δ18O Plot to Determine Water Sources Consumed by Maize During Different Growth Stages.Field Crops Research, 123(3):196-205. doi: 10.1016/j.fcr.2011.04.018 [29] Zheng, S.H., Hou, F.G., Ni, B.L., 1983.The Studies of Hydrogen and Oxygen Stable Isotopes in Atmospheric Precipitation in China.Chinese Science Bulletin, 28(13):801-806(in Chinese). [30] Zhu, H.Y., 2014.Research on Soil Moisture Variation in Shallow Groundwater Area of Arid Regions.North West Agriculture and Forestry University Press, Yangling, 44-45(in Chinese). [31] Zimmermann, U., Ehhalt, D., Muennich, K., 1968.Soil-Water Movement and Evapotranspiration:Changes in the Isotopic Composition of the Water.In:Proceeding of the IAEA Symposium on the Use of Isotopes in Hydrology, IAEA, Vienna, 567-85. [32] 曾巧, 马剑英, 2013.黑河流域不同生境植物水分来源及环境指示意义.冰川冻土, 35(1):148-155. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301018.htm [33] 何新林, 杨广, 张正勇, 等, 2016.玛纳斯河流域绿洲盐漠化响应机理研究图集.北京:中国水利水电出版社, 31. [34] 何雨江, 靳孟贵, 王在敏, 等, 2010.膜下滴灌棉花根系发育特征及其与土壤水盐分布的关系.高校地质学报, 16(1):39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201001008.htm [35] 吉小敏, 宁虎森, 梁继业, 等, 2012.不同水分条件下梭梭和多花柽柳苗期光合特性及抗旱性比较.中国沙漠, 32(2):399-406. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201202017.htm [36] 孙宁霞, 2015. 基于同位素示踪的农田水分转化规律研究: 以北京市为例(硕士学位论文). 北京: 中国地质大学, 21-22. [37] 田立德, 姚檀栋, 沈永平, 等, 2002.青藏高原那曲河流域降水及河流水体中氧稳定同位素研究.水科学进展, 13(2):206-210. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200202012.htm [38] 王艳莉, 刘立超, 高艳红, 等, 2016.基于较大降水事件的人工固沙植被区植物水分来源分析.应用生态学报, 27(4):1053-1060. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201604007.htm [39] 杨克红, 于晓果, 初凤友, 等, 2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学, 41(7):1206-1215. http://www.earth-science.net/WebPage/Article.aspx?id=3329 [40] 张丛志, 张佳宝, 张辉, 2012.不同深度土壤水分对黄淮海封丘地区小麦的贡献.土壤学报, 49(4):655-664. doi: 10.11766/trxb201107010246 [41] 张立桢, 曹卫星, 张思平, 等, 2005.棉花根系生长和空间分布特征.植物生态学报, 29(2):266-273. doi: 10.17521/cjpe.2005.0034 [42] 郑淑蕙, 侯发高, 倪葆龄, 1983.我国大气降水的氢氧稳定同位素研究.科学通报, 28(13):801-806. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm [43] 朱红艳, 2014. 干旱地域地下水浅埋区土壤水分变化规律研究(博士学位论文). 杨凌: 西北农林科技大学, 44-45.