• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原浅层含砷地下水稀土元素特征及其指示意义

    郑天亮 邓娅敏 鲁宗杰 甘义群

    郑天亮, 邓娅敏, 鲁宗杰, 甘义群, 2017. 江汉平原浅层含砷地下水稀土元素特征及其指示意义. 地球科学, 42(5): 693-706. doi: 10.3799/dqkx.2017.057
    引用本文: 郑天亮, 邓娅敏, 鲁宗杰, 甘义群, 2017. 江汉平原浅层含砷地下水稀土元素特征及其指示意义. 地球科学, 42(5): 693-706. doi: 10.3799/dqkx.2017.057
    Zheng Tianliang, Deng Yamin, Lu Zongjie, Gan Yiqun, 2017. Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. Earth Science, 42(5): 693-706. doi: 10.3799/dqkx.2017.057
    Citation: Zheng Tianliang, Deng Yamin, Lu Zongjie, Gan Yiqun, 2017. Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. Earth Science, 42(5): 693-706. doi: 10.3799/dqkx.2017.057

    江汉平原浅层含砷地下水稀土元素特征及其指示意义

    doi: 10.3799/dqkx.2017.057
    基金项目: 

    国家自然科学基金面上项目 No.41572226

    中国地质调查局项目 No.12120114069301

    中央高校基本科研业务费专项基金“摇篮计划”项目 No.CUGL140412

    详细信息
      作者简介:

      郑天亮(1990-),男,博士研究生,主要从事地下水污染与防治、地质微生物学等方面的研究.ORCID:0000-0001-7853-6719.E-mail: tinyshiny@126.com

      通讯作者:

      邓娅敏,ORCID:0000-0002-4815-7176.E-mail: yamin.deng@cug.edu.cn

    • 中图分类号: P592

    Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China

    • 摘要: 江汉平原被确认为我国南方新的饮水型砷中毒病区,目前对于江汉平原高砷地下水的成因机理研究还有待完善.综合运用水文地球化学分析与PHREEQC地球化学模拟计算,分析了地下水和沉积物中REE分异特征及其沿地下水流向形态变化规律.江汉平原地下水REE含量为0.032~0.843 μg/L,富集LREE,具显著Eu正异常,且地下水中Eu异常与As含量呈正相关关系.地下水中REE形态主要以LnCO3+及Ln(CO3)2-为主,沿地下水流向LnCO3+降低、Ln(CO3)22-升高.地下水REE浓度分布受到HCO3-的络合作用及Fe氧化物矿物的还原性解吸附过程控制,径流途径中继承沉积物矿物的REE配分模式及Fe氧化物矿物对LREE的优先解吸附可能是地下水富集LREE的原因,并且沿流向上REE形态分布受到pH控制.研究区中Eu含量及Eu正异常对地下水As富集程度具有一定的指示意义.

       

    • 图  1  研究区位置以及地下水采样点As浓度分布

      Fig.  1.  Sampling sites and the distribution of As concentration in groundwater from Jianghan plain

      图  2  研究区地下水Piper三线图

      Fig.  2.  Piper diagram of groundwater in Jianghan plain

      图  3  地下水中REE与主要水化学参数之间的关系

      Fig.  3.  Relationship between REE and pH, As, Fe, HCO3-, SO42-, Cl- in groundwater from Jianghan plain

      图  4  沿地下水流向REE形态(以Nd,Gd和Er为例)及REE与HCO3-络合作用的变化规律

      Fig.  4.  Comparison of REE speciation(Nd, Gd and Er) and complexation with HCO3- along the flow path

      图  5  Eu异常的控制因素以及与As含量的变化规律

      Fig.  5.  Controlling factors of Eu anomalies and the relationship between Eu anomalies and As

      图  6  Ce异常的控制因素以及与As含量的变化规律

      Fig.  6.  Controlling factors of Ce anomalies and the relationship between Ce anomalies and As

      图  7  江汉平原高砷钻孔沉积物与地下水中稀土配分模式的对比

      Fig.  7.  Comparison of NASC-normalized REE patterns between the groundwater and the sediments in high-arsenic area from Jianghan plain

