Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain
-
摘要: 浅层地下水是江汉平原东部地区重要的供水水源,但面临着污染及天然水质异常等问题.基于水化学与氢氧同位素结果,并运用数理统计和因子分析等方法,查明了研究区浅层地下水的化学特征、控制过程以及影响因素.结果显示,浅层地下水的化学类型主要为HCO3-Ca型;其中潜水中Ca2+和Mg2+含量与承压水接近,Fe、As和NH4+含量低于承压水,而Cl-、SO42-、Mn和NO3-含量高于承压水.浅层地下水主要为大气降水补给,其中潜水经历了一定程度的蒸发以及与地表水的混合.在影响浅层地下水化学特征的因素中,地质成因在总体上可能起主导作用;人类活动的输入显著地改变着潜水的化学特征,而浅层承压水则主要受径流过程中水-岩相互作用的影响.Abstract: The shallow groundwater is an important water supply source in the eastern Jianghan plain, but it is confronted with pollution and inferior quality of natural water. This study identifies the chemical characteristics, control processes and influencing factors of shallow groundwater in the study area based on the results of water chemistry, hydrogen and oxygen isotope, using methods of mathematical statistics and factor analysis. Results show that the shallow groundwater chemical types are mainly HCO3-Ca, the contents of Ca2+ and Mg2+ in the phreatic water are close to those in confined water, the contents of the As, Fe, NH4+ are lower than those in confined water, but the contents of the Cl-, SO42-, Mn and NO3- are higher than those in confined water. The shallow groundwater mainly originates from precipitation and the phreatic water has experienced a degree of evaporation and the mixture of surface water. Among the influencing factors of shallow groundwater chemical characteristics, the geologic origin may play a leading role; human activities have dramatically changed the chemical characteristics of the phreatic water, and the shallow confined water is mainly affected by water-rock interaction of the runoff process.
-
Key words:
- eastern Jianghan plain /
- shallow groundwater /
- hydrochemistry /
- factor analysis /
- ion ratio method /
- hydrogeology
-
表 1 浅层地下水水化学指标的统计结果
Table 1. Mathematical statistic results of geochemistry of shallow groundwater
参数 单位 潜水 浅层承压水 GB5749-2006 极小值 极大值 均值 变异系数 极小值 极大值 均值 变异系数 pH 6.14 7.72 6.83 0.04 6.39 7.77 6.91 0.01 6.5~8.5 TDS mg/L 270.00 1 082.00 578.00 22.00 187.00 877.00 465.00 4.34 1 000 K+ mg/L 0.47 43.00 5.27 0.88 0.51 14.60 1.73 0.07 - Na+ mg/L 4.92 138.60 31.40 3.29 2.12 81.00 19.80 0.47 - Ca2+ mg/L 53.90 235.50 146.00 4.45 22.90 205.00 121.00 1.13 - Mg2+ mg/L 14.40 60.30 27.30 1.09 7.20 45.30 25.20 0.35 - Cl- mg/L 0.29 140.00 30.10 3.93 0.00 293.00 4.57 1.01 250 SO42- mg/L 0.00 209.00 60.30 6.56 0.00 24.60 1.55 0.18 250 HCO3- mg/L 206.00 907.00 534.00 16.70 171.00 909.00 582.00 5.37 - As μg/L 0.00 52.30 8.20 1.89 0.00 1 015.00 45.70 4.62 10 Fe mg/L 0.00 11.30 1.16 0.30 0.01 32.20 5.60 0.26 0.3 Mn mg/L 0.00 6.49 0.93 0.16 0.02 4.55 0.52 0.04 0.1 NH4+ mg/L 0.01 6.35 0.52 0.18 0.04 19.70 2.59 0.17 0.5 NO3- mg/L 0.00 298 24.6 6.34 0.00 62.60 0.48 0.21 10 δD ‰ -48.90 -23.50 -34.90 1.67 -54.80 -31.00 -46.50 0.35 - δ18O ‰ -7.67 -3.22 -5.70 0.28 -8.61 -4.60 -7.34 0.05 - 总硬度
