Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China
-
摘要: 江汉平原被确认为我国南方新的饮水型砷中毒病区,目前对于江汉平原高砷地下水的成因机理研究还有待完善.综合运用水文地球化学分析与PHREEQC地球化学模拟计算,分析了地下水和沉积物中REE分异特征及其沿地下水流向形态变化规律.江汉平原地下水REE含量为0.032~0.843 μg/L,富集LREE,具显著Eu正异常,且地下水中Eu异常与As含量呈正相关关系.地下水中REE形态主要以LnCO3+及Ln(CO3)2-为主,沿地下水流向LnCO3+降低、Ln(CO3)22-升高.地下水REE浓度分布受到HCO3-的络合作用及Fe氧化物矿物的还原性解吸附过程控制,径流途径中继承沉积物矿物的REE配分模式及Fe氧化物矿物对LREE的优先解吸附可能是地下水富集LREE的原因,并且沿流向上REE形态分布受到pH控制.研究区中Eu含量及Eu正异常对地下水As富集程度具有一定的指示意义.Abstract: Jianghan plain has been determined as a new endemic arsenic-poisoning area in the southern China. In order to understand the role of rare earth elements (REE)on arsenic mobilization in groundwater from the Jianghan plain, REE concentrations were measured in 114 groundwater samples and 9 sediment samples from the shallow arsenic-affected aquifer system and the REE speciations along the groundwater flow path were caculated by the hydrogeochemical PHREEQC simulation. The results indicate that the REE concentrations range from 0.032 to 0.843 μg/L. The groundwater exhibite the enrichment of LREE and dramatically positive Eu anomalies, and the Eu anomalies are positively correlated with As concentration. The REE speciation mainly existes as LnCO3+ and Ln(CO3)2-, meanwhile the LnCO3+ concentrations decrease and Ln(CO3)22- concentrations increased along the regional groundwater flow path. The distribution of REE concentrations was mainly affected by the complexation with HCO3- and the reductive dissolution of iron oxide minerals. The enrichment of LREE in the groundwater was affected by the REE distribution patterns of minerals in the aquifer and the preferential desorption with LREE of iron oxide minerals, and the REE speciation was controlled by the pH along the groundwater flow path. The Eu concentrations and positive Eu anomalies could indicate the enrichment of arsenic in the groundwater.
-
Key words:
- arsenic /
- groundwater /
- REE speciation /
- Eu anomaly /
- REE distribution pattern /
- Jianghan plain /
- hydrogeology
-
表 1 江汉平原高砷地下水水化学及微量元素含量特征
Table 1. Water chemistry and concentrations of trace elements of high arsenic groundwater from Jianghan plain
采样点编号 经度 纬度 pH Cl-
(mg/L)SO42-
(mg/L)AsTotal
(μg/L)Fe
(mg/L)Mn
(mg/L)NO3-
(mg/L)U
(μg/L)HCO3-
(mg/L)JH001 113°40′39.37″ 30°09′24.70″ 7.15 6.15 0.00 1.00 0.80 1.55 2.51 4.034 592 JH002 113° 40′40.76″ 30°09′24.39″ 7.12 4.38 0.03 155 5.76 2.28 2.43 0.028 581 JH003 113° 40′41.41″ 30°09′24.01″ 7.09 4.28 0.09 108 5.68 2.45 2.29 0.006 567 JH004 113° 40′38.41″ 30°09′24.13″ 7.13 3.59 0.00 532 9.65 4.60 2.55 0.004 543 JH005 113° 40′40.22″ 30°09′23.80″ 7.22 4.13 0.00 18.6 0.02 2.35 2.56 1.177 597 JH006 113° 40′36.39″ 