      图  8  中国典型高砷区含砷地下水中稀土元素特征的对比

      Fig.  8.  Comparison of different groundwater REE characteristics in Datong basin, Hetao basin and Jianghan plain

      表  1  江汉平原高砷地下水水化学及微量元素含量特征

      Table  1.   Water chemistry and concentrations of trace elements of high arsenic groundwater from Jianghan plain

      采样点编号经度纬度pHCl-
      (mg/L)
      SO42-
      (mg/L)
      AsTotal
      (μg/L)
      Fe
      (mg/L)
      Mn
      (mg/L)
      NO3-
      (mg/L)
      U
      (μg/L)
      HCO3-
      (mg/L)
      JH001113°40′39.37″30°09′24.70″7.156.150.001.000.801.552.514.034592
      JH002113° 40′40.76″30°09′24.39″7.124.380.031555.762.282.430.028581
      JH003113° 40′41.41″30°09′24.01″7.094.280.091085.682.452.290.006567
      JH004113° 40′38.41″30°09′24.13″7.133.590.005329.654.602.550.004543
      JH005113° 40′40.22″30°09′23.80″7.224.130.0018.60.022.352.561.177597
      JH006113° 40′36.39″30°09′24.24″7.033.580.1164.27.410.832.330.006510
      JH007113° 40′37.66″30°09′24.21″7.053.690.0275.19.161.252.430.003509
      JH012113° 40′53.73″30°08′40.38″7.073.690.1154.17.641.062.440.001516
      JH014113° 41′07.89″30°08′20.89″7.110.460.146.403.960.312.300.008472
      JH016113° 39′17.79″30°08′17.84″6.917.660.0983.89.040.692.590.003563
      JH018113°36′40.87″30°10′51.08″7.033.160.0463211.762.320.030.003675
      JH021113°37′26.65″30°10′25.08″6.975.520.001104.572.000.160.005631
      JH024113°36′25.87″30°23′19.85″6.5640.757.81.10ND2.567.714.654415
      JH031113°24′45.79″30°10′49.19″6.779.732.4544.89.010.240.030.005435
      JH038113°29′38.80″30°04′02.70″7.484.800.0623201.341.546.830.006553
      JH044113°29′38.45″30°04′00.60″7.511.200.0515104.820.914.050.002439
      JH045113°29′41.40″30°04′00.58″7.061.160.023230.751.470.080.005517
      JH047113°29′50.84″30°03′58.42″7.241.600.0824.93.311.190.220.004462
      JH051113°30′28.89″30°03′33.40″7.250.970.068.431.810.120.200.002486
      JH056113°22′28.04″30°11′17.01″6.877.700.0751.312.950.120.260.006469
      JH057113°45′35.10″30°07′05.95″7.154.940.093871.080.350.130.004532
      JH058113°45′33.65″30°07′06.40″7.276.250.081882.390.070.080.007530
      JH061113°45′29.86″30°07′04.41″7.250.480.051113.400.080.020.012530
      JH067113°45′33.67″30°07′02.92″7.334.450.0695.83.960.080.100.005531
      JH068113°45′33.00″30°07′02.42″7.334.900.071224.170.100.180.009519
      JH072113°27′05.38″30°04′46.52″6.9571.70.029.808.460.300.240.002521
      JH076113°50′08.88″30°03′43.47″7.241.450.031802.450.090.220.002613
      JH080113°47′14.32″30°07′47.75″7.3410.90.1147.51.850.080.390.002552
      JH088112°51′47.54″30°28′8.42″6.7039.31018.550.640.800.064.920769
      JH089112°57′10.89″30°25′18.19″6.6470.834.20.570.340.470.010.851799
      JH091112°45′14″30°30′44.3″6.756.292.4522.112.30.180.070.096783
      JH111113°36′38.39″30°10′50.71″6.994.510.0421.63.092.680.030.012638
      JH113113°37′26.65″30°10′25.08″6.975.520.001.286.878.450.095.795631
      JH114113°39′10.18″30°10′11.83″7.113.950.0771.612.411.390.010.149511
       注:“ND”表示not detected,即未测出结果.
      下载: 导出CSV

      表  2  江汉平原高砷地下水稀土元素含量(μg/L)特征

      Table  2.   Concentrations of REEs (μg/L) in high arsenic groundwater from Jianghan plain

