Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain
-
摘要: 地下含水介质是地球关键带的重要研究对象,为了拓展江汉平原地下水环境问题研究维度,综合应用14C测年、δ13C、铁价态以及沉积物溶解态有机质(dissolved organic matter,DOM)的光谱信息等重要环境指标,对沙湖地区近30 ka的浅层含水层第四纪沉积环境演化特征进行了概化分析.沉积物中Zr/Rb、Rb/Sr比值以及δ13C值表明,剖面在5~7 m和16~18 m范围相对其他深度更显暖湿气候特征;Fe3+/Fe2+比值及沉积物颜色说明这两段暖湿期沉积物主要呈现还原环境.基于因子分析和DOM光谱信息可将沉积剖面的沉积环境演化概化为“近地表弱生物碎屑沉积单元”和“暖湿期强沉积单元”等5个单元.本沉积剖面所记录的沉积环境演化信息可为该区的地下水环境等相关问题的深入研究提供重要的背景支撑.Abstract: Hydrate-bearing sediments are the fundamental elements for the study of Earth Critical Zone. To broaden the studying dimensions of groundwater environmental problems, 14C dating, δ13C, iron valance and spectroscopic information of dissolved organic matter (DOM) in Shahu sediment profile were employed to characterize the evolution of sedimentary environment of 30 000 years in Jianghan plain. The values of Zr/Rb, Rb/Sr and δ13C indicate that the climates are much warmer and wetter in the periods of sediments formation in 5 to 7 m and 16 to 18 m than others; the ratio of Fe3+/Fe2+ states that sediments in the two periods is mainly in reductive environment. The evolution of sedimentary environment is generalized into five units including unit of weak bioclastic deposition near-surface, unit of strong deposition in warm and wet period based on the factor analysis and spectroscopic information of DOM. Evolution of Quaternary sedimentary environment suggested by sediment profile at Shahu provides essential data for researches on the regional groundwater environmental problems.
-
Key words:
- Jianghan plain /
- sediments /
- shallow aquifer /
- evolution of sedimentary environment /
- hydrogeology
-
表 1 沉积物样品14C年龄数据
Table 1. 14C age data of sediment samples
样品编号 实验室编号 取样深度(m) 14C年龄(a BP) 日历年龄(cal a BP) 平均日历年龄(cal a BP) SH3-3 XA15932 3.2~3.5 4 490±30 5 298~5 040 5 170 SH3-5 XA15933 5.3~5.6 5 690±30 6 554~6 406 6 480 SH3-8 XA15935 8.8~9.1 8 865±40 10 770~9 781 10 280 SH3-10 XA15936 11.1~11.4 9 480±40 10 805~10 587 10 700 SH3-14 XA15939 16.3~16.6 16 810±60 20 486~20 066 20 280 SH3-16 XA15940 18.6~18.9 25 270±95 29 613~29 012 29 320 SH3-18 XA15941 21.5~21.8 29 930±130 34 286~33 746 34 020 表 2 特征性光谱学参数
Table 2. Parameter of characteristic spectroscopy
样品编号 提取DOM(mg·L-1) SUVA254 1/S275-295 A253/A220 SH3-3 3.32 2.22 68.03 0.323 1 SH3-5 3.55 1.17 120.48 0.403 0 SH3-6 3.92 1.55 120.48 0.426 7 SH3-8 3.48 1.75 166.67 0.333 3 SH3-13 2.51 1.52 120.48 0.205 9 SH3-14 2.88 1.53 105.26 0.277 8 SH3-16 2.75 1.66 87.72 0.295 5 SH3-18 2.19 1.78 117.65 0.340 9 表 3 沙湖沉积元素含量统计
Table 3. Oxide content of elements in the profile of Shahu
元素 SH3-2 SH3-5 SH3-6 SH3-8 SH3-13 SH3-14 SH3-16 SH3-18 均值 SiO2 62.42 59.02 57.42 55.92 64.25 58.17 63.31 64.29 60.60 Al2O3 14.47 18.89 19.92 13.90 16.52 21.03 16.17 11.86 16.59 Fe2O3 4.73 7.16 7.73 5.37 5.65 8.75 5.36 3.64 6.05 K2O 2.30 2.88 2.99 2.18 2.48 3.30 2.65 2.15 2.62 CaO 3.30 1.75 1.88 7.73 1.02 0.89 1.11 1.86 2.44 MgO 2.08 2.38 2.34 2.75 1.95 2.44 1.98 1.37 2.16 Na2O 1.85 1.03 0.88 1.37 1.59 0.85 1.66 2.06 1.41 TiO2 0.72 0.87 0.78 0.73 0.76 0.83 0.81 0.73 0.78 P2O5 0.20 0.19 0.21 0.18 0.20 0.20 0.26 0.24 0.21 ZrO2 0.04 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.03 Cr2O3 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 SrO 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 Rb2O 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 ZnO 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 表 4 氧化物的因子载荷
