Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water
-
摘要: 全球水体氮污染形势严峻,且以硝态氮(NO3--N)污染为主,研究地下水与地表水(G-S)相互作用模式对NO3--N在“潜流带”(HZ)中迁移转化的影响是开展水体氮污染综合防控的关键.开展地表水(S)补给地下水(G)(下降流)、地下水(G)补给地表水(S)(上升流)以及交替作用3种模式的NO3--N迁移转化实验,研究表明:3种模式下,出水NO3--N浓度可降低95%以上;上升流中反硝化强度大于下降流;异化还原作用(DNRA)对下降流与上升流出水氨氮(NH4+-N)浓度的贡献分别约为71%和11%;上升流实验后水-土界面有机氮含量是下降流实验后水-土界面的2.3倍.结果表明,G-S相互作用下NO3--N的衰减途径主要包括:合成有机氮、反硝化及DNRA;相互作用模式对各衰减途径的强度存在影响;HZ介质通过吸附NH4+-N和微生物作用合成有机氮的方式截留氮素.Abstract: At present, the situation of water nitrogen pollution in the world is grim, and nitrate (NO3--N) pollution is the main form. To study the effects of groundwater and surface water (G-S) interaction on the migration and transformation of NO3--N in the hyporheic zone (HZ) is the key for comprehensive prevention and control of water nitrogen pollution. Three modes of NO3--N migration and transformation experiments, including surface water (S) supply for groundwater (G) (down-welling), groundwater (G) supply for surface water (S) (up-welling) and the alternative mode, were carried out in the study. It is found that NO3--N concentration of three modes effluent can be reduced more than 95%; the strength of denitrification in up-welling was greater than in down-welling; the contribution of the dissimilation reduction (DNRA) to the ammonia nitrogen (NH4+-N) concentration in the outflow of down-welling and up-welling was about 71% and 11%, respectively. After up-welling experiment, the organic nitrogen content of water-soil interface was 2.3 times as much as the down-welling experiment. It was shown that the NO3--N attenuation pathways under the G-S interaction mainly include denitrification, DNRA and the synthesis of organic nitrogen; G-S interaction modes had effects on the strength of each NO3--N attenuation pathway; HZ media could intercept nitrogen through the adsorption of NH4+-N and microbial synthesis of organic nitrogen.
-
表 1 实验用土基本理化性质
Table 1. The basic physical and chemical properties of experimental soil
指标 干容重
(g/cm3)NO3--N
(mg/kg)NH4+-N
(mg/kg)有机氮
(mg/kg)TN
(mg/kg)数值 1.43 19.83 1.33 633.06 654.22 表 2 模拟液主要组分及其浓度
Table 2. Main components and concentrations in simulated solution
实验 模拟液 分组 编号 Cl-(mg/L) KNO3(以N计,mg/L) CH3COONa(以C计,mg/L) DO(mg/L) 下降流 地表水 实验组 SA 500 100 171.43 9~10 对照组 SB 500 - 171.43 9~10 上升流 地下水 实验组 GA 500 100 171.43 <2 对照组 GB 500 - 171.43 <2 交替 地表水 实验组 SD 250 50 85.72 9~10 对照组 SE 250 - 85.72 9~10 地下水 实验组 GD - 50 85.72 <2 对照组 GE - - 85.72 <2 注:表中“-”代表不添加该试剂. 表 3 交替实验组土柱不同深度氮素形态及含量(mg/kg)
Table 3. Nitrogen forms and contents in different depth of alternate experimental group column (mg/kg)
形态 深度(cm) NO3--N NH4+-N 有机氮 TN 实验前 0~10 19.83 1.33 633.06 654.22 实验后 0~5 13.00 8.00 728.26 749.26 5~10 11.17 25.75 839.14 876.05 -
[1] Brauns, B., Bjerg, P.L., Song, X.F., et al., 2016.Field Scale Interaction and Nutrient Exchange between Surface Water and Shallow Groundwater in the Baiyang Lake Region, North China Plain.Journal of Environmental Sciences, 45:60-75.doi: 10.1016/j.jes.2015.11.021 [2] Carrey, R., Rodríguez-Escales, P., Otero, N., et al., 2014.Nitrate Attenuation Potential of Hypersaline Lake Sediments in Central Spain:Flow-through and Batch Experiments.Journal of Contaminant Hydrology, 164:323-337.doi: 10.1016/j.jconhyd.2014.06.017 [3] Chen, X.M., Ma, T., Cai, H.S., et al., 2013.Regional Control of Groundwater Nitrogen Contamination.Geological Science and Technology Information, 32(6):130-143, 149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201306021.htm [4] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). http://xueshu.baidu.com/s?wd=paperuri%3A%28c5dec679e43d7763acda4183e310b5a2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.en.