• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于无人机遥感的河流阶地提取

    李辉 余忠迪 蔡晓斌 胡尊语

    李辉, 余忠迪, 蔡晓斌, 胡尊语, 2017. 基于无人机遥感的河流阶地提取. 地球科学, 42(5): 734-742. doi: 10.3799/dqkx.2017.061
    引用本文: 李辉, 余忠迪, 蔡晓斌, 胡尊语, 2017. 基于无人机遥感的河流阶地提取. 地球科学, 42(5): 734-742. doi: 10.3799/dqkx.2017.061
    Li Hui, Yu Zhongdi, Cai Xiaobin, Hu Zunyu, 2017. River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing. Earth Science, 42(5): 734-742. doi: 10.3799/dqkx.2017.061
    Citation: Li Hui, Yu Zhongdi, Cai Xiaobin, Hu Zunyu, 2017. River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing. Earth Science, 42(5): 734-742. doi: 10.3799/dqkx.2017.061

    基于无人机遥感的河流阶地提取

    doi: 10.3799/dqkx.2017.061
    基金项目: 

    国家自然科学基金项目 41391240191

    中国地质调查局项目 No.DD20160255

    国家自然科学基金项目 Nos.41201429

    详细信息
      作者简介:

      李辉(1979-),男,副教授,主要从事遥感地学应用等研究.ORCID:0000-0001-9275-5408.E-mall:leelmars@gmail.com

    • 中图分类号: P904

    River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing

    • 摘要: 河流阶地记录了河流演变过程中因构造抬升或气候变化引起的侵蚀基准面变化的信息,阶地的提取与划分对于新构造研究与古气候重建有着重要的意义,在分析传统阶地提取方法不足的基础上,提出了一种利用无人机遥感进行阶地提取的新方法.该方法利用无人机航拍影像和高精度地面控制点,通过基于计算机视觉的多视立体运动恢复结构(structure from motion with multi-view stereo, SfM-MVS)技术自动生成研究区高分辨率的正射影像和数字表面模型(digital surface model,DSM),在此基础上根据河流阶地的几何特征,利用高程、坡度及影像灰度等统计量实现阶地信息的提取.利用这一方法对汉江支流蛮河下游河段的阶地进行了提取试验.结果表明,该方法能够提取到两级河流阶地和一级河漫滩信息,提取结果与野外实测结果有较好的一致性.与传统阶地提取方法相比,该方法具有精度好、效率高、可视化效果全面直观等优势,显示出无人机遥感在河流地貌学研究中的巨大优势和广阔应用前景.

       

    • 图  1  Phantom 4无人机及地面控制系统

      Fig.  1.  Phantom 4 UAV and ground control system

      图  2  研究区位置

      Fig.  2.  Location of the study area

      图  3  地面控制点测量

      Fig.  3.  Ground control points measurement

      图  4  研究河段无人机航线规划

      Fig.  4.  UAV flight planning for the study reach

      图  5  研究河段正射影像(a)和DSM(b)

      Fig.  5.  Orthomosaic (a) and DSM (b) of the study reach

      图  6  研究河段阶地提取结果

      Fig.  6.  Extracted terraces in the study reach

      图  7  研究河道左岸(a)和右岸(b)阶地剖面

      Fig.  7.  Elevation profiles of terraces in the left (a) and right (b) bank of the study reach

      图  8  研究区左岸(a)右岸(b)阶地野外验证

      Fig.  8.  Field validation of extracted terraces in the left (a) and right (b) bank of the study reach

      表  1  相机参数

      Table  1.   Camera parameters

      焦距(mm) 主像点x (mm-1) 主像点y (mm-1) R1 R2 R3 T1 T2
      初始值 3.722 3.159 2.369 -0.001 -0.002 0.000 -0.001 -0.001
      校正值 3.417 3.180 2.296 -0.007 0.005 0.005 -0.001 0.000
       注:R1R2R3.相机镜头径向畸变参数;T1T2.相机镜头切向畸变参数.
      下载: 导出CSV

      表  2  检查点误差

      Table  2.   Errors of check points

      编号 X(m) Y(m) Z(m)
      1 0.086 9 -0.006 1 -0.198 7
      2 0.065 7 -0.022 1 -0.093 8
      3 0.004 3 -0.044 2 0.063 5
      4 0.005 2 -0.021 7 0.096 8
      5 -0.059 0 0.056 9 -0.055 6
      6 -0.064 1 -0.010 0 0.146 8
      7 -0.025 9 0.097 7 -0.095 5
      RMSE(m) 0.053 7 0.047 6 0.116 7
      下载: 导出CSV