Table 4. Factor loadings of oxides
氧化物 因子载荷 F1 F2 F3 K2O -0.057 -0.068 Al2O3 -0.186 0.031 Rb2O -0.151 -0.142 SrO 0.157 -0.237 Fe2O3 -0.359 -0.076 ZnO -0.205 -0.030 TiO2 0.064 -0.016 Na2O 0.536 0.148 Cr2O3 0.293 0.430 SiO2 -0.327 0.182 MgO 0.370 0.229 P2O5 -0.080 -0.054 CaO -0.597 0.055 ZrO2 -0.077 -0.104 注:图中方框分别标注因子F1、F2、F3的元素组合对应的因子载荷. -
[1] Aller, R.C., 1998.Mobile Deltaic and Continental Shelf Muds as Suboxic, Fluidized Bed Reactors.Marine Chemistry, 61(3-4):143-155.doi: 10.1016/s0304-4203(98)00024-3 [2] Calvert, S.E., Pedersen, T.F., 1993.Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record.Marine Geology, 113(1-2):67-88.doi: 10.1016/0025-3227(93)90150-t [3] Chen, H., Liu, J., Wang, H.B., 2007.Geochemical Characteristics and Geological Significance of Major Elements in Surface Sediments in Qiongdongnan Area.Marine Geology & Quaternary Geology, 27(6):39-45(in Chinese with English abstract). https://www.researchgate.net/publication/296493789_Geochemical_characteristics_and_geological_significance_of_major_elements_in_surface_sediments_in_Qiongdongnan_area [4] Duan, Y.H., Gan, Y.Q., Guo, X.X., et al., 2014.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Monitoring Field, Jianghan Plain.Geological Science and Technology Information, 33(2):140-147 (in Chinese with English abstract). [5] Dypvik, H., Harris, N.B., 2001.Geochemical Facies Analysis of Fine-Grained Siliciclastics Using Th/U, Zr/Rb and (Zr+Rb)/Sr Ratios.Chemical Geology, 181(1-4):131-146.doi: 10.1016/s0009-2541(01)00278-9 [6] Fichot, C.G., Benner, R., 2012.The Spectral Slope Coefficient of Chromophoric Dissolved Organic Matter (S275-295) as a Tracer of Terrigenous Dissolved Organic Carbon in River-Influenced Ocean Margins.Limnology and Oceanography, 57(5):1453-1466.doi: 10.4319/lo.2012.57.5.1453 [7] Gan, Y.Q., Wang, Y.X., Duan, Y.H., et al., 2014.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China.Journal of Geochemical Exploration, 138:81-93.doi: 10.1016/j.gexplo.2013.12.013 [8] Huang, S.B., Wang, Y.X., Ma, T., et al., 2015.Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio-Lacustrine Aquifer at Jianghan Plain, China by EEM-PARAFAC and Hydrochemical Analyses.Science of the Total Environment, 529:131-139.doi: 10.1016/j.scitotenv.2015.05.051 [9] Jaffrain, J., Gérard, F., Meyer, M., et al., 2007.Assessing the Quality of Dissolved Organic Matter in Forest Soils Using Ultraviolet Absorption Spectrophotometry.Soil Science Society of America Journal, 71(6):1851.doi: 10.2136/sssaj2006.0202 [10] Jin, B.X., Deng, Z.R., Li, X.M., 1992.Comprehensive Study of Jianghan Lakes Area.Hubei Science and Technology Publishing House, Wuhan (in Chinese). [11] Li, F., Zhu, C., Wu, L., et al., 2014.Environmental Humidity Changes Inferred from Multi-Indicators in the Jianghan Plain, Central China during the last 12 700 Years.Quaternary International, 349:68-78.doi: 10.1016/j.quaint.2013.09.040 [12] Li, H.M., Deng, Y.M., Luo, L.M., et al., 2015.Geochemistry of High Arsenic Shallow Aquifers Sediment of the Jianghan Plain.Geological Science and Technology Information, 