• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    贵阳市三桥地区岩溶地下水水化学特征及其演化规律

    李华 文章 谢先军 罗朝辉 顾栩

    李华, 文章, 谢先军, 罗朝辉, 顾栩, 2017. 贵阳市三桥地区岩溶地下水水化学特征及其演化规律. 地球科学, 42(5): 804-812. doi: 10.3799/dqkx.2017.068
    引用本文: 李华, 文章, 谢先军, 罗朝辉, 顾栩, 2017. 贵阳市三桥地区岩溶地下水水化学特征及其演化规律. 地球科学, 42(5): 804-812. doi: 10.3799/dqkx.2017.068
    Li Hua, Wen Zhang, Xie Xianjun, Luo Zhaohui, Gu Xu, 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5): 804-812. doi: 10.3799/dqkx.2017.068
    Citation: Li Hua, Wen Zhang, Xie Xianjun, Luo Zhaohui, Gu Xu, 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5): 804-812. doi: 10.3799/dqkx.2017.068

    贵阳市三桥地区岩溶地下水水化学特征及其演化规律

    doi: 10.3799/dqkx.2017.068
    基金项目: 

    贵州省地勘基金项目 [2014]23

    详细信息
      作者简介:

      李华(1992-),女,硕士研究生,主要从事水文地球化学相关工作.ORCID:0000-0003-0642-3584.E-mail:18071458022@163.com

      通讯作者:

      文章,ORCID:0000-0001-9672-3219.E-mail:wenz@cug.edu.cn

    • 中图分类号: P592

    Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City

    • 摘要: 贵阳市三桥地区岩溶地下水是贵阳市重要的生活及工农业用水水源,而贵州省岩溶系统发育异常复杂,对于岩溶水水化学及其演化特征尤其是水-岩相互作用方面的研究尚未见报道,为了保障该地区供水水质安全,以贵阳市三桥地区岩溶地下水为研究对象,通过系统的样品采集与氢氧同位素分析和水文地球化学模拟,针对岩溶地下水水化学组分的空间分布、演化特征及水-岩作用过程进行了系统的研究.研究表明:岩溶地下水水化学类型主要为HCO3·SO4-Ca·Mg型、HCO3·SO4-Ca型、HCO3-Ca型和HCO3-Ca·Mg型;研究区岩溶水主要来源于大气降水补给;研究区水化学特征主要受方解石、白云石、岩盐和石膏的溶解作用以及阳离子交替吸附作用控制.

       

    • 图  1  研究区水文地质及采样点分布

      Fig.  1.  Study area and location of the sampling points

      图  2  地下水样品Piper三线图

      Fig.  2.  Piper diagram of groundwater samples

      图  3  路径1(左)和路径2(右)温度变化(a, b)、pH变化(c, d)、阳离子变化(e, f)、阴离子变化(g, h)和矿物饱和指数变化(i, j)

      Fig.  3.  The changes of temperature (a, b)、pH (c, d)、positive ion (e, f)、negative ion (g, h) and saturation indexes (i, j) on route 1(left) and route 2 (right)

      图  4  研究区地下水氢氧同位素组成

      Fig.  4.  Plot of oxygen and hydrogen isotopic compositions of groundwater in the study area