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-DQKX201511010.htm&ie=utf-8&sc_us=6400518108938269600 [5] Domagalski, J.L., Phillips, S.P., Bayless, E.R., et al., 2008.Influences of the Unsaturated, Saturated, and Riparian Zones on the Transport of Nitrate near the Merced River, California, USA.Hydrogeology Journal, 16(4):675-690.doi: 10.1007/s10040-007-0266-x [6] Fazzolari, É., Nicolardot, B., Germon, J.C., 1998.Simultaneous Effects of Increasing Levels of Glucose and Oxygen Partial Pressures on Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Repacked Soil Cores.European Journal of Soil Biology, 34(1):47-52.doi:10.1016/ S1164 -5563(99)80006-5 [7] Ge, S.J., Peng, Y.Z., Wang, S.Y., et al., 2012.Nitrite Accumulation under Constant Temperature in Anoxic Denitrification Process:The Effects of Carbon Sources and COD/NO3-N.Bioresource Technology, 114:137-143.doi: 10.1016/j.biortech.2012.03.016 [8] Glass, C., Silverstein, J., 1998.Denitrification Kinetics of High Nitrate Concentration Water:pH Effect on Inhibition and Nitrite Accumulation.Water Research, 32(3):831-839.doi: 10.1016/s0043-1354(97)00260-1 [9] Guo, J.N., Lu, S.Y., Jin, X.C., et al., 2010.Regularity of Nitrogen Release under Low Oxygen Conditions from Various Sediments in a River Network.Acta Scientiae Circumstantiae, 30(3):614-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX201003026.htm [10] Guo, Y., Peng, D.C., Zhang, X.Y., et al., 2014.Growth Characteristics of Heterotrophic Bacteria with Nitrate as a Sole Nitrogen Source.Chinese Journal of Environmental Engineering, 8(3):882-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ201403015.htm [11] Hendricks, S.P., 1993.Microbial Ecology of the Hyporheic Zone:A Perspective Integrating Hydrology and Biology.Journal of the North American Benthological Society, 12(1):70-78.doi: 10.2307/1467687 [12] Hill, A.R., 1996.Nitrate Removal in Stream Riparian Zones.Journal of Environment Quality, 25(4):743-755.doi: 10.2134/jeq1996.00472425002500040014x [13] Hill, A.R., Labadia, C.F., Sanmugadas, K., 1998.Hyporheic Zone Hydrology and Nitrogen Dynamics in Relation to the Streambed Topography of a N-Rich Stream.Biogeochemistry, 42(3):285-310.doi: 10.1023/A:1005932528748 [14] Hu, J.F., Wang, J.S., Teng, Y.G., 2004.Study Progress of Interaction between Stream and Groundwater.Hydrogeology & Engineering Geology, 31(1):108-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200401027.htm [15] Hu, L.T., Wang, Z.J., Zhao, J.S., et al., 2007.Advances in the Interactions and Integrated Model between Surface Water and Groundwater.Journal of Hydraulic Engineering, 38(1):54-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200701007.htm [16] Hu, Y.L., Ma, R., Sun, Z.Y., et al., 2016.Influencing Factors of Nitrate