      采样点编号LaCePrNdSmEuGdTbDyHoErTmYbLu∑REE[La/Yb]N[Er/Nd]NEu/Eu*Ce/Ce*
      JH0010.033 60.072 80.007 20.023 20.008 90.007 70.005 90.001 30.008 90.001 70.014 10.001 20.007 50.001 90.195 93.040.613.241.10
      JH0020.016 20.033 80.003 20.011 20.001 80.024 60.002 90.000 70.002 50.000 60.003 60.000 20.002 10.000 40.103 85.190.3233.211.09
      JH0030.008 40.010 60.000 70.003 40.003 30.022 00.000 90.000 40.000 90.000 40.001 70.000 30.001 50.000 20.054 73.840.4939.071.01
      JH0040.005 80.007 90.001 50.003 90.001 80.017 90.000 50.000 30.002 00.000 40.001 10.000 10.001 60.000 40.045 22.370.2956.810.63
      JH0050.010 40.018 00.001 70.009 50.005 30.005 90.003 80.000 50.003 40.000 60.002 10.00040.00210.000 50.064 23.360.224.021.02
      JH0060.014 50.023 40.002 40.009 30.010 10.018 40.003 30.000 70.001 90.001 00.001 90.001 10.003 10.000 30.091 43.170.209.650.93
      JH0070.004 90.008 80.000 40.000 70.001 80.014 00.000 50.000 20.000 50.000 20.001 10.000 40.002 10.000 10.035 71.591.4646.271.49
      JH0120.005 80.010 00.000 60.001 50.001 80.019 10.001 00.000 40.001 00.000 10.000 70.000 20.000 50.000 20.042 97.540.4844.941.21
      JH0140.007 30.017 00.001 20.002 30.001 80.010 40.001 50.000 30.002 00.000 70.000 40.000 20.001 60.000 20.046 93.090.1619.491.36
      JH0160.187 60.336 60.032 20.135 80.032 50.019 80.030 90.005 00.026 30.005 70.011 30.003 30.013 60.002 00.842 613.050.0824.411.33
      JH0180.014 50.031 30.001 60.012 90.001 00.034 40.002 20.000 10.001 10.001 10.001 60.000 30.001 20.000 60.103 98.270.1369.881.50
      JH0210.026 30.063 90.005 80.016 70.005 80.017 60.005 10.000 90.007 00.001 20.002 80.000 60.003 40.000 30.157 45.180.179.931.21
      JH0240.075 70.106 80.019 60.060 70.018 40.010 40.014 40.001 90.008 40.003 20.011 20.001 60.009 00.000 80.342 15.680.181.960.65
      JH0310.009 50.029 10.001 90.006 60.001 30.013 90.002 80.000 30.001 40.000 90.004 70.000 40.002 30.000 20.075 32.850.7122.301.61
      JH0380.014 60.021 10.001 10.004 90.002 90.072 50.001 60.000 50.000 80.000 20.003 50.000 20.000 20.000 40.124 549.170.70103.521.26
      JH0440.007 70.009 60.001 00.007 70.005 80.057 60.000 50.000 40.000 60.000 90.002 70.000 30.001 30.000 50.096 63.880.35103.400.79
      JH0450.006 00.020 30.002 00.007 90.004 80.016 60.002 50.000 50.001 30.000 20.000 20.000 50.000 70.000 20.063 75.790.0714.461.54