      图  5  研究区地下水样品Gibbs图

      Fig.  5.  The Gibbs graph of groundwater samples in study area

      表  1  枯水期和丰水期水样测试数据

      Table  1.   The data of groundwater samples in dry season and wet season

      样品编号T(℃)pH(mg·L-1)
      K+Ca2+Na+Mg2+Cl-SO42-NO3-HCO3-TDS
      枯水期
      GY0116.17.163.25118.4013.6532.4927.16170.8436.94355.7586
      GY0316.26.693.95123.1020.5433.3139.17203.9433.23342.9636
      GY0416.66.832.07113.9017.4233.1132.12199.8740.70314.6599
      GY0616.46.788.55139.0018.4027.9531.96229.5620.55342.9652
      GY0716.56.676.16151.3014.9212.0033.28160.2132.59282.0557
      GY086.56.971.35136.006.093.8111.6261.4214.15299.6389
      GY1012.46.951.3884.5821.3717.0926.09110.450.00219.5385
      GY1113.37.071.6991.776.8925.3413.6350.5632.93298.0376
      GY1215.76.754.85118.9013.1411.1020.62103.2325.13251.5427
      GY1319.27.110.9179.932.8524.648.3637.1410.97291.6314
      GY1516.47.461.14101.409.7032.7915.75120.7242.44325.2489
      GY1617.66.741.48125.908.8733.5321.41176.5425.46362.1579
      GY1716.77.204.1563.623.5519.616.2761.430.00214.7274
      GY1817.26.783.36133.6017.3831.2335.07262.7030.60272.4653
      GY1916.56.742.91115.9013.6927.6622.94154.2115.82307.6510
      GY0216.26.81.72105.5011.9232.2230.32125.5735.43341.3516
      GY0516.76.846.69116.9022.5025.9331.77145.4122.15334.9547
      GY0912.37.219.48101.006.4819.3817.7189.370.00349.3474
      GY1415.16.901.9685.0316.4826.0111.8571.648.52288.4359
      GY2015.76.945.77112.0013.5910.7222.66122.900.00229.1407
      GY2117.66.759.88139.3024.8422.9043.80179.8733.98318.8621
      丰水期
      GY0119.77.096.48104.7424.1236.4729.38164.2436.86373.0727
      GY0317.96.998.50108.2333.9936.1638.50196.2841.48344.1776
      GY0418.17.154.94105.4935.0539.3436.77203.8052.63327.1777
      GY0619.97.1811.26126.9421.3133.5823.72283.5425.62281.1833
      GY0719.36.9711.60131.4126.1512.3037.42176.8751.47281.1758
      GY0822.27.341.95105.397.802.877.5048.2611.09303.2476
      GY1020.97.2116.8369.7518.4720.6313.4691.0633.03248.7481
      GY1119.37.561.7471.019.1425.5511.7447.2936.42304.9451
      GY1219.47.258.87105.5215.329.7115.13114.0525.36269.1568
      GY1321.77.370.8963.743.9525.477.3840.3825.42304.9407
      GY1719.47.687.2052.755.7019.905.0997.0516.22218.0389
      GY1919.97.104.1197.6015.2930.1116.77176.1720.16291.3636
      GY2218.77.511.4668.673.4719.643.7056.7112.60252.1385
      GY2320.37.225.13126.7927.767.3437.31137.7776.14218.0692
      GY1419.77.304.4769.567.4026.6210.9460.8510.97299.8435
      GY2020.37.0910.27101.8520.7010.5020.33116.3629.27235.1561
      GY2120.67.0719.48115.9340.2722.7843.51164.9149.69328.8771
      下载: 导出CSV

      表  2  路径1反向模拟结果

      Table  2.   The reverse simulation results of route 1

      摩尔转移量GY10→GY11GY11→GY01GY01→GY16GY16→GY03
      矿物相化学式
      方解石CaCO31.911×10-4-5.017×10-4-2.025×10-5-
      白云石CaMg(CO3)22.873×10-43.391×10-43.658×10-4-2.504×10-4
      石膏CaSO4·2H2O3.974×10-41.120×10-35.822×10-44.721×10-4
      盐岩NaCl1.394×10-43.697×10-4-4.096×10-4
      CO2CO21.060×10-41.169×10-32.883×10-4-3.369×10-4
      注:负值表示沉淀,正值表示溶解;“-”表示该矿物未参与反应.
      下载: 导出CSV

