Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain
-
摘要: 江汉平原东部地区地下水硝态氮和氨氮污染严重,地表水-地下水相互作用强烈,季节性水文条件变化极其显著.选取典型试验场地,对试验场内沉积物(0~25 m)氮形态进行测定,并对地下水氮含量及其他水化学指标进行连续性监测.研究表明:沉积物NO3--N含量较高(25.8~119.48 mg/kg),是可交换态氮的主要组成部分,NH3-N含量与TOC和TN均呈一定的正相关性,表明NH3-N含量主要受沉积物中埋藏有机质的控制.试验场深度较深(≥2 m)地下水氮的含量和形态对地下水位波动有明显响应:雨季开始,地下水位抬升,含水介质还原性增强,NO3--N生成受抑制且通过反应消耗,矿化作用加强,导致NH3-N成为氮的主要赋存形态;雨季结束,地下水水位下降,含水介质的氧化性增强,NO3--N的生成受到促进,硝化作用增强而反硝化作用减弱,导致NO3--N的浓度增加.近地表人类活动(外源输入)对试验场浅表地层(<2 m)地下水氮形态有明显的影响.自然或者人为因素引起的水文条件变化导致地下水流场的变化,从而改变含水介质固有的氧化还原环境,是导致试验场氮季节性变化的主要原因.Abstract: The pollution of NO3--N and NH3-N in groundwater is very serious in the eastern of Jianghan plain, which is characterized by strong interactions between groundwater and surface water and obvious variations of seasonal hydrological condition. Sediment samples along vertical profiles of three boreholes and groundwater samples with different depths in different seasons were sampled to analyze the nitrogen speciation coupled with supporting chemistry in a typical field site. The results show that NO3--N with concentrations from 25.8 to 119.48 mg/kg is a dominant speciation of the total exchangeable nitrogen in sediments. The NH3-N concentrations have a good positive correlation with TOC and TN contents in sediments, implying NH3-N was mainly influenced by organic matter. The concentration and speciation of nitrogen in the groundwater deeper than 2 m show a significant response to the fluctuation of groundwater level. During the monsoon season, groundwater level increased, enhancing the reducing potential of aquifer media. As a result, NO3--N was not liable to be produced and was more likely to be consumed by denitrification. At the same time, with the mineralization enhanced, NH3-N was gradually becoming the main speciation of dissolved inorganic nitrogen. After the monsoon season, groundwater level declined, enhancing the oxidizing potential of aquifer media.As a result, nitrification was enhanced and denitrification was limited, and the concentration of NO3--N increased.Anthropogenic activities near the surface had a significant effect on the concentration and speciation of nitrogen in the groundwater shallower than 2 m. In summary, under the coupled influence of natural and anthropogenic factors, seasonal hydrological change resulted in the variation of redox potential, which was the main trigger for seasonal variation of nitrogen concentration and speciation in the groundwater.
-
Key words:
- Jianghan plain /
- three-nitrogen /
- seasonal variation /
- groundwater /
- migration and transformation /
- hydrogeology
-
表 1 江汉平原地表水-地下水相互作用试验场不同深度含水层水位季节性变化
Table 1. Seasonal variations of water level at different depths in the field site
监测点编号 全新统浅层孔隙潜水水位(m) 上更新统浅层孔隙承压水位(m) 丰水期 枯水期 水位变化 丰水期 枯水期 水位变化 SH01 21.47 21.20 0.27 21.70 21.25 0.45 SH02 21.78 21.34 0.44 21.87 21.34 0.53 SH03 21.65 21.33 0.32 21.77 21.38 0.39 SH04 21.58 21.58 0.00 21.85 21.31 0.54 表 2 水样测试手段及方法
Table 2. Testing means and methods for water samples
检测指标 仪器或方法 最低检出浓度 检测单位 现场NH3-N、NO3--N、NO2--N和Fe2+浓度 便携式分光光度计(HACH2800,美国) 0.01 mg/L、0.1 mg/L、0.001 mg/L和0.01 mg/L 现场测试 碱度 碱度滴定法 0.01 mg/L 现场测试 常规阳离子 电感耦合等离子体质谱仪(ICP-OES(iCAP 6300),美国热电公司) 0.000 1 mg/L 中国地质大学(武汉)教育部长江三峡库区地质灾害研究中心 常规阴离子 美国赛默飞ICS-2100离子色谱仪 0.001 mg/L 中国地质大学(武汉)地质调查研究院 -