30°09′24.24″ 7.03 3.58 0.11 64.2 7.41 0.83 2.33 0.006 510 JH007 113° 40′37.66″ 30°09′24.21″ 7.05 3.69 0.02 75.1 9.16 1.25 2.43 0.003 509 JH012 113° 40′53.73″ 30°08′40.38″ 7.07 3.69 0.11 54.1 7.64 1.06 2.44 0.001 516 JH014 113° 41′07.89″ 30°08′20.89″ 7.11 0.46 0.14 6.40 3.96 0.31 2.30 0.008 472 JH016 113° 39′17.79″ 30°08′17.84″ 6.91 7.66 0.09 83.8 9.04 0.69 2.59 0.003 563 JH018 113°36′40.87″ 30°10′51.08″ 7.03 3.16 0.04 632 11.76 2.32 0.03 0.003 675 JH021 113°37′26.65″ 30°10′25.08″ 6.97 5.52 0.00 110 4.57 2.00 0.16 0.005 631 JH024 113°36′25.87″ 30°23′19.85″ 6.56 40.7 57.8 1.10 ND 2.56 7.71 4.654 415 JH031 113°24′45.79″ 30°10′49.19″ 6.77 9.73 2.45 44.8 9.01 0.24 0.03 0.005 435 JH038 113°29′38.80″ 30°04′02.70″ 7.48 4.80 0.06 2320 1.34 1.54 6.83 0.006 553 JH044 113°29′38.45″ 30°04′00.60″ 7.51 1.20 0.05 1510 4.82 0.91 4.05 0.002 439 JH045 113°29′41.40″ 30°04′00.58″ 7.06 1.16 0.02 323 0.75 1.47 0.08 0.005 517 JH047 113°29′50.84″ 30°03′58.42″ 7.24 1.60 0.08 24.9 3.31 1.19 0.22 0.004 462 JH051 113°30′28.89″ 30°03′33.40″ 7.25 0.97 0.06 8.43 1.81 0.12 0.20 0.002 486 JH056 113°22′28.04″ 30°11′17.01″ 6.87 7.70 0.07 51.3 12.95 0.12 0.26 0.006 469 JH057 113°45′35.10″ 30°07′05.95″ 7.15 4.94 0.09 387 1.08 0.35 0.13 0.004 532 JH058 113°45′33.65″ 30°07′06.40″ 7.27 6.25 0.08 188 2.39 0.07 0.08 0.007 530 JH061 113°45′29.86″ 30°07′04.41″ 7.25 0.48 0.05 111 3.40 0.08 0.02 0.012 530 JH067 113°45′33.67″ 30°07′02.92″ 7.33 4.45 0.06 95.8 3.96 0.08 0.10 0.005 531 JH068 113°45′33.00″ 30°07′02.42″ 7.33 4.90 0.07 122 4.17 0.10 0.18 0.009 519 JH072 113°27′05.38″ 30°04′46.52″ 6.95 71.7 0.02 9.80 8.46 0.30 0.24 0.002 521 JH076 113°50′08.88″ 30°03′43.47″ 7.24 1.45 0.03 180 2.45 0.09 0.22 0.002 613 JH080 113°47′14.32″ 30°07′47.75″ 7.34 10.9 0.11 47.5 1.85 0.08 0.39 0.002 552 JH088 112°51′47.54″ 30°28′8.42″ 6.70 39.3 101 8.55 0.64 0.80 0.06 4.920 769 JH089 112°57′10.89″ 30°25′18.19″ 6.64 70.8 34.2 0.57 0.34 0.47 0.01 0.851 799 JH091 112°45′14″ 30°30′44.3″ 6.75 6.29 2.45 22.1 12.3 0.18 0.07 0.096 783 JH111 113°36′38.39″ 30°10′50.71″ 6.99 4.51 0.04 21.6 3.09 2.68 0.03 0.012 638 JH113 113°37′26.65″ 30°10′25.08″ 6.97 5.52 0.00 1.28 6.87 8.45 0.09 5.795 631 JH114 113°39′10.18″ 30°10′11.83″ 7.11 3.95 0.07 71.6 12.4 11.39 0.01 0.149 511 注:“ND”表示not detected,即未测出结果. 表 2 江汉平原高砷地下水稀土元素含量(μg/L)特征
Table 2. Concentrations of REEs (μg/L) in high arsenic groundwater from Jianghan plain