      表  3  路径2反向模拟结果

      Table  3.   The reverse simulation results of route 2

      摩尔转移量GY09→GY14GY14→GY05
      矿物相化学式
      方解石CaCO3-7.330×10-4-
      白云石CaMg(CO3)23.263×10-41.257×10-4
      石膏CaSO4·2H2O1.629×10-46.929×10-4
      盐岩NaCl2.325×10-45.623×10-4
      CO2CO2-3.313×10-4
      CaX2-1.014×10-42.296×10-4
      阳离子交换MgX2--
      Na2X2.027×10-4-3.001×10-4
      注:负值表示沉淀,正值表示溶解;“-”表示该矿物未参与反应.
      下载: 导出CSV
    • [1] Chen, Z.Y, 1995.Advancements of Hydrogeochemical Modeling.Advance in Earth Sciences, 10(3):278-282(in Chinese with English abstract).
      [2] Daniele, L., Vallejos, A., Sola, F., et al., 2011.Hydrogeochemical Processes in the Vicinity of a Desalination Plant (Cabo de Gata, SE Spain).Desalination, 277(1-3):338-347.doi: 10.1016/j.desal.2011.04.052
      [3] Guo, Y.H., Shen, Z.L., Zhong, Z.S., 1997.Geochemical Simulation Chemical Environment Evolution of Groundwater in Hebei Plain.Science in China (Ser.D), 27(4):360-365(in Chinese).
      [4] Huang, Q.B., Qin, X.Q., Liu, P.Y., et al., 2015.Impact of Acid to δ13CDIC of Karst Groundwater and Carbon Sink in Dry Season in Guilin.Earth Science, 40(7):1237-1247(in Chinese with English abstract). https://www.researchgate.net/publication/282984241_Impact_of_acid_rain_to_d13CDIC_of_Karst_groundwater_and_carbon_sink_in_dry_season_in_Guilin
      [5] Ji, S.H., 2007.The Role of Oxygen-Hydrogen Isotopic Research in Ordovician Limestone Karstic Water Recharge, Runoff and Drainage Conditions in Kouquangou South, Datong Mining Area.Coal Geology of China, 19(1):36-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT200701013.htm
      [6] Kohfahl, C., Rodriguez, M., Fenk, C., et al., 2008.Characterising Flow Regime and Interrelation between Surface-Water and Ground-Water in the Fuente de Piedra Salt Lake Basin by Means of Stable Isotopes, Hydrogeochemical and Hydraulic Data.Journal of Hydrology, 351(1-2):170-187.doi: 10.1016/j.jhydrol.2007.12.008
      [7] Lang, Y.C., 2005.Geochemical Characteristics of Cycling of Substances in Karst Groundwater System:A Case Study from Guiyang and Zunyi Cities, China(Dissertation).Graduate School of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      [8] Lang, Y.C., Liu, C.Q., Satake, H., et al., 2008.δ37Cl and δ34S Variations of Cl- And SO42- in Groundwater and Surface Water of Guiyang Area, China.Advances in Earth Science, 23(2):151-159(in Chinese with English abstract).
      [9] Li, S.L., Liu, C.Q., 2006.The Character and Application of δ18O-NO3- in the Groundwater of Guiyang.Carsologica Sinica, 25(2):108-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR200602005.htm
      [10] Li, X.Z., Li, S.D., 1986.On the Karst Hydrogeological Conditions and Some Related Issues in Guiyang Area Based on the Interpretation of Aerial and Satellite Images.Carsologica Sinica, (S1):88-98(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR1986S1016.htm
      [11] Liu, W.B., 2015.Groundwater Hydro-Chemical Characteristics Study in Hetao Plain(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract).
      [12] Love, D., Hallbauer, D., Amos, A., et al., 2004.Factor Analysis as a Tool in Groundwater Quality Management:Two Southern African Case Studies.Physics and Chemistry of the Earth, Parts A/B/C, 29(15-18):1135-1143.doi: 10.1016/j.pce.2004.09.027
      [13] Qi, Y., Chu, X.W., 2011.Evaluation of Underground Water in Guiyang City.Environmental Science and Management, 36(10):173-175(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BFHJ201110041.htm
