Estimation of Hydrogeological Parameters for Representative Aquifers in Jianghan Plain
-
摘要: 含水层参数对于定性分析区域地下水资源评价、数值模拟及预报、开发利用与保护及科学管理具有重要意义,而江汉平原水文地质参数求解的研究却相对较少.2015年江汉平原1:50 000水文地质调查项目完成杨林尾图幅与陆溪口图幅,选择杨林尾图幅和陆溪口图幅中的4个代表性钻孔,分别做了3组抽水试验和一组压水试验.对抽水数据使用Dupuit公式法结合抽水稳定阶段数据求解含水层参数,同时利用Aquifer Test软件中Theis标准曲线法、直线图解法对抽水试验中非稳定条件下抽水数据对含水层参数求解,得到孔隙水含水层渗透系数及弹性给水度;利用压水试验工程规范求解基岩裂隙含水层的渗透系数.探讨了利用非稳定抽水试验条件下求解含水层参数方法的可行性及该方法的优势.计算结果表明:杨林尾镇浅层(20.2~64.55 m)含水层渗透系数为0.075 m/d,弹性给水度为5.8×10-2;深层(138~160 m)含水层渗透系数为9.89 m/d,弹性给水度为2.3×10-5;陆溪口镇浅层(19.4~36.4 m)含水层渗透系数1.26 m/d,弹性给水度为1.1×10-1;基岩渗透系数为0.012 m/d.通过结果对比分析发现对于单孔非稳定抽水试验,对前期水位降深数据筛选分析,同样可以利用非稳定井流理论反演含水层参数,结果比较可靠.Abstract: Hydrogeological parameter inversion is very important for the analysis, numerical simulation and forecast, utilization and protection of regional groundwater resource evaluation. However, the relevant researches of Janhan plain are not enough. The Yanglinwei map and the Luxikou map of the Jianghan plain 1:50 000 hydrogeology survey projects were completed in 2015. The widely distributed boreholes had provided reliable information for exploring the local hydrogeological conditions. In this study, pumping test was conducted in three representative boreholes and packer test was conducted in one representative borehole. The software Aquifer Test associated with Theis model and Cooper & Jacob model were used to estimate the aquifer parameters associated with the transient pumping test data. In addition, the Dupuit model was also used to calculate the aquifer parameters with the quasi steady-state pumping test data. Finally, the feasibility and advantages of different methods proposed in this study are also thoroughly discussed. The results show that the hydraulic conductivity of the shallow aquifer in Yanglinwei is 0.075 m/d and the corresponding storage coefficient is 5.8×10-2. The hydraulic conductivity and the storage coefficient of the deep aquifer are 9.89 m/d and 2.3×10-5. The hydraulic conductivity and the storage coefficient of the shallow aquifer in Luxikou are 1.26 m/d and 1.1×10-1. The average hydraulic conductivity of the fractured rocks is 0.012 m/d. It was also found that for a pumping test without an observation well, the selected drawdown data inside the well can also be used to estimate the aquifer parameters and the results are reliable.
-
Key words:
- pumping test /
- packer test /
- analytical method /
- hydrogeology
-
表 1 杨林尾、陆溪口水文钻孔信息
Table 1. The information of the boreholes in Yanglinwei and Luxikou Town
钻孔编号 位置 孔径(cm) 孔深(m) 滤水管(m) 含水层岩性 YLW01 复兴水厂 33 201.00 138.00~160.00 粗砂、中砂 YLW02 南套村 16 81.00 20.20~64.55 细砂夹少量中砂 LXK01 硚口村 16 50.38 30.38~50.38 第三系灰岩 LXK02 石桥村 16 56.00 19.40~36.40 中砂夹细砂 表 2 抽水试验过程记录
Table 2. Details of the pumping tests
孔号 开泵时间 停泵时间 初始流量(m3/d) 稳定流量(m3/d) 最大降深(m) YLW01 8:00 11:30 984.0 984.0 5.50 YLW02 10:15 13:50 213.0 122.4 23.50 LXK02 9:00 11:52 285.0 201.6 19.10 表 3 Dupuit公式法含水层参数反演结果
Table 3. Parameters calculated by Dupuit method
孔号 孔径rw(cm) 流量Q(m3/d) 含水层厚度M(m) 降深sw(m) 影响半径R(m) 渗透系数K(m/d) YLW01 16.5 984.0 22.00 5.3 164.82 8.98 YLW02 8.0 122.4 44.35 23.5 84.73 0.13 LXK02 9.0 201.6 17.00 19.1 94.47 1.93 表 4 非稳定抽水试验数据拟合参数结果
Table 4. Estimated aquifer parameters with the transient pumping test data
