• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例

    葛勤 梁杏 龚绪龙 刘彦

    葛勤, 梁杏, 龚绪龙, 刘彦, 2017. 不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例. 地球科学, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
    引用本文: 葛勤, 梁杏, 龚绪龙, 刘彦, 2017. 不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例. 地球科学, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
    Ge Qin, Liang Xing, Gong Xulong, Liu Yan, 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
    Citation: Ge Qin, Liang Xing, Gong Xulong, Liu Yan, 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803. doi: 10.3799/dqkx.2017.067

    不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例

    doi: 10.3799/dqkx.2017.067
    基金项目: 

    国家自然科学基金项目 41272258

    国土资源部地裂缝地质灾害重点实验室开放基金项目 EFGD2013007

    详细信息
      作者简介:

      葛勤(1990-),女,博士研究生,主要从事低渗透水文地球化学的研究.ORCID:0000-0001-5509-3900.E-mail: geqin90827@126.com

      通讯作者:

      龚绪龙,ORCID:0000-0003-4231-9995.E-mail: xulonggong@126.com

    • 中图分类号: P641

    Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain

    • 摘要: 渗透系数(K)是水文地质、岩土工程领域的重要参数,而低渗透介质的结构较为复杂,在实际应用中,场地的尺度、介质的扰动程度等均会对K的确定产生影响.利用δ18O化学示踪法、室内试验及经验公式法估算饱和黏性土的垂向渗透系数,并对比分析不同预测方法的适用性.以苏北沿海平原第四纪厚层黏土为例,δ18O化学示踪法预测厚层黏性土的渗透系数低于10-11 m/s,室内法测得渗透系数为2.61×10-8~9×10-12 m/s,经验法预测值较大,是室内法的几倍到几十倍.δ18O化学示踪法是表征天然条件下长时间的实验结果,除了反映数十米厚层黏性土的等效渗透性能,还可预测黏土孔隙水的渗流时间;结合测定黏土样品液塑限等室内实验参数,室内实验和经验公式法可以提供系列剖面黏土的渗透系数,更清晰地说明厚层黏土剖面不同渗透系数预测方法的差异性.

       

    • 图  1  饱和低渗透介质K测定示意

      Fig.  1.  Device of measuring saturated clay hydraulic conductivity

      图  2  SY1孔钻孔位置

      1.河流;2.地下水流向;3.省界;4.地下水TDS等值线;5.断裂;6.现代海岸线;7.东岗海岸线

      Fig.  2.  Location of SY1 core at North Jiangsu coastal plain

      图  3  黏性土孔隙水Cl-、Br-δ18O垂向分布

      Fig.  3.  The vertical distribution of Cl-, Br-, δ18O values of porewater in SY1 clay-rich sediments

      图  4  0~26.4 m孔隙水δ18O实测值与化学示踪模拟值的对比

      a.曲线代表纯扩散条件下,不同模拟时间对应的理论曲线;b.1 000 a运移条件下,曲线代表不同渗透系数对应的理论模拟曲线

      Fig.  4.  Comparison between the measured δ18O values and the simulations of tracer profiles in the depth of 0 to 26.4 m

      图  5  26.4~65.0 m孔隙水δ18O实测值与化学示踪模拟值的对比

      a.曲线代表纯扩散条件下,不同模拟时间对应的理论曲线;b, c.3 000 a和6 000 a运移条件下,曲线代表不同渗透系数对应的理论模拟曲线

      Fig.  5.  Comparison between the measured δ18O values and the simulations of tracer profiles in the depth of 26.4 to 65.0 m

      图  6  不同方法预测的K随深度的分布

      Fig.  6.  The determined hydraulic conductivities of SY1 core in different depths using three predicted methods