34(3):178-184(in Chinese with English abstract). [13] Lin, R.F., Wei, K.Q., 2000.A δ13C Record of the Organic Matter in Lacustrine Sediments of the Core ZHJ from Lake Caohai and Its Palaeoclimate Implications.Geochimica, 29(4):290-296 (in Chinese with English abstract). [14] Marta, F., Gustavo, G.G., José, M.G.M., 2006.The Usefulness of UV-Visible and Fluorescence Spectroscopies to Study the Chemical Nature of Humic Substances from Soils and Composts.Organic Geochemistry, 37:1949-1959. doi: 10.1016/j.orggeochem.2006.07.024 [15] Murray, R.W., Knowlton, C., Leinen, M., et al., 2000.Export Production and Terrigenous Matter in the Central Equatorial Pacific Ocean during Interglacial Oxygen Isotope Stage 11.Global and Planetary Change, 24(1):59-78.doi: 10.1016/s0921-8181(99)00066-1 [16] Ramsey, C.B., 2009.Bayesian Analysis of Radiocarbon Dates.Radiocarbon, 51(1):337-360.doi: 10.1017/s0033822200033865 [17] Shi, C.X., Mo, D.W., Mao, L.J., et al., 2009.The Impact of Middle to Late Holocene Environmental Changes on Human Activities in the Qujialing Region, Jingshan, Hubei Province.Earth Science Frontiers, 16(6):120-128(in Chinese with English abstract). [18] Song, Y.G., Yu, C.F., Zhang, Y.F., et al., 2016.Geochemical Characteristic of Trace Metals in Sediments of Liaodong Bay Based on Multivariate Statistical Analysis.Research of Environmental Sciences, 29(5):692-699 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKX201605010.htm [19] Sun, B.Y., 1990.Detrital Mineral Assemblages in the Huanghe, Changjiang and Zhujiang River Delta Sediments.Marine Geology & Quaternary Geology, 10(3):23-34 (in Chinese with English abstract). [20] Wang, J., Luo, Z.K., Wu, F.Q., 2008.Analysis on Structure and Diversity of Summer Bird Community of Shahu Wetland Nature Reserve in Xiantao of Hubei.Forest Inventory and Planning, 33(6):18-21(in Chinese with English abstract). [21] Wei, G.J., Liu, Y., Li, X.H., et al., 2003.High-Resolution Elemental Records from the South China Sea and their Paleoproductivity Implications.Paleoceanography, 18(2):1054-1065.doi: 10.1029/2002pa000826 [22] Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., et al., 2003.Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon.Environmental Science & Technology, 37(20):4702-4708.doi: 10.1021/es030360x [23] Wronkiewicz, D.J., Condie, K.C., 1987.Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa:Source-Area Weathering and Provenance.Geochimica et Cosmochimica Acta, 51(9):2401-2416.doi: 10.1016/0016-7037(87)90293-6 [24] Wu, J.L., Wang, S.M., Shen, J., 1996.Information of Climate and Environment Deduced from the Organic Matter δ13C of Lacustrine Sediments.Journal of Lake Sciences, 8(2):112-118(in Chinese with English abstract). [25] Xie, S.C., Hu, C.Y., Gu, Y.S., et al., 2015.Paleohydrological Variation since 13 ka BP in Middle Yangtze Region.Earth Science, 40(2):198-205(in Chinese with English abstract). [26] Xie, Y.Y., Li, C.A., Wang, Q.L., et al., 2007.Grain-Size Characteristics and their Environmental Significance of Jiangling Lake Sediments in Jianghan Plain.Journal of Jilin University:Earth Science Edition, 37(3):570-577(in Chinese with English abstract). [27] Xie, Y.Y., Li, C.A., Wang, Q.L., et al., 2008.Palynological Records of