      JH0470.002 90.007 70.001 00.002 90.004 60.018 00.002 40.000 40.001 30.000 50.003 20.000 10.002 00.000 50.047 30.963.1716.481.49
      JH0510.005 00.020 90.001 00.005 10.006 00.013 90.004 60.000 30.005 30.000 80.002 30.000 60.002 10.000 60.068 61.631.318.131.82
      JH0560.006 60.011 50.001 70.002 10.001 20.023 00.002 70.000 50.001 40.000 50.001 00.000 60.002 80.000 30.055 81.561.3338.570.81
      JH0570.007 90.029 90.002 70.011 30.003 70.005 90.004 60.000 50.004 00.001 00.000 50.001 10.002 80.001 50.077 31.900.124.381.51
      JH0580.005 50.020 70.001 50.006 30.002 50.008 60.000 70.000 40.002 70.001 30.001 50.000 60.005 00.000 80.058 10.750.2320.211.69
      JH0610.003 80.013 70.001 30.008 50.002 60.008 20.004 00.000 50.001 40.001 20.002 90.000 80.000 70.001 50.051 33.490.997.771.43
      JH0670.007 10.013 70.001 40.010 90.002 60.014 20.006 30.000 80.002 10.000 70.001 00.000 60.00080.000 70.062 96.360.0910.741.04
      JH0680.004 20.015 40.001 40.008 90.005 30.009 60.003 60.000 80.004 30.000 30.000 50.000 50.00310.000 70.058 60.910.066.791.50
      JH0720.007 40.018 60.002 30.005 80.006 90.020 70.002 20.000 50.001 50.000 40.001 10.000 50.00400.001 30.073 21.240.1816.101.06
      JH0760.003 80.010 90.000 70.012 30.005 90.024 60.002 30.000 90.001 60.000 40.003 90.000 60.00420.000 40.072 50.620.3220.531.61
      JH0800.006 20.011 20.001 60.011 30.003 00.006 50.001 60.000 90.003 30.000 60.003 40.001 10.004 30.000 60.055 60.970.319.170.84
      JH0880.036 70.073 10.010 30.040 30.011 90.010 50.008 00.001 60.008 00.002 20.006 40.001 10.006 80.001 50.21833.670.453.290.88
      JH0890.029 80.060 90.005 60.029 90.008 70.006 10.007 20.001 50.007 50.002 10.003 30.001 00.004 70.001 00.169 24.300.322.351.11
      JH0910.183 50.315 30.033 00.128 10.030 50.018 30.024 00.003 80.022 70.004 40.014 10.002 60.013 50.002 20.796 09.150.312.070.95
      JH1110.026 50.054 10.005 90.026 10.008 30.010 70.005 40.001 50.005 10.001 20.005 30.001 10.004 10.001 20.15664.360.584.881.01
      JH1130.028 50.050 30.006 50.029 80.011 80.010 10.006 90.001 40.006 60.001 90.004 40.001 70.003 60.001 20.164 75.400.423.410.87
      JH1140.048 40.089 80.009 30.038 00.015 60.013 50.010 20.001 60.011 60.002 10.007 90.001 40.006 40.000 90.256 85.090.593.280.99
       注:下标N表示北美页岩标准化值:(La/Yb)N=(LaN/YbN);Eu/Eu*=EuNASC/([Sm]NASC*[Gd]NASC)0.5;(Ce/Ce*)NASC=CeNASC/([La]NASC*[Pr]NASC)0.5.
      下载: 导出CSV