      表  1  苏北原状黏性土物理指标

      Table  1.   Parameters of undisturbed clay-rich deposits in North Jiangsu

      深度(m)液限(%)塑限(%)<3.9 μm
      粘粒(%)
      3.9~62.3μm
      粉粒(%)
      实测K
      (m/s)
      经验公式K
      (m/s)
      经验公式K/
      实测K
      孔隙度孔隙比相对密度
      5.76~5.8630.4418.6614.1377.902.61×10-88.36×10-100.030.380.602.07
      14.82~15.0235.5621.6322.6474.524.52×10-102.82×10-97.990.531.131.79
      89.00~89.20--20.0662.871.40×10-11--0.400.672.14
      95.60~95.80--31.7068.307.30×10-10--0.430.742.03
      121.40~121.6055.5826.5129.7855.561.09×10-112.57×10-1023.680.430.772.07
      142.20~142.4053.6328.1528.9960.559.04×10-122.38×10-1026.300.380.752.19
      172.20~172.4034.7919.9214.3938.861.42×10-104.75×10-103.350.380.622.08
      202.20~202.4046.1922.6539.7360.242.86×10-102.93×10-101.020.400.682.09
      218.00~218.2047.8622.8829.4648.451.50×10-112.05×10-1011.320.380.622.09
      245.20~245.4046.0722.5929.0056.603.70×10-113.37×10-109.040.410.702.02
      注:“-”代表未测定.
      下载: 导出CSV

      表  2  室内实验测定苏北原状黏土试样K(10-10 m/s)