采样点编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE [La/Yb]N [Er/Nd]N Eu/Eu* Ce/Ce* JH001 0.033 6 0.072 8 0.007 2 0.023 2 0.008 9 0.007 7 0.005 9 0.001 3 0.008 9 0.001 7 0.014 1 0.001 2 0.007 5 0.001 9 0.195 9 3.04 0.61 3.24 1.10 JH002 0.016 2 0.033 8 0.003 2 0.011 2 0.001 8 0.024 6 0.002 9 0.000 7 0.002 5 0.000 6 0.003 6 0.000 2 0.002 1 0.000 4 0.103 8 5.19 0.32 33.21 1.09 JH003 0.008 4 0.010 6 0.000 7 0.003 4 0.003 3 0.022 0 0.000 9 0.000 4 0.000 9 0.000 4 0.001 7 0.000 3 0.001 5 0.000 2 0.054 7 3.84 0.49 39.07 1.01 JH004 0.005 8 0.007 9 0.001 5 0.003 9 0.001 8 0.017 9 0.000 5 0.000 3 0.002 0 0.000 4 0.001 1 0.000 1 0.001 6 0.000 4 0.045 2 2.37 0.29 56.81 0.63 JH005 0.010 4 0.018 0 0.001 7 0.009 5 0.005 3 0.005 9 0.003 8 0.000 5 0.003 4 0.000 6 0.002 1 0.0004 0.0021 0.000 5 0.064 2 3.36 0.22 4.02 1.02 JH006 0.014 5 0.023 4 0.002 4 0.009 3 0.010 1 0.018 4 0.003 3 0.000 7 0.001 9 0.001 0 0.001 9 0.001 1 0.003 1 0.000 3 0.091 4 3.17 0.20 9.65 0.93 JH007 0.004 9 0.008 8 0.000 4 0.000 7 0.001 8 0.014 0 0.000 5 0.000 2 0.000 5 0.000 2 0.001 1 0.000 4 0.002 1 0.000 1 0.035 7 1.59 1.46 46.27 1.49 JH012 0.005 8 0.010 0 0.000 6 0.001 5 0.001 8 0.019 1 0.001 0 0.000 4 0.001 0 0.000 1 0.000 7 0.000 2 0.000 5 0.000 2 0.042 9 7.54 0.48 44.94 1.21 JH014 0.007 3 0.017 0 0.001 2 0.002 3 0.001 8 0.010 4 0.001 5 0.000 3 0.002 0 0.000 7 0.000 4 0.000 2 0.001 6 0.000 2 0.046 9 3.09 0.16 19.49 1.36 JH016 0.187 6 0.336 6 0.032 2 0.135 8 0.032 5 0.019 8 0.030 9 0.005 0 0.026 3 0.005 7 0.011 3 0.003 3 0.013 6 0.002 0 0.842 6 13.05 0.08 24.41 1.33 JH018 0.014 5 0.031 3 0.001 6 0.012 9 0.001 0 0.034 4 0.002 2 0.000 1 0.001 1 0.001 1 0.001 6 0.000 3 0.001 2 0.000 6 0.103 9 8.27 0.13 69.88 1.50 JH021 0.026 3 0.063 9 0.005 8 0.016 7 0.005 8 0.017 6 0.005 1 0.000 9 0.007 0 0.001 2 0.002 8 0.000 6 0.003 4 0.000 3 0.157 4 5.18 0.17 9.93 1.21 JH024 0.075 7 0.106 8 0.019 6 0.060 7 0.018 4 0.010 4 0.014 4 0.001 9 0.008 4 0.003 2 0.011 2 0.001 6 0.009 0 0.000 8 0.342 1 5.68 0.18 1.96 0.65 JH031 0.009 5 0.029 1 0.001 9 0.006 6 0.001 3 0.013 9 0.002 8 0.000 3 0.001 4 0.000 9 0.004 7 0.000 4 0.002 3 0.000 2 0.075 3 2.85 0.71 22.30 1.61 JH038 0.014 6 0.021 1 0.001 1 0.004 9 0.002 9 0.072 5 0.001 6 0.000 5 0.000 8 0.000 2 0.003 5 0.000 2 0.000 2 0.000 4 0.124 5 49.17 0.70 103.52 1.26 JH044 0.007 7 0.009 6 0.001 0 0.007 7 0.005 8 0.057 6 0.000 5 0.000 4 0.000 6 0.000 9 0.002 7 0.000 3 0.001 3 0.000 5 0.096 6 3.88 0.35 103.40 0.79 JH045 0.006 0 0.020 3 0.002 0 0.007 9 0.004 8 0.016 6 0.002 5 0.000 5 0.001 3 0.000 2 0.000 2 0.000 5 0.000 7 0.000 2 0.063 7 5.79 0.07 14.46 1.54 JH047 0.002 9 0.007 7 0.001 0 0.002 9 0.004 6 0.018 0 0.002 4 0.000 4 0.001 3 0.000 5 0.003 2 0.000 1 0.002 0 0.000 5 0.047 3 0.96 3.17 16.48 1.49 JH051 0.005 0 0.020 9 0.001 0 0.005 1 0.006 0 0.013 9 0.004 6 0.000 3 0.005 3 0.000 8 0.002 3 0.000 6 0.002 1 0.000 6 0.068 6 1.63 1.31 8.13 1.82 JH056 0.006 6 0.011 5 0.001 7 0.002 1 0.001 2 0.023 0 0.002 7 