Concentrations in River Water and Groundwater Interaction Zone:A Case Study in the Middle Reaches of Heihe River at Linze, Northwestern China.Safety and Environmental Engineering, 23(1):40-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTAQ201601009.htm [17] Huang, R.H., Wu, Y.G., Li, Y.F., et al., 2006.Simulating Experiment of NO3--N in Vertical System of Riverbank Filtration.Journal of Earth Sciences and Environment, 28(3):92-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200603020.htm [18] Karan, S., Kidmose, J., Engesgaard, P., et al., 2014.Role of a Groundwater-Lake Interface in Controlling Seepage of Water and Nitrate.Journal of Hydrology, 517:791-802.doi: 10.1016/j.jhydrol.2014.06.011 [19] Li, J.R., Wang, L., Chen, T., et al., 2012.A Study of DO on Nitrogen Releasing in the Sediment of Rivers.China Rural Water and Hydropower, (5):32-34(in Chinese with English abstract). [20] Li, Y., Zhang, W.W., Yuan, J.H., et al., 2016.Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones.Journal of Hohai University (Natural Sciences), 44(01):1-7 (in Chinese with English abstract). https://www.researchgate.net/publication/301630507_Research_advances_in_flow_patterns_and_nitrogen_transformation_in_hyporheic_zones [21] Lowrance, R., Todd, R., Fail, J., et al., 1984.Riparian Forests as Nutrient Filters in Agricultural Watersheds.BioScience, 34(6):374-377.doi: 10.2307/1309729 [22] Ma, J., Song, X.R., Li, L., 2014.Effect of Carbon Source on Nitrite Accumulation and pH Value of Effluent during Denitrification Process.China Environmental Science, 34(10):2556-2561(in Chinese with English abstract). https://www.researchgate.net/publication/287587517_Effect_of_carbon_source_on_nitrite_accumulation_and_pH_value_of_effluent_during_denitrification_process [23] Oh, J., Silverstein, J., 1999.Oxygen Inhibition of Activated Sludge Denitrification.Water Research, 33(8):1925-1937.doi: 10.1016/s0043-1354(98)00365-0 [24] Pretty, J.L., Hildrew, A.G., Trimmer, M., 2006.Nutrient Dynamics in Relation to Surface-Subsurface Hydrological Exchange in a Groundwater Fed Chalk Stream.Journal of Hydrology, 330(1-2):84-100.doi: 10.1016/j.jhydrol.2006.04.013 [25] Rütting, T., Boeckx, P., Müller, C., et al., 2011.Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle.Biogeosciences, 8(7):1779-1791.doi: 10.5194/bg-8-1779-2011 [26] Schmidt, C.S., Richardson, D.J., Baggs, E.M., 2001.Constraining the Conditions Conducive to Dissimilatory Nitrate Reduction to Ammonium in Temperate Arable Soils.Soil Biology and Biochemistry, 43(7):1607-1611.doi: 10.1016/j.soilbio.2011.02.015 [27] Shabaga, J.A., Hill, A.R., 2010.Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada.Journal of Hydrology, 388(1-2):52-64.doi: 10.1016/j.jhydrol.2010.04.028 [28] Shao, L., Xu, Z.X., Yin, H.L., et al., 2008.Rice Husk as Carbon Source and Biofilm Carrier for Water Denitrification.Journal of Biotechnology, 136:S662.doi: 10.1016/j.jbiotec.2008.07.1534 [29] Storey, R.G., Williams, D.D., Fulthorpe, R.R., 2004.Nitrogen Processing in the Hyporheic Zone of a Pastoral Stream.Biogeochemistry, 69(3):285-313.doi: 10.1023/b:biog.0000031049.95805.ec [30] Teng, Y.G., Zuo, R., Wang, J.S., 2007.Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function.Earth and Environment, 35(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200701000.htm [31] Wang, B.G., Jin, M.G., Liang, X., 2015.Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China.Journal of Earth Science, 26(3):425-434. doi: 10.1007/s12583-014-0487-6 [32] Wang, D.C., Zhang, R.Q., Shi, Y.H., 1995.Fundamentals of Hydrogeology.Geological Publishing House, Beijing, 67(in Chinese). [33] Wang, F., Zhang, R., Liu, Z.J., et al, 2012.Study on the Effects of Carbon Sources on Nitrogen Migration in Different Mediums of Hyporheic Zones.Value Engineering, (24):18-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZGC201224010.htm [34] Wu, Q.H., Zeng, X.Y., Huang, Y., 2005.Effects of DO on Nitrogen Releasing from Sediments of River.Environmental Pollution & Control., 27(1):21-24(in Chinese with English abstract). [35] Xiong, Y., Li, Q.D., 1978.China Soils.Science Press, Beijing, 84 (in Chinese). [36] Yang, S., Wu, S.J., Cai, Y.J., et al., 2016.The Synergetic and Competitive Mechanism and the Dominant Factors of Dissimilatory Nitrate Reduction Processes:A Review.Acta Ecologica Sinica, 36(5):1224-1232 (in Chinese with English abstract). [37] Zheng, P., Xu, X.Y., Hu, B.L., 2004.New Theory and Technology of Biological Nitrogen Removal.Science Press, Beijing, 85 (in Chinese). [38] 陈新明, 马腾, 蔡鹤生, 等, 2013.地下水氮污染的区域性调控策略.地质科技情报, 32(6):130-143, 149. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm [39] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 [40] 郭建宁, 卢少勇, 金相灿, 等, 2010.低溶解氧状态下河网区不同类型沉积物的氮释放规律.环境科学学报, 30(3):614-620. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201003026.htm [41] 郭瑜, 彭党聪, 张新艳, 等, 2014.硝态氮为唯一氮源时异养微生物增长特性.环境工程学报, (3):882-886. http://cdmd.cnki.com.cn/Article/CDMD-10703-1014011092.htm [42] 胡俊锋, 王金生, 滕彦国, 2004.地下水与河水相互作用的研究进展.水文地质工程地质, 31(1):108-113. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200401027.htm [43] 胡立堂, 王忠静, 赵建世, 等, 2007.地表水和地下水相互作用及集成模型研究.水利学报, 38(1):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200701007.htm [44] 胡雅璐, 马瑞, 孙自永, 等, 2016.河水和地下水相互作用带中硝酸盐浓度影响因素研究——以黑河中游临泽河段为例.安全与环境工程, 23(1):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201601009.htm [45] 黄瑞华, 吴耀国, 李云峰, 等, 2006.硝态氮在河床垂向渗滤系统中环境行为的模拟实验.地球科学与环境学报, 28(3):92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200603020.htm [46] 李金荣, 王莉, 陈停, 等, 2012.溶解氧影响河流底泥中氮释放的实验研究.中国农村水利水电, (5):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201205010.htm [47] 李勇, 张维维, 袁佳慧, 等, 2016.潜流带水流特性及氮素运移转化研究进展.河海大学学报(自然科学版), 44(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm [48] 马娟, 宋相蕊, 李璐, 2014.碳源对反硝化过程NO2-积累及出水pH值的影响.中国环境科学, 34(10):2556-2561. [49] 滕彦国, 左锐, 王金生, 2007.地表水-地下水的交错带及其生态功能.地球与环境, 35(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200701000.htm [50] 王大纯, 张人权, 史毅红, 1995.水文地质学基础.北京:地质出版社, 67. [51] 王飞, 张蕊, 刘子剑, 等, 2012.碳源对氮素在不同潜流带介质中的迁移转化规律研究.价值工程, (24):18-20. doi: 10.3969/j.issn.1006-4311.2012.24.009 [52] 吴群河, 曾学云, 黄钥, 2005.溶解氧对河流底泥中三氮释放的影响.环境污染与防治, 27(1):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200501007.htm [53] 熊毅, 李庆达, 1978.中国土壤.北京:科学出版社, 84. [54] 杨杉, 吴胜军, 蔡延江, 等, 2016.硝态氮异化还原机制及其主导因素研究进展.生态学报, 36(5):1224-1232. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm [55] 郑平, 徐向阳, 胡宝兰, 2004.新型生物脱氮理论与技术.北京:科学出版社, 85.