      Table  2.   The laboratory-measured K of undisturbed samples in North Jiangsu

      5.76~5.78 m14.82~15.02 m89.0~89.2 m95.6~95.8 m121.4~121.6 m142.2~142.4 m172.2~172.4 m202.2~202.4 m218.0~218.2 m245.2~245.4 m
      水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K水力梯度实测值K均值K
      0.2310260.743.74.574.5291.90.130.1441.97.687.3092.00.120.1148.80.040.0976.32.581.4276.32.792.8675.30.170.1574.60.350.37
      0.2268260.743.74.504.5291.90.150.1441.97.567.3092.00.090.1146.20.120.0978.61.121.4278.62.462.8675.30.170.1574.60.360.37
      0.2244260.747.04.044.5291.90.150.1441.97.527.3092.00.150.1153.70.140.0976.31.271.4274.42.322.8675.30.140.1577.90.390.37
      0.2199260.747.04.134.5291.90.150.1455.36.957.3092.00.100.1162.10.060.0976.31.121.4267.73.742.8675.30.150.1569.60.490.37
      0.2250260.754.54.514.5286.90.140.1455.36.997.3087.00.100.1162.10.130.0976.30.981.4276.23.002.8675.30.150.1578.20.260.37
      0.2293260.754.55.364.5286.90.140.1461.97.107.3087.00.100.11--------75.30.11----
      注:表示“-”无测值.
      下载: 导出CSV
    • [1] Al, T.A., Clark, I.D., Kennell, L., et al., 2015.Geochemical Evolution and Residence Time of Porewater in Low-Permeability Rocks of the Michigan Basin, Southwest Ontario.Chemical Geology, 404:1-17.doi: 10.1016/j.chemgeo.2015.03.005
      [2] Batlle-Aguilar, J., Cook, P.G., Harrington, G.A., 2016.Comparison of Hydraulic and Chemical Methods for Determining Hydraulic Conductivity and Leakage Rates in Argillaceous Aquitards.Journal of Hydrology, 532:102-121.doi: 10.1016/j.jhydrol.2015.11.035
      [3] Boudreau, B.P., Meysman, F.J.R., 2006.Predicted Tortuosity of Muds.Geology, 34(8):693.doi: 10.1130/g22771.1
      [4] Carman, P.C., 1939.Permeability of Saturated Sands, Soils and Clays.The Journal of Agricultural Science, 29(2):262.doi: 10.1017/s0021859600051789
      [5] Carman, P.C., 1937.Fluid Flow through Granular Beds.Transactions.Institution of Chemical Engineers, London, 15:150-166.
      [6] Chapuis, R., Aubertin, M., 2003.On the Use of the Kozeny-Carman Equation to Predict the Hydraulic Cond.Canadian Geotechnical Journal, 40(3):616-628. doi: 10.1139/t03-013
      [7] Cui, L.H., Cheng, J.M., Lu, W.L., et al., 2014.Numerical Study on Saltwater Downward Migration in Aquitard as Low Velocity Non-Darcy Flow.Journal of Hydraulic Engineering, 45(7):875-882 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201407015.htm
      [8] Dang, F.N., Liu, H.W., Wang, X.W., et al., 2015.Empirical Formulas of Permeability of Clay Based on Effective Pore Ratio.Chinese Journal of Rock Mechanics and Engineering, 34(9):1910-1917(in Chinese with English abstract). https://www.researchgate.net/publication/283807110_Empirical_formulas_of_permeability_of_clay_based_on_effective_pore_ratio
      [9] Deng, Y.F., Liu, S.Y., Zhang, D.W., et al., 2011.Comparison among Some Relationships between Permeability and Void Ratio.Northwestern Seismological Journal, 33(Suppl.1):64-66, 76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ2011S1015.htm
      [10] Eaton, T.T., Anderson, M.P., Bradbury, K.R., 2007.Fracture Control of Ground Water Flow and Water Chemistry in a Rock Aquitard.Ground Water, 45(5):601-615.doi: 10.1111/j.1745-6584.2007.00335.x
      [11] Farrar, D.M., Coleman, J.D., 1967.The Correlation of Surface Area with Other Properties of Nineteen British Clay Soils.Journal of Soil Science, 18(1):118-124.doi: 10.1111/j.1365-2389.1967.tb01493.x
      [12] Fu, C.C., 2015.The Hydrochemical Characteristics and Processes for Salinity Sources of the Deep Confined Groundwater in the Coastal Plain of Huai River Basin(Dissertation).Jilin University, Changchun, 32-40 (in Chinese with English abstract).
      [13] Gardner, W.P., Harrington, G.A., Smerdon, B.D., 2012.Using Excess 4He to Quantify Variability in Aquitard Leakage.Journal of Hydrology, 468-469:63-75.doi: 10.1016/j.jhydrol.2012.08.014
      [14] Ge, Q., Gong, X.L., Liang, X., et al., 2015.A Permeability Tester for Saturated Clay:201520592840.1.2015.11.11, Chinese Patent(in Chinese).
      [15] Ge, Q., Gong, X.L., Liang, X., et al., 2016.A Diffusion Coefficient Tester for Low-Permeability Soil:201620289965.1.2016.4.8, Chinese Patent(in Chinese).