      [14] Wang, Z.M., Tan, Z.L., 2013.Analysis of Dynamic Characteristics on Karst Groundwater in Guiyang City.Journal of Guizhou University(Natural Sciences), 30(1):27-32, 42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDI201301009.htm
      [15] Xing, L.N., 2012.Groundwater Hydrochemical Characteristics and Hydrogeochemical Processes Approximately along Flow Paths in the North China Plain.China University of Geosciences, Beijing.
      [16] Yang, M.D., 1990.A Brief Account of Karst Landscape Characteristics of Guizhou Plateau.Journal of Guizhou Normal University(Natural Sciences), 8(2):1-3(in Chinese).
      [17] Yuan, J.F., Deng, G.S., Xu, F., et al., 2006.Hydrogeochemical Characteristics of Karst Groundwater in the Northern Part of the City of Bijie.Hydrogeology & Engineering Geology, 43(1):12-21(in Chinese with English abstract).
      [18] Zhang, L.Z., 2011.Main Hydrogeological Question of Guiyang Urban Rail 1 Line Project(Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [19] Zhuang, Y.Q., Guo, Q.H., Liu, M.L., et al., 2016.Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Spring:A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan.Earth Science, 41(9):1499-1510 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201609006.htm
      [20] 陈宗宇, 1995.水文地球化学模拟研究的现状.地球科学进展, 10(3):278-282. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.013.htm
      [21] 郭永海, 沈照理, 钟佐燊, 1997.河北平原地下水化学环境演化的地球化学模拟.中国科学(D辑), 27(4):360-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk199704012&dbname=CJFD&dbcode=CJFQ
      [22] 黄奇波, 覃小群, 刘朋雨, 等, 2015.酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响.地球科学, 40(7):1237-1247. http://www.earth-science.net/WebPage/Article.aspx?id=3114
      [23] 吉淑华, 2007.大同矿区口泉沟南氢氧同位素研究在分析奥灰岩溶水补径排条件中的应用.中国煤田地质, 19(1):36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200701013.htm
      [24] 郎赟超, 2005. 喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例(博士学位论文). 北京: 中国科学院地球化学研究所.
      [25] 郎赟超, 刘丛强, Satake, H., 等, 2008.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义.地球科学进展, 23(2):151-159. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200802008.htm
      [26] 李思亮, 刘丛强, 2006.贵阳地下水硝酸盐氧同位素特征及应用.中国岩溶, 25(2):108-111. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200602005.htm
      [27] 李兴中, 李双岱, 1986.从航卫片解译对贵阳地区岩溶水文地质条件的探讨.中国岩溶, (增刊1):88-98. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1986S1016.htm
      [28] 刘文波, 2015. 河套平原地下水化学特征研究(博士学位论文). 北京: 中国地质大学.
      [29] 綦娅, 褚学伟, 2011.贵阳市地下水资源评价.环境科学与管理, 36(10):173-175. doi: 10.3969/j.issn.1673-1212.2011.10.045
      [30] 王中美, 谭正莲, 2013.贵阳市岩溶地下水动态特征分析.贵州大学学报:自然科学版, 30(1):27-32, 42. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201301009.htm
      [31] 邢丽娜, 2012. 华北平原典型剖面上地下水化学特征和水文地球化学过程. 北京: 中国地质大学.
      [32] 杨明德, 1990.贵州高原喀斯特景观特征简述.贵州师范大学学报:自然科学版, 8(2):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-NATR199002000.htm
      [33] 袁建飞, 邓国仕, 徐芬, 等, 2016.毕节市北部岩溶地下水水文地球化学特征.水文地质工程地质, 43(1):12-21. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htm
      [34] 张罗致, 2011. 贵阳市轨道交通1号线主要水文地质问题分析(硕士学位论文). 成都: 成都理工大学.
      [35] 庄亚芹, 郭清海, 刘明亮, 等, 2016.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例.地球科学, 41(9):1499-1510. http://www.earth-science.net/WebPage/Article.aspx?id=3356
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  4333
    • HTML全文浏览量:  1717
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-20
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回