0.000 5 0.001 4 0.000 5 0.001 0 0.000 6 0.002 8 0.000 3 0.055 8 1.56 1.33 38.57 0.81 JH057 0.007 9 0.029 9 0.002 7 0.011 3 0.003 7 0.005 9 0.004 6 0.000 5 0.004 0 0.001 0 0.000 5 0.001 1 0.002 8 0.001 5 0.077 3 1.90 0.12 4.38 1.51 JH058 0.005 5 0.020 7 0.001 5 0.006 3 0.002 5 0.008 6 0.000 7 0.000 4 0.002 7 0.001 3 0.001 5 0.000 6 0.005 0 0.000 8 0.058 1 0.75 0.23 20.21 1.69 JH061 0.003 8 0.013 7 0.001 3 0.008 5 0.002 6 0.008 2 0.004 0 0.000 5 0.001 4 0.001 2 0.002 9 0.000 8 0.000 7 0.001 5 0.051 3 3.49 0.99 7.77 1.43 JH067 0.007 1 0.013 7 0.001 4 0.010 9 0.002 6 0.014 2 0.006 3 0.000 8 0.002 1 0.000 7 0.001 0 0.000 6 0.0008 0.000 7 0.062 9 6.36 0.09 10.74 1.04 JH068 0.004 2 0.015 4 0.001 4 0.008 9 0.005 3 0.009 6 0.003 6 0.000 8 0.004 3 0.000 3 0.000 5 0.000 5 0.0031 0.000 7 0.058 6 0.91 0.06 6.79 1.50 JH072 0.007 4 0.018 6 0.002 3 0.005 8 0.006 9 0.020 7 0.002 2 0.000 5 0.001 5 0.000 4 0.001 1 0.000 5 0.0040 0.001 3 0.073 2 1.24 0.18 16.10 1.06 JH076 0.003 8 0.010 9 0.000 7 0.012 3 0.005 9 0.024 6 0.002 3 0.000 9 0.001 6 0.000 4 0.003 9 0.000 6 0.0042 0.000 4 0.072 5 0.62 0.32 20.53 1.61 JH080 0.006 2 0.011 2 0.001 6 0.011 3 0.003 0 0.006 5 0.001 6 0.000 9 0.003 3 0.000 6 0.003 4 0.001 1 0.004 3 0.000 6 0.055 6 0.97 0.31 9.17 0.84 JH088 0.036 7 0.073 1 0.010 3 0.040 3 0.011 9 0.010 5 0.008 0 0.001 6 0.008 0 0.002 2 0.006 4 0.001 1 0.006 8 0.001 5 0.2183 3.67 0.45 3.29 0.88 JH089 0.029 8 0.060 9 0.005 6 0.029 9 0.008 7 0.006 1 0.007 2 0.001 5 0.007 5 0.002 1 0.003 3 0.001 0 0.004 7 0.001 0 0.169 2 4.30 0.32 2.35 1.11 JH091 0.183 5 0.315 3 0.033 0 0.128 1 0.030 5 0.018 3 0.024 0 0.003 8 0.022 7 0.004 4 0.014 1 0.002 6 0.013 5 0.002 2 0.796 0 9.15 0.31 2.07 0.95 JH111 0.026 5 0.054 1 0.005 9 0.026 1 0.008 3 0.010 7 0.005 4 0.001 5 0.005 1 0.001 2 0.005 3 0.001 1 0.004 1 0.001 2 0.1566 4.36 0.58 4.88 1.01 JH113 0.028 5 0.050 3 0.006 5 0.029 8 0.011 8 0.010 1 0.006 9 0.001 4 0.006 6 0.001 9 0.004 4 0.001 7 0.003 6 0.001 2 0.164 7 5.40 0.42 3.41 0.87 JH114 0.048 4 0.089 8 0.009 3 0.038 0 0.015 6 0.013 5 0.010 2 0.001 6 0.011 6 0.002 1 0.007 9 0.001 4 0.006 4 0.000 9 0.256 8 5.09 0.59 3.28 0.99 注:下标N表示北美页岩标准化值:(La/Yb)N=(LaN/YbN);Eu/Eu*=EuNASC/([Sm]NASC*[Gd]NASC)0.5;(Ce/Ce*)NASC=CeNASC/([La]NASC*[Pr]NASC)0.5. 表 3 江汉平原典型高砷钻孔沉积物岩性、砷及稀土元素含量特征
Table 3. Lithology, arsenic and REEs contents in high arsenic sediments from borehole SY03 in Jianghan plain
样品编号 深度(m) 岩性 As
(mg/kg)Fe2O3