      [16] Ge, Q., Liang, X., Gong, X.L., et al., 2017.Laboratory Determination and Analysis of Effective Diffusion Coefficients for Low-Permeability Rock and Clay.Hydrogeology & Engineering Geology(in Press)(in Chinese with English abstract).
      [17] Glaus, M.A., Aertsens, M., Appelo, C.A.J., et al., 2015.Cation Diffusion in the Electrical Double Layer Enhances the Mass Transfer Rates for Sr2+, Co2+ and Zn2+ in Compacted Illite.Geochimica et Cosmochimica Acta, 165:376-388.doi: 10.1016/j.gca.2015.06.014
      [18] Hendry, M.J., Barbour, S.L., Novakowski, K., et al., 2013.Paleohydrogeology of the Cretaceous Sediments of the Williston Basin Using Stable Isotopes of Water.Water Resources Research, 49(8):4580-4592.doi: 10.1002/wrcr.20321
      [19] Hendry, M.J., Kelln, C.J., Wassenaar, L.I., et al., 2004.Characterizing the Hydrogeology of a Complex Clay-Rich Aquitard System Using Detailed Vertical Profiles of the Stable Isotopes of Water.Journal of Hydrology, 293(1-4):47-56.doi: 10.1016/j.jhydrol.2004.01.010
      [20] Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046
      [21] Ilek, A., Kucza, J., 2014.A Laboratory Method to Determine the Hydraulic Conductivity of Mountain Forest Soils Using Undisturbed Soil Samples.Journal of Hydrology, 519:1649-1659.doi: 10.1016/j.jhydrol.2014.09.045
      [22] Ishaku, J.M., Gadzama, E.W., Kaigama, U., 2011.Evaluation of Empirical Formulae for the Determination of Hydraulic Conductivity Based on Grain-Size Analysis.Journal of Geology and Mining Research, 3(4):105-113.
      [23] Li, J., Liang, X., Jin, M.G., 2012b.Review on Pore Water Extraction Techniques in Low-Permeability Media and Their Application.Hydrogeology & Engineering Geology, 39(4):26-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201204008.htm
      [24] Li, J., Liang, X., Mao, X.M., et al., 2012a.Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate.Earth Science, 37(3):612-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203027.htm
      [25] Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. doi: 10.1016/0016-7037(74)90145-8
      [26] Ling, S., 2002.Study on the Dynamic Changes of Coastline in North Jiangsu since the Holocene.Journal of Oceanography of Huanghai & Bohai Seas, 20(2):37-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBHH200202005.htm
      [27] Ling, S., 2009.Evolution of Geography Space Construction in Yanfu Plain Due to the Changes of Sea Level since Holocene.Transactions of Oceanology & Limnology, (1):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFB200901010.htm
      [28] Love, A.J., Herczeg, A.L., Walker, G., 1995.Transport of Water and Solutes across a Regional Aquitard Inferred from Porewater Deuterium and Chloride Profiles Otway Basin, Australia.Isotopes in Water Resources Management, IAEA, Vienna, Austria, 273-286.
      [29] Luffel, D.L., Hopkins, C.W., Schettler, P.D., 1993.Matrix Permeability Measurement of Gas Productive Shales.SPE Annual Technical Conference and Exhibition, Houston.doi:10.2118/26633-ms
      [30] Malusis, M.A., Shackelford, C.D., 2002.Theory for Reactive Solute Transport through Clay Membrane Barriers.Journal of Contaminant Hydrology, 59(3-4):291-316.doi: 10.1016/s0169-7722(02)00041-4
      [31] Mazurek, M., Alt-Epping, P., Bath, A., et al., 2011.Natural Tracer Profiles across Argillaceous Formations.Applied Geochemistry, 26(7):1035-1064.doi: 10.1016/j.apgeochem.2011.03.124
      [32] Muhunthan, B., 1991.Liquid Limit and Surface Area of Clays.Géotechnique, 41(1):135-138.doi: 10.1680/geot.1991.41.1.135
      [33] Niu, H., Liang, X., Li, J., et al., 2016.Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui.Earth Science, 41(3):499-507 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603016.htm
      [34] Santamarina, J.C., Klein, K.A., Wang, Y.H., et al., 2002.Specific Surface:Determination and Relevance.Canadian Geotechnical Journal, 39(1):233-241.doi: 10.1139/t01-077