      表  3  江汉平原典型高砷钻孔沉积物岩性、砷及稀土元素含量特征

      Table  3.   Lithology, arsenic and REEs contents in high arsenic sediments from borehole SY03 in Jianghan plain

      样品编号深度(m)岩性As
      (mg/kg)
      Fe2O3
      (%)
      稀土元素含量(mg/kg)
      LaCePrNdSmEuGdTbDyHoErTmYbLu
      SY03-011.5淤泥质粘土12.27.0346.4887.9311.0840.648.141.677.531.317.581.504.220.704.400.59
      SY03-022.5粘土19.28.7544.1684.8110.3637.387.291.596.411.045.901.193.170.523.190.46
      SY03-037.1粘质粉土11.36.6742.6382.5110.0736.407.071.476.271.186.231.243.450.553.330.48
      SY03-0417.9粘土20.07.9146.0088.5210.9439.477.861.636.891.186.911.393.820.633.880.54
      SY03-0518.7粉砂88.26.1641.3379.269.8235.597.031.476.311.066.081.213.370.533.190.44
      SY03-0620.1细砂107.55.0835.6867.928.4930.875.891.285.270.874.941.002.740.432.500.35
      SY03-0723.3中-粗砂24.25.4231.3959.817.4026.725.141.174.410.733.960.802.170.352.030.28
      SY03-0830.9中-细砂25.64.4426.9450.566.1722.864.471.033.840.623.430.671.810.291.650.23
      SY03-0943.5粘土15.57.7236.0268.238.3430.325.901.255.180.854.920.982.720.442.610.39
      下载: 导出CSV
    • [1] Acharyya S.K., Lahiri S., Raymahashay B.C., et al.2000.Arsenic Toxicity of Groundwater in Parts of the Bengal Basin in India and Bangladesh:The Role of Quaternary Stratigraphy and Holocene Sea-Level Fluctuation.Environmental Geology, 39(10):1127-1137.doi: 10.1007/s002540000107
      [2] Appelo C.A.J., van der Weiden M.J.J., Tournassat C., et al.2002.Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic.Environmental Science & Technology, 36(14):3096-3103.doi: 10.1021/es010130n
      [3] Bau M.1999.Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide:Experimental Evidence for Ce Oxidation Y-Ho Fractionation, and Lanthanide Tetrad Effect.Geochimica et Cosmochimica Acta, 63(1):67-77.doi: 10.1016/s0016-7037(99)00014-9
      [4] Deng Y.M.2008.Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin(Dissertation).China University of Geosciences Wuhan(in Chinese with English abstract).
      [5] Deng Y.M., Wang Y.X., Li H.J., et al.2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract).
      [6] Dia A., Gruau G., Olivié-Lauquet G., et al.2000.The Distribution of Rare Earth Elements in Groundwaters:Assessing the Role of Source-Rock Composition Redox Changes and Colloidal Particles.Geochimica et Cosmochimica Acta, 64(24):4131-4151.doi: 10.1016/s0016-7037(00)00494-4
      [7] Fleet G.H., Lafon-Lafourcade S., Ribéreau-Gayon P.1984.Evolution of Yeasts and Lactic Acid Bacteria during Fermentation and Storage of Bordeaux Wines.Applied and Environmental Microbiology, 48(5):1034-1038.
      [8] Gan Y.Q., Wang Y.X., Duan Y.H., ,et al.2014.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain Central China.Journal of Geochemical Exploration, 138:81-93.doi: 10.1016/j.gexplo.2013.12.013
      [9] Guo H.M., Wang Y.X., Li Y.M.2003.Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin Shanxi Province.Environmental Science, 24(4):60-67(in Chinese with English abstract).
      [10] Guo H.M., Yang S.Z., Shen Z.L.2007.High Arsenic Groundwater in the World:Overview and Research Perspectives.Advances in Earth Science, 22(11):1109-1117(in Chinese with English abstract). https://www.researchgate.net/publication/281018109_High_arsenic_groundwater_in_the_world_Overview_and_research_perspectives
      [11] Guo H.M., Zhang B., Li Y., et al.2010.Concentrations and Patterns of Rare Earth Elements in High Arsenic Groundwaters from the Hetao Plain Inner Mongolia.Earth Science Frontiers, 17(6):59-66(in Chinese with English abstract).
      [12] Handley K.M., McBeth J.M., Charnock J.M., et al.2013.Effect of Iron Redox Transformations on Arsenic Solid-Phase Associations in an Arsenic-Rich Ferruginous Hydrothermal Sediment.Geochimica et Cosmochimica Acta, 102:124-142.doi: 10.1016/j.gca.2012.10.024
