Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain
-
摘要: 渗透系数(K)是水文地质、岩土工程领域的重要参数,而低渗透介质的结构较为复杂,在实际应用中,场地的尺度、介质的扰动程度等均会对K的确定产生影响.利用δ18O化学示踪法、室内试验及经验公式法估算饱和黏性土的垂向渗透系数,并对比分析不同预测方法的适用性.以苏北沿海平原第四纪厚层黏土为例,δ18O化学示踪法预测厚层黏性土的渗透系数低于10-11 m/s,室内法测得渗透系数为2.61×10-8~9×10-12 m/s,经验法预测值较大,是室内法的几倍到几十倍.δ18O化学示踪法是表征天然条件下长时间的实验结果,除了反映数十米厚层黏性土的等效渗透性能,还可预测黏土孔隙水的渗流时间;结合测定黏土样品液塑限等室内实验参数,室内实验和经验公式法可以提供系列剖面黏土的渗透系数,更清晰地说明厚层黏土剖面不同渗透系数预测方法的差异性.Abstract: The hydraulic conductivity (K) of deposits is one of the important and fundamental properties for solving various problems in the study filed of hydrogeology and geotechenical engineering. However, in the study of clay-rich deposits, the selection of the evaluation method for K is obviously affected by the scale of the site and the degree of deposits disturbance due to the complex deposit structure. Chemical (δ18O as the tracer), laboratory, and empirical formula methods were used to predict the vertical hydraulic conductivity in saturated clay-rich deposits, and their practicability was analyzed. Take the Quaternary thick clay-rich sediments in North Jiangsu coastal plain for example, the estimated hydraulic conductivity of the thick clay-rich sediments was lower than 1×10-11 m/s using δ18O chemical methods. Using laboratory method, that range between 2.61×10-8 and 9×10-12 m/s. The larger predictive values were determined by empirical formula method and higher than that obtained using hydraulic method by several times. Chemical method was applied to display the long-term experimental results under the natural conditions, and the equivalent permeability of the decade meters clay-rich deposits. Besides, the residence time of pore water in the sediments was also predicted. Combined with the laboratory parameters of clay samples, such as liquid and plastic limit, laboratory and empirical formula methods could provide series hydraulic conductivities of the whole profile, in order to show the difference of different permeability coefficient prediction methods in thick clay-rich profile.
-
表 1 苏北原状黏性土物理指标
Table 1. Parameters of undisturbed clay-rich deposits in North Jiangsu
深度(m) 液限(%) 塑限(%) <3.9 μm
粘粒(%)3.9~62.3μm
粉粒(%)实测K
(m/s)经验公式K
(m/s)经验公式K/
实测K孔隙度 孔隙比 相对密度 5.76~5.86 30.44 18.66 14.13 77.90 2.61×10-8 8.36×10-10 0.03 0.38 0.60 2.07 14.82~15.02 35.56 21.63 22.64 74.52 4.52×10-10 2.82×10-9 7.99 0.53 1.13 1.79 89.00~89.20 - - 20.06 62.87 1.40×10-11 - - 0.40 0.67 2.14 95.60~95.80 - - 31.70 68.30 7.30×10-10 - - 0.43 0.74 2.03 121.40~121.60 55.58 26.51 29.78 55.56 1.09×10-11 2.57×10-10 23.68 0.43 0.77 2.07 142.20~142.40 53.63 28.15 28.99 60.55 9.04×10-12 2.38×10-10 26.30 0.38 0.75 2.19 172.20~172.40 34.79 19.92 14.39 38.86 1.42×10-10 4.75×10-10 3.35 0.38 0.62 2.08 202.20~202.40 46.19 22.65 39.73 60.24 2.86×10-10 2.93×10-10 1.02 0.40 0.68 2.09 218.00~218.20 47.86 22.88 29.46 48.45 1.50×10-11 2.05×10-10 11.32 0.38 0.62 2.09 245.20~245.40 46.07 22.59 29.00 56.60 3.70×10-11 3.37×10-10 9.04 0.41 0.70 2.02 注:“-”代表未测定. 表 2 室内实验测定苏北原状黏土试样K(10-10 m/s)