Early Human Activities in Holocene at Jiangling Area, Hubei Province.Scientia Geographica Sinica, 28(2):276-281(in Chinese with English abstract). [28] Yang, Z.S., Chen, X.H., 2007.Centurial High Resolution Records of Sediment Grain-Size Variation in the Mud Area off the Changjiang (Yangtze River) Estuary and Its Influential Factors.Quaternary Sciences, 27(5):690-699(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200705012.htm [29] Zeng, Y., Chen, J.G., Zhu, Z.J., et al., 2011.Advance and Prospective of Rb/Sr Ratios in Lake Sediments as an Index of Paleoclimate/Paleoenvironment.Advances in Earth Sciences, 26(8):805-810(in Chinese with English abstract). [30] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230 (in Chinese with English abstract). https://www.researchgate.net/publication/306173105_Sediment_magnetism_characteristics_and_its_climatic_environment_significance_of_northeast_margin_of_Jianghan_plain [31] Zhao, D.J., 2005.The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain(Dissertation).China University of Geosciences, Wuhan, 8-12 (in Chinese with English abstract). [32] 曾艳, 陈敬安, 朱正杰, 等, 2011.湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望.地球科学进展, 26(8):805-810. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm [33] 陈弘, 刘坚, 王宏斌, 2007.琼东南海域表层沉积物常量元素地球化学及其地质意义.海洋地质与第四纪地质, 27(6):39-45. http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201401011.htm [34] 段艳华, 甘义群, 郭欣欣, 等.2014.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析.地质科技情报, 33(2):140-147. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm [35] 金伯欣, 邓兆仁, 李新民, 1992.江汉湖群综合研究.武汉:湖北科学技术出版社. [36] 李红梅, 邓娅敏, 罗莉威, 等, 2015.江汉平原高砷含水层沉积物地球化学特征.地质科技情报, 34(3):178-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503025.htm [37] 林瑞芬, 卫克勤, 2000.草海ZHJ柱样沉积物有机质的δ13C记录及其古气候信息.地球科学, 29(4):390-396. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=DQHX200004012&DbName=CJFD2000&DbCode=CJFQ&yx=&pr= [38] 史辰羲, 莫多闻, 毛龙江, 等, 2009.京山屈家岭地区全新世中晚期环境变化及其对人类活动的影响.地学前缘, 16(6):120-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906019.htm [39] 宋永刚, 于彩芬, 张玉凤, 等, 2016.基于多元统计分析的辽东湾沉积物痕量金属地球化学特征.环境科学研究, 29(5):692-699. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201605010.htm [40] 孙白云, 1990.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质, 10(3):23-34. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199003002.htm [41] 王晶, 罗祖奎, 吴法清, 2008.湖北仙桃沙湖湿地自然保护区夏季鸟类群落结构及多样性分析.林业调查规划, 33(6):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-LDGH200806005.htm [42] 吴敬禄, 王苏民, 沈吉, 1996.湖泊沉积物有机质δ13C所揭示的环境气候信息.湖泊科学, 8(2):112-118. [43] 谢树成, 胡超涌, 顾延生, 等, 2015.最近13 ka以来长江中游古水文变化.地球科学, 40(2):198-205. http://www.earth-science.net/WebPage/Article.aspx?id=3178 [44] 谢远云, 李长安, 王秋良, 等, 2007.江汉平原江陵湖泊沉积物粒度特征及气候环境意义.吉林大学学报:地球科学版, 37(3):570-577. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200703024.htm [45] 谢远云, 李长安, 王秋良, 等, 2008.江陵地区全新世早期人类活动的孢粉记录.地理科学, 28(2):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200802026.htm [46] 杨作升, 陈晓辉, 2007.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨.第四纪研究, 27(5):690-699. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200705012.htm [47] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225 [48] 赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学, 8-12.