      表  3  阶地高度信息

      Table  3.   Statistics of extracted terraces

      阶地 前缘高度(m) 后缘高度(m) 面积(m2)
      左岸 右岸 左岸 右岸 左岸 右岸
      T0 122.8 122.6 123.9 123.1 27 721.2 4 767.8
      T1 124.5 123.8 125.3 124.6 7 373.2 1 422.0
      T2 126.1 125.9 126.3 126.2 1 357.5 488.5
      下载: 导出CSV
    • [1] Del Val, M., Iriarte, E., Arriolabengoa, M., et al., 2015.An Automated Method to Extract Fluvial Terraces from LIDAR Based High Resolution Digital Elevation Models:The Oiartzun Valley, a Case Study in the Cantabrian Margin.Quaternary International, 364:35-43.doi: 10.1016/j.quaint.2014.10.030
      [2] Demoulin, A., Bovy, B., Rixhon, G., et al., 2007.An Automated Method to Extract Fluvial Terraces from Digital Elevation Models:The Vesdre Valley, a Case Study in Eastern Belgium.Geomorphology, 91(1-2):51-64.doi: 10.1016/j.geomorph.2007.01.020
      [3] Diaz-Varela, R.A., Zarco-Tejada, P.J., Angileri, V., et al., 2014.Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle.Journal of Environmental Management, 134(4):117-126.doi: 10.1016/j.jenvman.2014.01.006
      [4] Erlanger, E.D., Granger, D.E., Gibbon, R.J., 2012.Rock Uplift Rates in South Africa from Isochron Burial Dating of Fluvial and Marine Terraces.Geology, 40(11):1019-1022.doi: 10.1130/g33172.1
      [5] Gonalves, J.A., Henriques, R., 2015.UAV Photogrammetry for Topographic Monitoring of Coastal Areas.ISPRS Journal of Photogrammetry and Remote Sensing, 104:101-111.doi: 10.1016/j.isprsjprs.2015.02.009
      [6] Gong, H.L., Ran, Y.K., 2015.Digital Terrain Analysis of Anning River Terraces Based on SPOT Image.North China Earthquake Sciences, 33(3):31-36(in Chinese with English abstract).
      [7] Gong, H.L., Ran, Y.K., Chen, L.C., 2008.The Method of Terrace Analysis Based on Dem—A Case Study in Zimakua of Anninghe Fault.Seismology and Geology, 30(1):339-348 (in Chinese with English abstract). https://www.researchgate.net/publication/286960856_The_method_of_terrace_analysis_based_on_DEM_-_A_case_study_in_Zimakua_of_Anninghe_Fault
      [8] Han, F., Zhang, K.X., Wei, Y., et al., 2010.Sedimentary Sequences and Paleoclimate of Late Pleistocene in Xunhua Basin, Qinghai Province.Earth Science, 35(5):849-856(in Chinese with English abstract).
      [9] Hu, X.F., Pan, B.T., Gao, H.S., et al., 2013.Development of Holocene Fluvial Terraces in the Eastern Qilianshan Mountain and Its Relationship with Climatic Changes.Quaternary Sciences, 33(4):723-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201304010.htm
      [10] Jin, W., Ge, H.L., Du, H.Q., et al., 2009.A Review on Unmanned Aerial Vehicle Remote Sensing and Its Application.Remote Sensing Information, (1):88-92(in Chinese with English abstract).
      [11] Lewin, J., Gibbard, P.L., 2010.Quaternary River Terraces in England:Forms, Sediments and Processes.Geomorphology, 120(3-4):293-311.doi: 10.1016/j.geomorph.2010.04.002
      [12] Li, B., Liu, R.Y., Liu, S.H., et al., 2012.Monitoring Vegetation Coverage Variation of Winter Wheat by Low-Altitude UAV Remote Sensing System.Transactions of the Chinese Society of Agricultural Engineering, 28(13):160-165(in Chinese with English abstract).
      [13] Lowe, D.G., 2004.Distinctive Image Features from Scale-Invariant Key Points.International Journal of Computer Vision, 60(2):91-110.doi: 10.1023/b:visi.0000029664.99615.94
      [14] Pang, J.L., Huang, C.C., Zhou, Y.L., et al., 2014.Formation of the First River Terraces of Hanjiang River and Its Response to the East Asian Monsoon Change.Geological Review, 60(5):1076-1084(in Chinese with English abstract).
      [15] Passaro, S., Ferranti, L., de Alteriis, G.D., 2011.The Use of High-Resolution Elevation Histograms for Mapping Submerged Terraces:Tests from the Eastern Tyrrhenian Sea and the Eastern Atlantic Ocean.Quaternary International, 232(1-2):238-249.doi: 10.1016/j.quaint.2010.04.030
      [16] Schildgen, T.F., Cosentino, D., Bookhagen, B., et al., 2012.Multi-Phased Uplift of the Southern Margin of the Central Anatolian Plateau, Turkey:A Record of Tectonic and Upper Mantle Processes.Earth and Planetary Science Letters, 317-318:85-95.doi: 10.1016/j.epsl.2011.12.003