      [35] Savoye, S., Michelot, J.L., Wittebroodt, C., et al., 2006.Contribution of the Diffusive Exchange Method to the Characterization of Pore-Water in Consolidated Argillaceous Rocks.Journal of Contaminant Hydrology, 86(1-2):87-104.doi: 10.1016/j.jconhyd.2006.02.010
      [36] Vienken, T., Dietrich, P., 2014.Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments.Groundwater, 52(6):823-824.doi: 10.1111/gwat.12278
      [37] Wang, F.B., 1985.Buried Shell Dike of the West Bank Haizhou Bay and Sea Level Changes since Late Pleistocene.In:Chinese Quaternary Coastline, Chinese Society of Oceanography, eds., Proceedings of the Symposium on Quaternary Coastline of China.Ocean Press, Beijing, 146-151(in Chinese).
      [38] Wang, J.H., 1952.Tracer-Diffusion in Liquids.III.The Self-Diffusion of Chloride Ion in Aqueous Sodium Chloride Solutions.Journal of the American Chemical Society, 74(6):1612-1615.doi: 10.1021/ja01126a525
      [39] Wang, J.T., Wang, P.X., 1980.Relationship between Sea-Level Changes and Climatic Fluctuations in East China since Late Pleistocene.Acta Geographica Sinica, 35(4):299-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB198004002.htm
      [40] Wang, M.P., 2014.Hydrochemical Characteristics and Influencing Factors of Shallow Groundwater in Siyang Area, Jiangsu Province.Geoscience, 28(6):1329-1336 (in Chinese with English abstract).
      [41] Wissmeier, L., Barry, D.A., 2011.Simulation Tool for Variably Saturated Flow with Comprehensive Geochemical Reactions in Two-and Three-Dimensional Domains.Environmental Modeling & Software, 26(2):210-218.doi: 10.1016/j.envsoft.2010.07.005
      [42] Yang, H.R., Chen, X.Q., 1985.Quaternary Transgressions, Eustatic Changes and Shifting of Shoreline in East China.Marine Geology & Quaternary Geology, 5(4):59-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198504010.htm
      [43] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      [44] Yu, L., Rogiers, B., Gedeon, M., et al., 2013.A Critical Review of Laboratory and In-Situ Hydraulic Conductivity Measurements for the Boom Clay in Belgium.Applied Clay Science, 75-76(5):1-12.doi: 10.1016/j.clay.2013.02.018
      [45] 崔莉红, 成建梅, 路万里, 等, 2014.弱透水层低速非达西流咸水下移过程的模拟研究.水利学报, 45(7):875-882. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201407015.htm
      [46] 党发宁, 刘海伟, 王学武, 等, 2015.基于有效孔隙比的黏性土渗透系数经验公式研究.岩石力学与工程学报, 34(9):1910-1917. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
      [47] 邓永锋, 刘松玉, 章定文, 等, 2011.几种孔隙比与渗透系数关系的对比.西北地震学报, 33(z1):64-66, 76. doi: 10.3969/j.issn.1000-0844.2011.z1.014
      [48] 付昌昌, 2015. 淮河流域沿海平原深层地下水水化学特征及咸水成因(硕士学位论文). 长春: 吉林大学, 32-40.
      [49] 葛勤, 龚须龙, 梁杏, 等, 2015. 一种低渗透性饱和粘土渗透测定仪: 201520592840. 1. 2015. 11. 11, 中国专利.
      [50] 葛勤, 龚须龙, 梁杏, 等, 2016. 一种低渗透性岩土扩散系数测定仪: 201620289965. 1. 2016. 4. 8, 中国专利.
      [51] 葛勤, 梁杏, 龚须龙, 等, 2017. 低渗透岩土有效扩散系数的室内测定与分析. 水文地质与工程地质(待刊).
      [52] 李静, 梁杏, 靳孟贵, 2012b.低渗透介质孔隙溶液的提取及其应用综述.水文地质工程地质, 39(4):26-31.
      [53] 李静, 梁杏, 毛绪美, 等, 2012a.水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义.地球科学, 37(3):612-620. http://www.earth-science.net/WebPage/Article.aspx?id=2267
      [54] 凌申, 2002.全新世苏北沿海岸线冲淤动态研究.黄渤海海洋, 20(2):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200202005.htm
      [55] 凌申, 2009.全新世海面变化与盐阜平原地理空间结构的演变.海洋湖沼通报, (1):61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200901010.htm
      [56] 牛宏, 梁杏, 李静, 等, 2016.衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示.地球科学, 41(3):499-507. http://www.earth-science.net/WebPage/Article.aspx?id=3273
      [57] 王富葆, 1985. 海州湾西岸埋藏贝壳堤与晚更新世以来的海面变化. 见: 中国第四纪研究委员会, 中国海洋学会编, 中国第四纪海岸线学术讨论会论文集. 北京: 海洋出版社, 146-151.
      [58] 王靖泰, 汪品先, 1980.中国东部晚更新世以来海面升降与气候变化的关系.地理学报, 35(4):299-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198004002.htm
      [59] 汪名鹏, 2014.江苏泗阳城区浅层地下水化学特征及其影响因素.现代地质, 28(6):1329-1336. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406026.htm
      [60] 杨怀仁, 陈西庆, 1985.中国东部第四纪海面升降、海侵海退与岸线变迁.海洋地质与第四纪地质, 5(4):59-80. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198504010.htm
      [61] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  5298
    • HTML全文浏览量:  1757
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-17
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回