Table 2. The laboratory-measured K of undisturbed samples in North Jiangsu
5.76~5.78 m 14.82~15.02 m 89.0~89.2 m 95.6~95.8 m 121.4~121.6 m 142.2~142.4 m 172.2~172.4 m 202.2~202.4 m 218.0~218.2 m 245.2~245.4 m 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 水力梯度 实测值K 均值K 0.2 310 260.7 43.7 4.57 4.52 91.9 0.13 0.14 41.9 7.68 7.30 92.0 0.12 0.11 48.8 0.04 0.09 76.3 2.58 1.42 76.3 2.79 2.86 75.3 0.17 0.15 74.6 0.35 0.37 0.2 268 260.7 43.7 4.50 4.52 91.9 0.15 0.14 41.9 7.56 7.30 92.0 0.09 0.11 46.2 0.12 0.09 78.6 1.12 1.42 78.6 2.46 2.86 75.3 0.17 0.15 74.6 0.36 0.37 0.2 244 260.7 47.0 4.04 4.52 91.9 0.15 0.14 41.9 7.52 7.30 92.0 0.15 0.11 53.7 0.14 0.09 76.3 1.27 1.42 74.4 2.32 2.86 75.3 0.14 0.15 77.9 0.39 0.37 0.2 199 260.7 47.0 4.13 4.52 91.9 0.15 0.14 55.3 6.95 7.30 92.0 0.10 0.11 62.1 0.06 0.09 76.3 1.12 1.42 67.7 3.74 2.86 75.3 0.15 0.15 69.6 0.49 0.37 0.2 250 260.7 54.5 4.51 4.52 86.9 0.14 0.14 55.3 6.99 7.30 87.0 0.10 0.11 62.1 0.13 0.09 76.3 0.98 1.42 76.2 3.00 2.86 75.3 0.15 0.15 78.2 0.26 0.37 0.2 293 260.7 54.5 5.36 4.52 86.9 0.14 0.14 61.9 7.10 7.30 87.0 0.10 0.11 - - - - - - - - 75.3 0.11 - - - - 注:表示“-”无测值. -
[1] Al, T.A., Clark, I.D., Kennell, L., et al., 2015.Geochemical Evolution and Residence Time of Porewater in Low-Permeability Rocks of the Michigan Basin, Southwest Ontario.Chemical Geology, 404:1-17.doi: 10.1016/j.chemgeo.2015.03.005 [2] Batlle-Aguilar, J., Cook, P.G., Harrington, G.A., 2016.Comparison of Hydraulic and Chemical Methods for Determining Hydraulic Conductivity and Leakage Rates in Argillaceous Aquitards.Journal of Hydrology, 532:102-121.doi: 10.1016/j.jhydrol.2015.11.035 [3] Boudreau, B.P., Meysman, F.J.R., 2006.Predicted Tortuosity of Muds.Geology, 34(8):693.doi: 10.1130/g22771.1 [4] Carman, P.C., 1939.Permeability of Saturated Sands, Soils and Clays.The Journal of Agricultural Science, 29(2):262.doi: 10.1017/s0021859600051789 [5] Carman, P.C., 1937.Fluid Flow through Granular Beds.Transactions.Institution of Chemical Engineers, London, 15:150-166. [6] Chapuis, R., Aubertin, M., 2003.On the Use of the Kozeny-Carman Equation to Predict the Hydraulic Cond.Canadian Geotechnical Journal, 40(3):616-628. doi: 10.1139/t03-013 [7] Cui, L.H., Cheng, J.M., Lu, W.L., et al., 2014.Numerical Study on Saltwater Downward Migration in Aquitard as Low Velocity Non-Darcy Flow.Journal of Hydraulic Engineering, 45(7):875-882 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201407015.htm [8] Dang, F.N., Liu, H.W., Wang, X.W., et al., 2015.Empirical Formulas of Permeability of Clay Based on Effective Pore Ratio.Chinese Journal of Rock Mechanics and Engineering, 34(9):1910-1917(in Chinese with English abstract). https://www.researchgate.net/publication/283807110_Empirical_formulas_of_permeability_of_clay_based_on_effective_pore_ratio [9] Deng, Y.F., Liu, S.Y., Zhang, D.W., et al., 2011.Comparison among Some Relationships between Permeability and Void Ratio.Northwestern Seismological Journal, 