(%)稀土元素含量(mg/kg) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu SY03-01 1.5 淤泥质粘土 12.2 7.03 46.48 87.93 11.08 40.64 8.14 1.67 7.53 1.31 7.58 1.50 4.22 0.70 4.40 0.59 SY03-02 2.5 粘土 19.2 8.75 44.16 84.81 10.36 37.38 7.29 1.59 6.41 1.04 5.90 1.19 3.17 0.52 3.19 0.46 SY03-03 7.1 粘质粉土 11.3 6.67 42.63 82.51 10.07 36.40 7.07 1.47 6.27 1.18 6.23 1.24 3.45 0.55 3.33 0.48 SY03-04 17.9 粘土 20.0 7.91 46.00 88.52 10.94 39.47 7.86 1.63 6.89 1.18 6.91 1.39 3.82 0.63 3.88 0.54 SY03-05 18.7 粉砂 88.2 6.16 41.33 79.26 9.82 35.59 7.03 1.47 6.31 1.06 6.08 1.21 3.37 0.53 3.19 0.44 SY03-06 20.1 细砂 107.5 5.08 35.68 67.92 8.49 30.87 5.89 1.28 5.27 0.87 4.94 1.00 2.74 0.43 2.50 0.35 SY03-07 23.3 中-粗砂 24.2 5.42 31.39 59.81 7.40 26.72 5.14 1.17 4.41 0.73 3.96 0.80 2.17 0.35 2.03 0.28 SY03-08 30.9 中-细砂 25.6 4.44 26.94 50.56 6.17 22.86 4.47 1.03 3.84 0.62 3.43 0.67 1.81 0.29 1.65 0.23 SY03-09 43.5 粘土 15.5 7.72 36.02 68.23 8.34 30.32 5.90 1.25 5.18 0.85 4.92 0.98 2.72 0.44 2.61 0.39 -
[1] Acharyya S.K., Lahiri S., Raymahashay B.C., et al.2000.Arsenic Toxicity of Groundwater in Parts of the Bengal Basin in India and Bangladesh:The Role of Quaternary Stratigraphy and Holocene Sea-Level Fluctuation.Environmental Geology, 39(10):1127-1137.doi: 10.1007/s002540000107 [2] Appelo C.A.J., van der Weiden M.J.J., Tournassat C., et al.2002.Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic.Environmental Science & Technology, 36(14):3096-3103.doi: 10.1021/es010130n [3] Bau M.1999.Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide:Experimental Evidence for Ce Oxidation Y-Ho Fractionation, and Lanthanide Tetrad Effect.Geochimica et Cosmochimica Acta, 63(1):67-77.doi: 10.1016/s0016-7037(99)00014-9 [4] Deng Y.M.2008.Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin(Dissertation).China University of Geosciences Wuhan(in Chinese with English abstract). [5] Deng Y.M., Wang Y.X., Li H.J., et al.2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). [6] Dia A., Gruau G., Olivié-Lauquet G., et al.2000.The Distribution of Rare Earth Elements in Groundwaters:Assessing the Role of Source-Rock Composition Redox Changes and Colloidal Particles.Geochimica et Cosmochimica Acta, 64(24):4131-4151.doi: 10.1016/s0016-7037(00)00494-4 [7] Fleet G.H., Lafon-Lafourcade S., Ribéreau-Gayon P.1984.Evolution of Yeasts and Lactic Acid Bacteria during Fermentation and Storage of Bordeaux Wines.Applied and Environmental Microbiology, 48(5):1034-1038. [8] Gan Y.Q., Wang Y.X., Duan Y.H., ,et al.2014.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain Central China.Journal of Geochemical Exploration, 138:81-93.doi: 10.1016/j.gexplo.2013.12.013 [9] Guo H.M., Wang Y.X., Li Y.M.2003.Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin Shanxi Province.Environmental Science, 24(4):60-67(in Chinese with English abstract). [10] Guo H.M., Yang S.Z., Shen Z.L.2007.High Arsenic Groundwater in the World:Overview and Research Perspectives.Advances in Earth Science, 22(11):1109-1117(in Chinese with English abstract). https://www.researchgate.net/publication/281018109_High_arsenic_groundwater_in_the_world_Overview_and_research_perspectives [11] Guo H.M., Zhang B., Li Y., et al.2010.Concentrations and Patterns of Rare Earth Elements in High Arsenic Groundwaters from the Hetao Plain Inner Mongolia.Earth Science Frontiers, 17(6):59-66(in Chinese with English abstract). [12] Handley K.M., McBeth J.M., Charnock J.M., et al.2013.Effect of Iron Redox Transformations on Arsenic Solid-Phase Associations in an Arsenic-Rich Ferruginous Hydrothermal Sediment.Geochimica et Cosmochimica Acta, 102:124-142.doi: 10.1016/j.gca.2012.10.024 [13] Harvey C.F., Swartz C., Badruzzaman A.B.M., et al.2003.Response to Comments on "Arsenic Mobility and Groundwater Extraction in Bangladesh".Science, 300(5619):584.doi: 10.1126/science.1082685 [14] Johannesson K.H., Hendry M.J.2000.Rare Earth Element Geochemistry of Groundwaters from a Thick Till and Clay-Rich Aquitard Sequence Saskatchewan Canada.Geochimica et Cosmochimica Acta, 64(9):1493-1509.doi: 10.1016/s0016-7037(99)00402-0 [15] Johannesson K.H., Stetzenbach K.J., Hodge V.F.1997.Rare Earth Elements as Geochemical Tracers of Regional Groundwater Mixing.Geochimica et Cosmochimica Acta, 61(17):3605-3618.doi: 10.1016/s0016-7037(97)00177-4 [16] Johannesson K.H., Zhou X.P., Guo C.X., et al.2000.Origin of Rare Earth Element Signatures in Groundwaters of Circumneutral pH from Southern Nevada and Eastern California USA.Chemical Geology, 164(3-4):239-257.doi: 10.1016/s0009-2541(99)00152-7 [17] Kuhn T., Bau M., Blum N., et al.1998.Origin of Negative Ce Anomalies in Mixed Hydrothermal-Hydrogenetic Fe-Mn Crusts from the Central Indian Ridge.Earth and Planetary Science Letters, 163(1-4):207-220.doi: 10.1016/s0012-821x(98)00188-5 [18] Lan X.H., Li R.H., Mi B.B., et al.2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474(in Chinese with English abstract). [19] Luo T., Jing C.Y.2011.Research Progress on Mechanisms of Arsenic Mobilization in Groundwater.Environmental Chemistry, 30(1):77-83(in Chinese with English abstract). doi: 10.1002/etc.362 [20] McLennan S.M.1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Mineralogical Society of America, 21(1):169-200. http://eprints.uni-kiel.de/29574/ [21] Nickson R., McArthur J., Burgess W., et al.1998.Arsenic Poisoning of Bangladesh Groundwater.Nature, 395(6700):338.doi: 10.1038/26387 [22] Parkhurst D.L., Appelo C.A.J.1999.User's Guide to PHREEQC (Version 2):A Computer Program for Speciation Batch-Reaction One-Dimensional Transport, and Inverse Geochemical