      [13] Harvey C.F., Swartz C., Badruzzaman A.B.M., et al.2003.Response to Comments on "Arsenic Mobility and Groundwater Extraction in Bangladesh".Science, 300(5619):584.doi: 10.1126/science.1082685
      [14] Johannesson K.H., Hendry M.J.2000.Rare Earth Element Geochemistry of Groundwaters from a Thick Till and Clay-Rich Aquitard Sequence Saskatchewan Canada.Geochimica et Cosmochimica Acta, 64(9):1493-1509.doi: 10.1016/s0016-7037(99)00402-0
      [15] Johannesson K.H., Stetzenbach K.J., Hodge V.F.1997.Rare Earth Elements as Geochemical Tracers of Regional Groundwater Mixing.Geochimica et Cosmochimica Acta, 61(17):3605-3618.doi: 10.1016/s0016-7037(97)00177-4
      [16] Johannesson K.H., Zhou X.P., Guo C.X., et al.2000.Origin of Rare Earth Element Signatures in Groundwaters of Circumneutral pH from Southern Nevada and Eastern California USA.Chemical Geology, 164(3-4):239-257.doi: 10.1016/s0009-2541(99)00152-7
      [17] Kuhn T., Bau M., Blum N., et al.1998.Origin of Negative Ce Anomalies in Mixed Hydrothermal-Hydrogenetic Fe-Mn Crusts from the Central Indian Ridge.Earth and Planetary Science Letters, 163(1-4):207-220.doi: 10.1016/s0012-821x(98)00188-5
      [18] Lan X.H., Li R.H., Mi B.B., et al.2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474(in Chinese with English abstract).
      [19] Luo T., Jing C.Y.2011.Research Progress on Mechanisms of Arsenic Mobilization in Groundwater.Environmental Chemistry, 30(1):77-83(in Chinese with English abstract). doi: 10.1002/etc.362
      [20] McLennan S.M.1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Mineralogical Society of America, 21(1):169-200. http://eprints.uni-kiel.de/29574/
      [21] Nickson R., McArthur J., Burgess W., et al.1998.Arsenic Poisoning of Bangladesh Groundwater.Nature, 395(6700):338.doi: 10.1038/26387
      [22] Parkhurst D.L., Appelo C.A.J.1999.User's Guide to PHREEQC (Version 2):A Computer Program for Speciation Batch-Reaction One-Dimensional Transport, and Inverse Geochemical Calculations.USGS Water-Resources Investigations Report, 99-4259, Denver.
      [23] Polya D.A., Gault A.G., Diebe N., et al.2005.Arsenic Hazard in Shallow Cambodian Groundwaters.Mineralogical Magazine, 69(5):807-823.doi: 10.1180/0026461056950290
      [24] Postma D., Larsen F., Hue N.T.M., et al.2007.Arsenic in Groundwater of the Red River Floodplain Vietnam:Controlling Geochemical Processes and Reactive Transport Modeling.Geochimica et Cosmochimica Acta, 71(21):5054-5071.doi: 10.1016/j.gca.2007.08.020
      [25] Probst A., Gh'mari A.E., Aubert D., et al.2000.Strontium as a Tracer of Weathering Processes in a Silicate Catchment Polluted by Acid Atmospheric Inputs Strengbach France.Chemical Geology, 170(1-4):203-219.doi: 10.1016/s0009-2541(99)00248-x
      [26] Rönnback P., Åström M., Gustafsson J.P.2008.Comparison of the Behaviour of Rare Earth Elements in Surface Waters Overburden Groundwaters and Bedrock Groundwaters in Two Granitoidic Settings Eastern Sweden.Applied Geochemistry, 23(7):1862-1880.doi: 10.1016/j.apgeochem.2008.02.008
      [27] Seiler R.L., Stollenwerk K.G., Garbarino J.R.2005.Factors Controlling Tungsten Concentrations in Ground Water Carson Desert Nevada.Applied Geochemistry, 20(2):423-441.doi: 10.1016/j.apgeochem.2004.09.002
      [28] Smedley P.L.1991.The Geochemistry of Rare Earth Elements in Groundwater from the Carnmenellis Area Southwest England.Geochimica et Cosmochimica Acta, 55(10):2767-2779.doi: 10.1016/0016-7037(91)90443-9
      [29] Smedley P.L., Zhang M., Zhang G., et al.2003.Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin Inner Mongolia.Applied Geochemistry, 18(9):1453-1477.doi: 10.1016/s0883-2927(03)00062-3
      [30] Smedley P.L., Kinniburgh D.G.2002.A Review of the Source Behaviour and Distribution of Arsenic in Natural Waters.Applied Geochemistry, 17(5):517-568.doi: 10.1016/s0883-2927(02)00018-5