33(Suppl.1):64-66, 76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ2011S1015.htm [10] Eaton, T.T., Anderson, M.P., Bradbury, K.R., 2007.Fracture Control of Ground Water Flow and Water Chemistry in a Rock Aquitard.Ground Water, 45(5):601-615.doi: 10.1111/j.1745-6584.2007.00335.x [11] Farrar, D.M., Coleman, J.D., 1967.The Correlation of Surface Area with Other Properties of Nineteen British Clay Soils.Journal of Soil Science, 18(1):118-124.doi: 10.1111/j.1365-2389.1967.tb01493.x [12] Fu, C.C., 2015.The Hydrochemical Characteristics and Processes for Salinity Sources of the Deep Confined Groundwater in the Coastal Plain of Huai River Basin(Dissertation).Jilin University, Changchun, 32-40 (in Chinese with English abstract). [13] Gardner, W.P., Harrington, G.A., Smerdon, B.D., 2012.Using Excess 4He to Quantify Variability in Aquitard Leakage.Journal of Hydrology, 468-469:63-75.doi: 10.1016/j.jhydrol.2012.08.014 [14] Ge, Q., Gong, X.L., Liang, X., et al., 2015.A Permeability Tester for Saturated Clay:201520592840.1.2015.11.11, Chinese Patent(in Chinese). [15] Ge, Q., Gong, X.L., Liang, X., et al., 2016.A Diffusion Coefficient Tester for Low-Permeability Soil:201620289965.1.2016.4.8, Chinese Patent(in Chinese). [16] Ge, Q., Liang, X., Gong, X.L., et al., 2017.Laboratory Determination and Analysis of Effective Diffusion Coefficients for Low-Permeability Rock and Clay.Hydrogeology & Engineering Geology(in Press)(in Chinese with English abstract). [17] Glaus, M.A., Aertsens, M., Appelo, C.A.J., et al., 2015.Cation Diffusion in the Electrical Double Layer Enhances the Mass Transfer Rates for Sr2+, Co2+ and Zn2+ in Compacted Illite.Geochimica et Cosmochimica Acta, 165:376-388.doi: 10.1016/j.gca.2015.06.014 [18] Hendry, M.J., Barbour, S.L., Novakowski, K., et al., 2013.Paleohydrogeology of the Cretaceous Sediments of the Williston Basin Using Stable Isotopes of Water.Water Resources Research, 49(8):4580-4592.doi: 10.1002/wrcr.20321 [19] Hendry, M.J., Kelln, C.J., Wassenaar, L.I., et al., 2004.Characterizing the Hydrogeology of a Complex Clay-Rich Aquitard System Using Detailed Vertical Profiles of the Stable Isotopes of Water.Journal of Hydrology, 293(1-4):47-56.doi: 10.1016/j.jhydrol.2004.01.010 [20] Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046 [21] Ilek, A., Kucza, J., 2014.A Laboratory Method to Determine the Hydraulic Conductivity of Mountain Forest Soils Using Undisturbed Soil Samples.Journal of Hydrology, 519:1649-1659.doi: 10.1016/j.jhydrol.2014.09.045 [22] Ishaku, J.M., Gadzama, E.W., Kaigama, U., 2011.Evaluation of Empirical Formulae for the Determination of Hydraulic Conductivity Based on Grain-Size Analysis.Journal of Geology and Mining Research, 3(4):105-113. [23] Li, J., Liang, X., Jin, M.G., 2012b.Review on Pore Water Extraction Techniques in Low-Permeability Media and Their Application.Hydrogeology & Engineering Geology, 39(4):26-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201204008.htm [24] Li, J., Liang, X., Mao, X.M., et al., 2012a.Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate.Earth Science, 37(3):612-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203027.htm [25] Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. doi: 10.1016/0016-7037(74)90145-8 [26] Ling, S., 2002.Study on the Dynamic Changes of Coastline in North Jiangsu since the Holocene.Journal of Oceanography of Huanghai & Bohai Seas, 20(2):37-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBHH200202005.htm [27] Ling, S., 2009.Evolution of Geography Space Construction in Yanfu Plain Due to the Changes of Sea Level since Holocene.Transactions of Oceanology & Limnology, (1):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFB200901010.htm [28] Love, A.J., Herczeg, A.L., Walker, G., 1995.Transport of Water and Solutes across a Regional Aquitard Inferred from Porewater Deuterium and Chloride Profiles Otway Basin, Australia.Isotopes in Water Resources Management, IAEA, Vienna, Austria, 273-286. [29] Luffel, D.L., Hopkins, C.W., Schettler, P.D., 1993.Matrix Permeability Measurement of Gas Productive Shales.SPE Annual Technical Conference and Exhibition, Houston.doi:10.2118/26633-ms [30] Malusis, M.A., Shackelford, C.D., 2002.Theory for Reactive Solute Transport through Clay Membrane Barriers.Journal of Contaminant Hydrology, 59(3-4):291-316.doi: 10.1016/s0169-7722(02)00041-4 [31] Mazurek, M., Alt-Epping, P., Bath, A., et al., 2011.Natural Tracer Profiles across Argillaceous Formations.Applied Geochemistry, 26(7):1035-1064.doi: 10.1016/j.apgeochem.2011.03.124 [32] Muhunthan, B., 1991.Liquid Limit and Surface Area of Clays.Géotechnique, 41(1):135-138.doi: 10.1680/geot.1991.41.1.135 [33] Niu, H., Liang, X., Li, J., et al., 2016.Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui.Earth Science, 41(3):499-507 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603016.htm [34] Santamarina, J.C., Klein, K.A., Wang, Y.H., et al., 2002.Specific Surface:Determination and Relevance.Canadian Geotechnical Journal, 39(1):233-241.doi: 10.1139/t01-077 [35] Savoye, S., Michelot, J.L., Wittebroodt, C., et al., 2006.Contribution of the Diffusive Exchange Method to the Characterization of Pore-Water in Consolidated Argillaceous Rocks.Journal of Contaminant Hydrology, 86(1-2):87-104.doi: 10.1016/j.jconhyd.2006.02.010 [36] Vienken, T., Dietrich, P., 2014.Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments.Groundwater, 52(6):823-824.doi: 10.1111/gwat.12278 [37] Wang, F.B., 1985.Buried Shell Dike of the West Bank Haizhou Bay and Sea Level Changes since Late Pleistocene.In:Chinese Quaternary Coastline, Chinese Society of Oceanography, eds., Proceedings of the Symposium on Quaternary Coastline of China.Ocean Press, Beijing, 146-151(in Chinese). [38] Wang, J.H., 1952.Tracer-Diffusion in Liquids.III.The Self-Diffusion of Chloride Ion in Aqueous Sodium Chloride Solutions.Journal of the American Chemical Society, 74(6):1612-1615.doi: 10.1021/ja01126a525 [39] Wang, J.T., Wang, P.X., 