      [17] D'Oleireoltmanns, S., Marzolff, I., Peter, K.D., et al., 2012.Unmanned Aerial Vehicle(UAV) for Monitoring Soil Erosion in Morocco.Remote Sensing, 4(11):3390-3416.
      [18] Smith, M.W., Carrivick, J.L., Quincey, D.J., 2015.Structure from Motion Photogrammetry in Physical Geography.Progress in Physical Geography, 40(2):247-275.doi: 10.1177/0309133315615805
      [19] Song, Z.Q., Zhang, J.L., Li, J.J., 2014.A Clustering Approach for Incorporation Spatial Dependence into the Automatic Fluvial Terrace Extraction from Digital Elevation Model:A Case Study from the Zhangla Basin along the Upstream of the Minjiang River.Seismology and Geology, 36(4):1029-1042 (in Chinese with English abstract).
      [20] Tonkin, T.N., Midgley, N.G., Graham, D.J., et al., 2014.The Potential of Small Unmanned Aircraft Systems and Structure-from-Motion for Topographic Surveys:A Test of Emerging Integrated Approaches at Cwm Idwal, North Wales.Geomorphology, 226(1-2):35-43.doi: 10.1016/j.geomorph.2014.07.021
      [21] Turner, D., Lucieer, A., Watson, C., 2012.An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds.Remote Sensing, 4(12):1392-1410.doi: 10.3390/rs4051392
      [22] Wang, P.T., Shao, Y.X., Zhang, H.P., et al., 2016.The Application of sUAV Photogrammetry in Active Tectonics:Shanmagou Site of Haiyuan Fault, for Example.Quaternary Sciences, 36(2):433-442 (in Chinese with English abstract).
      [23] Wei, Z.Y., Ramon, A., He, H.L., et al., 2015.Accuracy Analysis of Terrain Point Cloud Acquired by "Structure from Motion" Using Aerial Photos.Seismology and Geology, 37(2):636-648(in Chinese with English abstract).
      [24] Xiang, F., Zhu, L.D., Wang, C.S., et al., 2005.Terrace Age Correlation and Its Significance in Research of Yangtze Three Gorges, China.Journal of Chengdu University of Technology(Science & Technology Edition), 32(2):162-166(in Chinese with English abstract).
      [25] Zhang, Z.L., Wu, S.R., Tang, H.M., et al., 2015.Control Effect of Evolution Process of the Yellow River Terrace in Lanzhou on Landslide Activity.Earth Science, 40(9):1585-1597(in Chinese with English abstract).
      [26] 宫会玲, 冉勇康, 2015.基于SPOT影像的安宁河阶地数字地形分析.华北地震科学, 33(3):31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD201503008.htm
      [27] 宫会玲, 冉勇康, 陈立春, 2008.基于DEM的阶地分析方法——以安宁河断裂紫马跨地区为例.地震地质, 30(1):339-348. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801026.htm
      [28] 韩芳, 张克信, 韦一, 等, 2010.青海循化盆地晚更新世沉积序列与古气候.地球科学, 35(5):849-856. http://www.earth-science.net/WebPage/Article.aspx?id=2029
      [29] 胡小飞, 潘保田, 高红山, 等, 2013.祁连山东段全新世河流阶地发育及其与气候变化的关系研究.第四纪研究, 33(4):723-736. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201304010.htm
      [30] 金伟, 葛宏立, 杜华强, 等, 2009.无人机遥感发展与应用概况.遥感信息, (1):88-92. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200901020.htm
      [31] 李冰, 刘镕源, 刘素红, 等, 2012.基于低空无人机遥感的冬小麦覆盖度变化监测.农业工程学报, 28(13):160-165. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201213027.htm
      [32] 庞奖励, 黄春长, 周亚利, 等, 2014.汉江上游Ⅰ级河流阶地形成及对东亚季风变化的响应.地质论评, 60(5):1076-1084. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201405013.htm
      [33] 宋卓沁, 张军龙, 李建军, 2014.基于模糊聚类和空间自相关性的河流阶地自动提取方法——以岷江上游漳腊盆地为例.地震地质, 36(4):1029-1042. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404008.htm
      [34] 王朋涛, 邵延秀, 张会平, 等, 2016.sUAV摄影技术在活动构造研究中的应用——以海原断裂骟马沟为例.第四纪研究, 36(2):433-442. http://cdmd.cnki.com.cn/Article/CDMD-85402-1015543026.htm
      [35] 魏占玉, Ramon, A., 何宏林, 等, 2015.基于SfM方法的高密度点云数据生成及精度分析.地震地质, 37(2):636-648. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502024.htm
      [36] 向芳, 朱利东, 王成善, 等, 2005.长江三峡阶地的年代对比法及其意义.成都理工大学学报(自然科学版), 32(2):162-166. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG20050200A.htm
      [37] 张泽林, 吴树仁, 唐辉明, 等, 2015.兰州黄河阶地演变过程对滑坡活动的控制效应.地球科学, 40(9):1585-1597. http://www.earth-science.net/WebPage/Article.aspx?id=3162
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  4561
    • HTML全文浏览量:  1745
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-16
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回