孔号 滤水管深(m) 标准曲线拟合结果 线性拟合结果 K平均值(m/d) S平均值 渗透系数K(m/d) 弹性给水度S 渗透系数K(m/d) 弹性给水度S YLW01 138.00~160.00 9.90 4.55×10-5 11.72 2.40×10-6 10.810 2.3×10-5 YLW02 20.20~64.55 0.03 3.83×10-2 0.02 7.77×10-2 0.025 5.8×10-2 LXK02 19.40~36.40 0.48 1.09×10-3 0.15 1.08×10-1 0.580 1.1×10-1 表 5 岩层渗透系数计算值
Table 5. Results of rock permeability
压力阶段(MPa) 流量(L/min) 试段长度(m) 渗透率(mD) 渗透系数K(m/d) 0.3 2.37 5.0 0.0227 0.014 0.6 3.85 5.0 0.0183 0.012 1.0 6.36 5.0 0.0182 0.011 -
[1] Chen, X.L., Wen, Z., Hu, J.S., et al., 2016.Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations.Earth Science, 41(4):701-710(in Chinese with English abstract). [2] Christensen, S., Zlotnik, V.A., Tartakovsky, D.M., 2009.Optimal Design of Pumping Tests in Leaky Aquifers for Stream Depletion Analysis.Journal of Hydrology, 375(3-4):554-565.doi: 10.1016/j.jhydrol.2009.07.006 [3] Gong, Y.W., Zhang, L.W., Teng, K., 2008.A New Method of Calculating Hydrological Parameter Based on Some Data of the Unsteady Flow Pumping Water Test.Groundwater, 30(4):16-17, 26 (in Chinese with English abstract). [4] Guo, J.Q., Zhou, H.F., Li, Y., 2008.Multi Straight Line Analytical Method for Estimating Aquifer Parameters from Recovery Test Data.Rock and Soil Mechanics, 29(12):3246-3250(in Chinese with English abstract). [5] Jacob, C.E., 1947.Drawdown Test to Determine Effective Radius of Artesian Well.Trans.Am.Soc.Civ.Eng., 112, 1047-1070. [6] Kang, Y.L., 1987.The Stratigraphic Division and Palaeoclimate-Divided Stage of Quaternary Period in Jianghan Plain.Hubei Geology, 1(1):1-10 (in Chinese with English abstract). [7] Liu, J., Li, H., 2012.Method to Calculate Confined Aquifer Hydrogeological Parameter by Single Pumping Test.West-China Exploration Engineering, 24(7):186-188(in Chinese). [8] Liu, Y., Shao, J.L., Chen, C.S., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932(in Chinese with English abstract). [9] Ministry of Water Resources and Electric Power of the People's Republic of China, 1979.Water Pressure Test Code for Water Conservancy and Hydropower Engineering SDJ16-78.Water Resources and Electric Power Press, Beijing (in Chinese). [10] Neuman, S.P., 1975.Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response.Water Resources Research, 11(2):329-342.doi: 10.1029/wr011i002p00329 [11] Nie, Q.L., Gao, G.D., Xue, H.S., et al., 2009.Methods of Determining Parameters of a Confined Aquifer with Pumping Tests.Hydrogeology & Engineering Geology, 36(4):37-40, 49 (in Chinese with English abstract). [12] Raymond, J., Therrien, R., Gosselin, L., et al., 2011.A Review of Thermal Response Test Analysis Using Pumping Test Concepts.Ground Water, 49(6):932-945.doi: 10.1111/j.1745-6584.2010.00791.x [13] Thrailkill, J., 1988.Drawdown Interval Analysis:A Method of Determining the Parameters of Shallow Conduit Flow Carbonate Aquifers from Pumping Tests.Water Resources Research, 24(8):1423-1428.doi: 10.1029/wr024i008p01423 [14] Van Everdingen, A.F., 1953.The Skin Effect and Its Influence on the Productive Capacity of a Well.Journal of Petroleum Technology, 5(6):171-176.doi: 10.2118/203-g [15] Wang, Q.L., Li, C.A., 2008.Markov Chain in Quaternary Sedimentary Environment of Jianghan Plain.Geological Science and Technology Information, 27(1):38-41, 46 (in Chinese with English abstract). [16] Xiao, M, G., Chen, X.J., Liu, B.C., 