Calculations.USGS Water-Resources Investigations Report, 99-4259, Denver. [23] Polya D.A., Gault A.G., Diebe N., et al.2005.Arsenic Hazard in Shallow Cambodian Groundwaters.Mineralogical Magazine, 69(5):807-823.doi: 10.1180/0026461056950290 [24] Postma D., Larsen F., Hue N.T.M., et al.2007.Arsenic in Groundwater of the Red River Floodplain Vietnam:Controlling Geochemical Processes and Reactive Transport Modeling.Geochimica et Cosmochimica Acta, 71(21):5054-5071.doi: 10.1016/j.gca.2007.08.020 [25] Probst A., Gh'mari A.E., Aubert D., et al.2000.Strontium as a Tracer of Weathering Processes in a Silicate Catchment Polluted by Acid Atmospheric Inputs Strengbach France.Chemical Geology, 170(1-4):203-219.doi: 10.1016/s0009-2541(99)00248-x [26] Rönnback P., Åström M., Gustafsson J.P.2008.Comparison of the Behaviour of Rare Earth Elements in Surface Waters Overburden Groundwaters and Bedrock Groundwaters in Two Granitoidic Settings Eastern Sweden.Applied Geochemistry, 23(7):1862-1880.doi: 10.1016/j.apgeochem.2008.02.008 [27] Seiler R.L., Stollenwerk K.G., Garbarino J.R.2005.Factors Controlling Tungsten Concentrations in Ground Water Carson Desert Nevada.Applied Geochemistry, 20(2):423-441.doi: 10.1016/j.apgeochem.2004.09.002 [28] Smedley P.L.1991.The Geochemistry of Rare Earth Elements in Groundwater from the Carnmenellis Area Southwest England.Geochimica et Cosmochimica Acta, 55(10):2767-2779.doi: 10.1016/0016-7037(91)90443-9 [29] Smedley P.L., Zhang M., Zhang G., et al.2003.Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin Inner Mongolia.Applied Geochemistry, 18(9):1453-1477.doi: 10.1016/s0883-2927(03)00062-3 [30] Smedley P.L., Kinniburgh D.G.2002.A Review of the Source Behaviour and Distribution of Arsenic in Natural Waters.Applied Geochemistry, 17(5):517-568.doi: 10.1016/s0883-2927(02)00018-5 [31] Tang J.W., Johannesson K.H.2005.Rare Earth Element Concentrations Speciation, and Fractionation along Groundwater Flow Paths:The Carrizo Sand (Texas) and Upper Floridan Aquifers.Rare Earth Elements in Groundwater Flow Systems, 51:223-251. doi: 10.1007/1-4020-3234-X [32] Tang J.W., Johannesson K.H.2006.Controls on the Geochemistry of Rare Earth Elements along a Groundwater Flow Path in the Carrizo Sand Aquifer Texas USA.Chemical Geology, 225(1-2):156-171.doi: 10.1016/j.chemgeo.2005.09.007 [33] Verplanck P.L., Mueller S.H., Goldfarb R.J., et al.2008.Geochemical Controls of Elevated Arsenic Concentrations in Groundwater Ester Dome Fairbanks District Alaska.Chemical Geology, 255(1-2):160-172.doi: 10.1016/j.chemgeo.2008.06.020 [34] Wang A.H., Zhao S.J.2007.Survey of Endemic Arsenic Poisoning Areas in Xiantao City Hubei Province.China