1980.Relationship between Sea-Level Changes and Climatic Fluctuations in East China since Late Pleistocene.Acta Geographica Sinica, 35(4):299-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB198004002.htm [40] Wang, M.P., 2014.Hydrochemical Characteristics and Influencing Factors of Shallow Groundwater in Siyang Area, Jiangsu Province.Geoscience, 28(6):1329-1336 (in Chinese with English abstract). [41] Wissmeier, L., Barry, D.A., 2011.Simulation Tool for Variably Saturated Flow with Comprehensive Geochemical Reactions in Two-and Three-Dimensional Domains.Environmental Modeling & Software, 26(2):210-218.doi: 10.1016/j.envsoft.2010.07.005 [42] Yang, H.R., Chen, X.Q., 1985.Quaternary Transgressions, Eustatic Changes and Shifting of Shoreline in East China.Marine Geology & Quaternary Geology, 5(4):59-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198504010.htm [43] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [44] Yu, L., Rogiers, B., Gedeon, M., et al., 2013.A Critical Review of Laboratory and In-Situ Hydraulic Conductivity Measurements for the Boom Clay in Belgium.Applied Clay Science, 75-76(5):1-12.doi: 10.1016/j.clay.2013.02.018 [45] 崔莉红, 成建梅, 路万里, 等, 2014.弱透水层低速非达西流咸水下移过程的模拟研究.水利学报, 45(7):875-882. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201407015.htm [46] 党发宁, 刘海伟, 王学武, 等, 2015.基于有效孔隙比的黏性土渗透系数经验公式研究.岩石力学与工程学报, 34(9):1910-1917. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm [47] 邓永锋, 刘松玉, 章定文, 等, 2011.几种孔隙比与渗透系数关系的对比.西北地震学报, 33(z1):64-66, 76. doi: 10.3969/j.issn.1000-0844.2011.z1.014 [48] 付昌昌, 2015. 淮河流域沿海平原深层地下水水化学特征及咸水成因(硕士学位论文). 长春: 吉林大学, 32-40. [49] 葛勤, 龚须龙, 梁杏, 等, 2015. 一种低渗透性饱和粘土渗透测定仪: 201520592840. 1. 2015. 11. 11, 中国专利. [50] 葛勤, 龚须龙, 梁杏, 等, 2016. 一种低渗透性岩土扩散系数测定仪: 201620289965. 1. 2016. 4. 8, 中国专利. [51] 葛勤, 梁杏, 龚须龙, 等, 2017. 低渗透岩土有效扩散系数的室内测定与分析. 水文地质与工程地质(待刊). [52] 李静, 梁杏, 靳孟贵, 2012b.低渗透介质孔隙溶液的提取及其应用综述.水文地质工程地质, 39(4):26-31. [53] 李静, 梁杏, 毛绪美, 等, 2012a.水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义.地球科学, 37(3):612-620. http://www.earth-science.net/WebPage/Article.aspx?id=2267 [54] 凌申, 2002.全新世苏北沿海岸线冲淤动态研究.黄渤海海洋, 20(2):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200202005.htm [55] 凌申, 2009.全新世海面变化与盐阜平原地理空间结构的演变.海洋湖沼通报, (1):61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200901010.htm [56] 牛宏, 梁杏, 李静, 等, 2016.衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示.地球科学, 41(3):499-507. http://www.earth-science.net/WebPage/Article.aspx?id=3273 [57] 王富葆, 1985. 海州湾西岸埋藏贝壳堤与晚更新世以来的海面变化. 见: 中国第四纪研究委员会, 中国海洋学会编, 中国第四纪海岸线学术讨论会论文集. 北京: 海洋出版社, 146-151. [58] 王靖泰, 汪品先, 1980.中国东部晚更新世以来海面升降与气候变化的关系.地理学报, 35(4):299-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198004002.htm [59] 汪名鹏, 2014.江苏泗阳城区浅层地下水化学特征及其影响因素.现代地质, 28(6):1329-1336. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406026.htm [60] 杨怀仁, 陈西庆, 1985.中国东部第四纪海面升降、海侵海退与岸线变迁.海洋地质与第四纪地质, 5(4):59-80. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198504010.htm [61] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067