2003.Hydrogeology Parameter Calculation in Water Gushing Test of Constant Drawdown Yield in Infinite Confined Aquifer Where Gushing in the Main Hole is Observed from Several Other Holes.Earth Science, 28(5):575-578 (in Chinese with English abstract). [17] Xiao, X.F., 1987.Application of Microcomputer in Analysing Parameters of Water-Bearing Formation:A Method of Common Standard Curve.China Karst, 6(2):101-110 (in Chinese with English abstract). [18] Xu, G.S., 1992.Simplified Methods of Calculating Permeability.Northeast China Water Conservancy and Hydropower, 10(12):21-23, 7 (in Chinese). [19] Xue, Y.Q., Zhu, X.Y., 1999.Groundwater Dynamics.Geological Publishing House, Beijing, 66-72(in Chinese). [20] Zeng, Z.H., 1996.The Exploitation, Utilization and Protection of Groundwater Resource in the Eastern Area of Jianghan Plain.Resources and Environment in the Yangtze Valley, 5(4):375-378 (in Chinese with English abstract). [21] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230 (in Chinese with English abstract). https://www.researchgate.net/publication/306173105_Sediment_magnetism_characteristics_and_its_climatic_environment_significance_of_northeast_margin_of_Jianghan_plain [22] Zhou, Z.F., Tang, R.L., Wang, B., 1999.Determination of Hydrogeological Parameters of Leakey Aquifer Based on Pumping Test Data of Partially Penetrating Well near the Boundary.Journal of Hohai University, 27(3):5-8 (in Chinese with English abstract). [23] 陈晓恋, 文章, 胡金山, 等, 2016.解析法与数值法在水电站防渗墙效果评价中的运用.地球科学, 41(4):701-710. http://www.earth-science.net/WebPage/Article.aspx?id=3287 [24] 巩彦文, 张丽伟, 滕凯, 2008.利用非稳定流抽水试验资料求解水文地质参数的新方法.地下水, 30(4):16-17, 26. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU200804005.htm [25] 郭建青, 周宏飞, 李彦, 2008.分析含水层水位恢复数据的多次直线解析法.岩土力学, 29(12):3246-3250. doi: 10.3969/j.issn.1000-7598.2008.12.012 [26] 康悦林, 1987.江汉平原第四纪地层划分与古气候分期.湖北地质, 1(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK198701001.htm [27] 刘璟, 李辉, 2012.单井抽水试验计算承压含水层水文地质参数方法探讨.西部探矿工程, 24(7):186-188. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201207061.htm [28] 刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5):925-932. http://www.earth-science.net/WebPage/Article.aspx?id=3084 [29] 中华人民共和国水利电力部编, 1979. 水利水电工程钻孔压水试验规程SDJ16-78. 北京: 水利电力出版社. [30] 聂庆林, 高广东, 轩华山, 等, 2009.抽水试验确定承压含水层参数方法探讨.水文地质工程地质, 36(4):37-40, 49. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200904011.htm [31] 王秋良, 李长安, 2008.马尔柯夫链在江汉平原第四纪沉积环境分析中的应用.地质科技情报, 27(1):38-41, 46. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200801007.htm [32] 肖明贵, 陈学军, 刘宝臣, 2003.无限承压含水层中主孔涌水多孔观测定降深井流试验水文地质参数计算.地球科学, 28(5):575-578. http://www.earth-science.net/WebPage/Article.aspx?id=1297 [33] 潇湘峰, 1987.微机在分析含水层参数中的应用——通用标准曲线法.中国岩溶, 6(2):101-110. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198702001.htm [34] 许光森, 1992.渗透系数的简易计算方法.东北水利水电, 10(12):21-23, 7. http://www.cnki.com.cn/Article/CJFDTOTAL-DBSL199212007.htm [35] 薛禹群, 朱学愚, 1999.地下水动力学.北京:地质出版社, 66-72. [36] 曾昭华, 1996.江汉平原东部地区地下水资源的开发利用与保护.长江流域资源与环境, 5(4):375-378. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY604.016.htm [37] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225 [38] 周志芳, 汤瑞凉, 汪斌, 1999.基于抽水试验资料确定含水层水文地质参数.河海大学学报(自然科学版), 27(3):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199903001.htm