Tropical Medicine, 7(8):1486-1487(in Chinese). [35] Whitney P.R., Olmsted J.F.1998.Rare Earth Element Metasomatism in Hydrothermal Systems:The Willsboro-Lewis Wollastonite Ores New York USA.Geochimica et Cosmochimica Acta, 62(17):2965-2977.doi: 10.1016/s0016-7037(98)00230-0 [36] Willis S.S., Johannesson K.H.2011.Controls on the Geochemistry of Rare Earth Elements in Sediments and Groundwaters of the Aquia Aquifer Maryland USA.Chemical Geology, 285(1-4):32-49.doi: 10.1016/j.chemgeo.2011.02.020 [37] Wood S.A.1990.The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium:1.Review of Available Low-Temperature Data for Inorganic Complexes and the Inorganic REE Speciation of Natural Waters.Chemical Geology, 82(1-2):159-186.doi: 10.1016/0009-2541(90)90080-Q [38] Xie X.J., Wang Y.X., Su C.L., et al.2008.Arsenic Mobilization in Shallow Aquifers of Datong Basin:Hydrochemical and Mineralogical Evidences.Journal of Geochemical Exploration, 98(3):107-115.doi: 10.1016/j.gexplo.2008.01.002 [39] Xie X.J., Wang Y.X., Li J.X., et al.2012.Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin.Earth Science, 37(2):381-390(in Chinese with English abstract). [40] Yan Z.C., Liu G.J., Sun R.Y., et al.2013.Geochemistry of Rare Earth Elements in Groundwater from the Taiyuan Formation Limestone Aquifer in the Wolonghu Coal Mine Anhui Province China.Journal of Geochemical Exploration, 135:54-62.doi: 10.1016/j.gexplo.2012.11.011 [41] Zhao D.J.2005.The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain(Dissertation).China University of Geosciences Wuhan(in Chinese with English abstract). [42] 邓娅敏, 王焰新, 李慧娟, 等. 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 [43] 邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学. [44] 郭华明, 王焰新, 李永敏, 2003.山阴水砷中毒区地下水砷的富集因素分析.环境科学, 24(4):60-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200304010.htm [45] 郭华明, 杨素珍, 沈照理, 2007.富砷地下水研究进展.地球科学进展, 22(11):1109-1117. doi: 10.3321/j.issn:1001-8166.2007.11.002 [46] 郭华明, 张波, 李媛, 等. 2010.内蒙古河套平原高砷地下水中稀土元素含量及分异特征.地学前缘, 17(6):59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm [47] 蓝先洪, 李日辉, 密蓓蓓, 等. 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3):463-474. http://www.earth-science.net/WebPage/Article.aspx?id=3272 [48] 罗婷, 景传勇, 2011.地下水砷污染形成机制研究进展.环境化学, 30(1):77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201101008.htm [49] 汪爱华, 赵淑军, 2007.湖北省仙桃市地方性砷中毒病区水砷调查与分析.中国热带医学, 7(8):1486-1487. http://www.cnki.com.cn/Article/CJFDTOTAL-RDYX200708119.htm [50] 谢先军, 王焰新, 李俊霞, 等. 2012.大同盆地高砷地下水稀土元素特征及其指示意义.地球科学, 37(2):381-390. http://www.earth-science.net/WebPage/Article.aspx?id=2243 [51] 赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学.