      [31] Tang J.W., Johannesson K.H.2005.Rare Earth Element Concentrations Speciation, and Fractionation along Groundwater Flow Paths:The Carrizo Sand (Texas) and Upper Floridan Aquifers.Rare Earth Elements in Groundwater Flow Systems, 51:223-251. doi: 10.1007/1-4020-3234-X
      [32] Tang J.W., Johannesson K.H.2006.Controls on the Geochemistry of Rare Earth Elements along a Groundwater Flow Path in the Carrizo Sand Aquifer Texas USA.Chemical Geology, 225(1-2):156-171.doi: 10.1016/j.chemgeo.2005.09.007
      [33] Verplanck P.L., Mueller S.H., Goldfarb R.J., et al.2008.Geochemical Controls of Elevated Arsenic Concentrations in Groundwater Ester Dome Fairbanks District Alaska.Chemical Geology, 255(1-2):160-172.doi: 10.1016/j.chemgeo.2008.06.020
      [34] Wang A.H., Zhao S.J.2007.Survey of Endemic Arsenic Poisoning Areas in Xiantao City Hubei Province.China Tropical Medicine, 7(8):1486-1487(in Chinese).
      [35] Whitney P.R., Olmsted J.F.1998.Rare Earth Element Metasomatism in Hydrothermal Systems:The Willsboro-Lewis Wollastonite Ores New York USA.Geochimica et Cosmochimica Acta, 62(17):2965-2977.doi: 10.1016/s0016-7037(98)00230-0
      [36] Willis S.S., Johannesson K.H.2011.Controls on the Geochemistry of Rare Earth Elements in Sediments and Groundwaters of the Aquia Aquifer Maryland USA.Chemical Geology, 285(1-4):32-49.doi: 10.1016/j.chemgeo.2011.02.020
      [37] Wood S.A.1990.The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium:1.Review of Available Low-Temperature Data for Inorganic Complexes and the Inorganic REE Speciation of Natural Waters.Chemical Geology, 82(1-2):159-186.doi: 10.1016/0009-2541(90)90080-Q
      [38] Xie X.J., Wang Y.X., Su C.L., et al.2008.Arsenic Mobilization in Shallow Aquifers of Datong Basin:Hydrochemical and Mineralogical Evidences.Journal of Geochemical Exploration, 98(3):107-115.doi: 10.1016/j.gexplo.2008.01.002
      [39] Xie X.J., Wang Y.X., Li J.X., et al.2012.Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin.Earth Science, 37(2):381-390(in Chinese with English abstract).
      [40] Yan Z.C., Liu G.J., Sun R.Y., et al.2013.Geochemistry of Rare Earth Elements in Groundwater from the Taiyuan Formation Limestone Aquifer in the Wolonghu Coal Mine Anhui Province China.Journal of Geochemical Exploration, 135:54-62.doi: 10.1016/j.gexplo.2012.11.011
      [41] Zhao D.J.2005.The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain(Dissertation).China University of Geosciences Wuhan(in Chinese with English abstract).
      [42] 邓娅敏, 王焰新, 李慧娟, 等. 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      [43] 邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
      [44] 郭华明, 王焰新, 李永敏, 2003.山阴水砷中毒区地下水砷的富集因素分析.环境科学, 24(4):60-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200304010.htm
      [45] 郭华明, 杨素珍, 沈照理, 2007.富砷地下水研究进展.地球科学进展, 22(11):1109-1117. doi: 10.3321/j.issn:1001-8166.2007.11.002
      [46] 郭华明, 张波, 李媛, 等. 2010.内蒙古河套平原高砷地下水中稀土元素含量及分异特征.地学前缘, 17(6):59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm
      [47] 蓝先洪, 李日辉, 密蓓蓓, 等. 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3):463-474. http://www.earth-science.net/WebPage/Article.aspx?id=3272
      [48] 罗婷, 景传勇, 2011.地下水砷污染形成机制研究进展.环境化学, 30(1):77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201101008.htm
      [49] 汪爱华, 赵淑军, 2007.湖北省仙桃市地方性砷中毒病区水砷调查与分析.中国热带医学, 7(8):1486-1487. http://www.cnki.com.cn/Article/CJFDTOTAL-RDYX200708119.htm
      [50] 谢先军, 王焰新, 李俊霞, 等. 2012.大同盆地高砷地下水稀土元素特征及其指示意义.地球科学, 37(2):381-390. http://www.earth-science.net/WebPage/Article.aspx?id=2243
      [51] 赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  6722
    • HTML全文浏览量:  1833
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-10
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回