(以CaCO3)mg/L 195.00 748.00 479.00 14.30 113.00 695.00 408.00 3.70 450 表 2 旋转成分矩阵
Table 2. Rotated component matrix
指标 潜水 浅层承压水 F1 F2 F3 F1 F2 F3 F4 TDS 0.945 -0.121 0.292 0.973 0.095 0.158 0.022 K+ 0.065 -0.024 0.874 -0.214 0.808 0.075 0.041 Na+ 0.688 -0.408 0.288 0.305 -0.241 0.779 0.199 Ca2+ 0.927 0.003 -0.183 0.907 0.151 -0.120 -0.002 Mg2+ 0.793 0.036 0.359 0.679 -0.132 0.300 -0.229 Cl- 0.595 -0.577 0.247 -0.089 0.231 0.871 -0.069 SO42- 0.704 -0.473 0.321 0.043 -0.117 0.086 0.508 HCO3- 0.828 0.440 -0.127 0.973 0.105 -0.021 0.002 NH4+ 0.073 0.864 -0.164 0.284 0.797 -0.084 -0.132 NO3- 0.227 -0.195 0.771 0.048 0.200 -0.032 0.671 Fe 0.102 0.902 -0.245 0.185 0.864 0.030 -0.007 Si -0.240 0.732 0.226 0.277 0.133 0.025 -0.758 方差贡献率(%) 37.657 25.541 16.724 29.330 18.986 12.643 11.656 累计方差贡献率(%) 37.657 63.198 79.922 29.330 48.316 60.959 72.615 -
[1] Boateng, T.K., Opoku, F., Acquaah, S.O., et al., 2016.Groundwater Quality Assessment Using Statistical Approach and Water Quality Index in Ejisu-Juaben Municipality, Ghana.Environmental Earth Sciences, 75(6):1-14.doi: 10.1007/s12665-015-5105-0 [2] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain [3] Gan, Y.Q., Wang, Y.X., Duan, Y.H., et al., 2014.Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China.Journal of Geochemical Exploration, 138(3):81-93.doi: 10.1016/j.gexplo.2013.12.013 [4] Gong, X.Y., Sun, Y.L., He, Y.Z., et al., 2015.Distribution Characteristics of Organochlorine Pesticides in the Groundwater of Jianghan Plain.Geological Science and Technology Information, 34(1):210-215 (in Chinese with English abstract). [5] Guo, H.M., Guo, Q., Jia, Y.F., et al., 2013.Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China.Journal of Earth Sciences and Environment, 35(3):83-96 (in Chinese with English abstract). https://www.researchgate.net/profile/Huaming_Guo/publication/222526433_Geochemical_Characteristics_of_Shallow_Groundwater_in_Datong_Basin_Northwestern_China/links/0912f50ee62781f9f6000000.pdf [6] Hao, H.Y., 2007.Research on Rural Drinking Water Safety in the Jianghan Plain.China Rural Water and Hydropower, 3(7):31-35 (in Chinese with English abstract). [7] Li, J.X., Su, C.L., Xie, X.J., et al., 2010.Application of Multivariate Statistical Analysis to Research the Environment of Groundwater:A Case Study at Datong Basin, Northern China.Geological Science and Technology Information, 29(6):94-100(in Chinese with English abstract). [8] Liu, C.W., Lin, K.H., Kuo, Y.M., 2003.Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan.Science of the Total Environment, 313(1-3):77-89.doi: 10.1016/s0048-9697(02)00683-6 [9] Nosrati, K., van den Eeckhaut, M.V.D., 2011.Assessment of Groundwater Quality Using Multivariate Statistical Techniques in Hashtgerd Plain, Iran.Environmental Earth Sciences, 65(1):331-344.doi: 10.1007/s12665-011-1092-y [10] Tlili-Zrelli, B., Hamzaoui-Azaza, F., Gueddari, M., et al., 2012.Geochemistry and Quality Assessment of Groundwater Using Graphical and Multivariate Statistical Methods, a Case Study:Grombalia Phreatic Aquifer (Northeastern Tunisia).Arabian Journal of Geosciences, 6(9):3545-3561.doi: 10.1007/s12517-012-0617-3 [11] Wang, A.H., Zhao, S.J., 2007.Survey of Endemic Arsenic Poisoning Areas in Xiantao City, Hubei Province.China Tropical Medicine, 7(8):1486-1487(in Chinese with English abstract). [12] Wang, X.L., Lü, X.G., Ren, X.Y., 2006.Comprehensive Evaluation on Wetland Water System and Water Resources Management in the Jianghan Plain.Scientia Geographica Sinica, 26(3):311-315(in Chinese with English abstract). [13] Wang, Y.P., Wang, L., Xu, C.X., et al., 2010.Hydro-Geochemistry and Genesis of Major Ions in the Yangtze River, China.Geological Bulletin of China, 29(2/3):446-456(in Chinese with English abstract). https://www.researchgate.net/publication/286693819_Hydro-geochemistry_and_genesis_of_major_ions_in_the_Yangtze_River_China [14] Wu, C.Y., Su, X.S., Guo, J.M., et al., 2011.Multivariate Statistical Analysis of Hydrogeochemical Evolution of Groundwater in Cretaceous Aquifer Ordos Desert Plateau.Global Geology, 30(2):244-253(in Chinese with English abstract). [15] Zhou, Y., Wang, Y.X., Li, Y.L., et al., 2012.Hydrogeochemical Characteristics of Central Jianghan Plain, China.Environmental Earth Sciences, 68(3):765-778.doi: 10.1007/s12665-012-1778-9 [16] Zhu, F.B., Zhou, H., Liu, R., 2015.Geochemical Characteristics and Origin of Formation Water in Western Depression, Liaohe Basin.Earth Science, 40(11):1870-1875(in Chinese with English abstract). [17] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 [18] 龚香宜, 孙云雷, 何炎志, 等, 2015.江汉平原地下水中有机氯农药的残留及分布特征.地质科技情报, 34(1):210-215. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501033.htm [19] 郭华明, 郭琦, 贾永锋, 等, 2013.中国不同区域高砷地下水化学特征及形成过程.地球科学与环境学报, 35(3):83-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm [20] 郝华勇, 2007.江汉平原农村饮用水安全问题研究.中国农村水利水电, 3(7):31-35. http://cdmd.cnki.com.cn/Article/CDMD-10511-2006079228.htm [21] 李俊霞, 苏春利, 谢先军, 等, 2010.多元统计方法在地下水环境研究中的应用——以山西大同盆地为例.地质科技情报, 29(6):94-100. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006016.htm [22] 汪爱华, 赵淑军, 2007.湖北省仙桃市地方性砷中毒病区水砷调查与分析.中国热带医学, 7(8):1486-1487. http://www.cnki.com.cn/Article/CJFDTOTAL-RDYX200708119.htm [23] 王学雷, 吕宪国, 任宪友, 2006.江汉平原湿地水系统综合评价与水资源管理探讨.地理科学, 26(3):311-315. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200603008.htm [24] 王亚平, 王岚, 许春雪, 等, 2010.长江水系水文地球化学特征及主要离子的化学成因.地质通报, 29(2/3):446-456. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1033.htm [25] 吴春勇, 苏小四, 郭金淼, 等, 2011.鄂尔多斯沙漠高原白垩系地下水水化学演化的多元统计分析.世界地质, 30(2):244-253. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201102012.htm [26] 朱芳冰, 周红, 刘睿, 2015.辽河盆地西部凹陷稠油分布区地层水化学特征.地球科学, 40(11):1870-1875. http://www.earth-science.net/WebPage/Article.aspx?id=3193