[1] Chen, X.M., Ma, T., Cai, H.S., et al., 2013.Regional Control of Groundwater Nitrogen Contamination.Geological Science and Technology Information, 32(6):130-143, 149 (in Chinese with English abstract). [2] Christensen, J.P., Smethie Jr, W.M., Devol, A.H., 1987.Benthic Nutrient Regeneration and Denitrification on the Washington Continental Shelf.Deep Sea Research Part A.Oceanographic Research Papers, 34 (5-6):1027-1047.doi: 10.1016/0198-0149(87)90051-3 [3] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886 (in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain [4] Dhar, R.K., Zheng, Y., Stute, M., et al., 2008.Temporal Variability of Groundwater Chemistry in Shallow and Deep Aquifers of Araihazar, Bangladesh.Journal of Contaminant Hydrology, 99(1-4):97-111.doi: 10.1016/j.jconhyd.2008.03.007 [5] Duan, Y.H., Gan, Y.Q., Wang, Y.X., et al., 2015.Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China.Journal of Geochemical Exploration, 149:106-119.doi: 10.1016/j.gexplo.2014.12.001 [6] Hinkle, S.R., Böhlke, J.K., Duff, J.H., et al., 2007.Aquifer-Scale Controls on the Distribution of Nitrate and Ammonium in Ground Water near La Pine, Oregon, USA.Journal of Hydrology, 333(2-4):486-503.doi: 10.1016/j.jhydrol.2006.09.013 [7] Laverman, A.M., Canavan, R.W., Slomp, C.P., et al., 2007.Potential Nitrate Removal in a Coastal Freshwater Sediment (Haringvliet Lake, the Netherlands) and Response to Salinization.Water Research, 41(14):3061-3068.doi: 10.1016/j.watres.2007.04.002 [8] Li, Y., Zhang, W.W., Yuan, J.H., et al., 2016.Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones.Journal of Hohai University(Natural Sciences), 44(1):1-7 (in Chinese with English abstract). https://www.researchgate.net/publication/301630507_Research_advances_in_flow_patterns_and_nitrogen_transformation_in_hyporheic_zones [9] Lu, C.Y., Chen, X., 2004.Effect of Organic Carbon on the Mineralization Process of Organic Nitrogen in Organic Material with Different C/N Ratio.Journal of the Graduate School of the Chinese Academy of Sciences, 21(1):108-112(in Chinese with English abstract). [10] Lu, W.W., Zhang, H.L., Shi, W.M., 2013.Dissimilatory Nitrate Reduction to Ammonium in an Anaerobic Agricultural Soil as Affected by Glucose and Free Sulfide.European Journal of Soil Biology, 58:98-104.doi: 10.1016/j.ejsobi.2013.07.003 [11] Ma, H.B., Li, X.X., Hu, C.S., 2012.Status of Nitrate Nitrogen Contamination of Groundwater in China.Chinese Journal of Soil Science, 43(6):1532-1536 (in Chinese with English abstract). https://www.researchgate.net/publication/284048905_Status_of_nitrate_nitrogen_contamination_of_groundwater_in_China?_sg=ovZeO9AwTyGJhcZ6h461Np_2BDRGo041c5sz82JplLmGdfex5nHNtXdUuVF2XdEbNWUEx0A6cylnVgwvimXyig [12] Ma, H.B., Song, J.M., Lü, X.X., et al., 2003.Nitrogen Forms and Their Functions in Recycling of the Bohai Sea Sediments.Geochimica, 32(1):48-54(in Chinese with English abstract). [13] Marzadri, A., Tonina, D., McKean, J.A., et al., 2014.Multi-Scale Streambed Topographic and Discharge Effects on Hyporheic Exchange at the Stream Network Scale in Confined Streams.Journal of Hydrology, 519:1997-2011.doi: 10.1016/j.jhydrol.2014.09.076 [14] McHale, M.R., Cirmo, C.P., Mitchell, M.J., et al., 2004.Wetland Nitrogen Dynamics in an Adirondack Forested Watershed.Hydrological Processes, 18(10):1853-1870.doi: 10.1002/hyp.1452 [15] Ministry of Environmental Protection of the People's Republic of China, 2012.Soil-Determination of Ammonium, Nitrite and Nitrate by Extraction with Potassium Chloride Solution-Spectrophotometric Methods, HJ 634-2012.China Environmental Science Press, Beijing (in Chinese). [16] Ministry of Land and Resources of the People's Republic of China, 2015.Standard for Groundwater Quality, DZ/T 0290-2015.Geological Publishing House, Beijing (in Chinese). [17] Norrman, J., Sparrenbom, C.J., Berg, M., et al., 2015.Tracing Sources of Ammonium in Reducing Groundwater in a Well Field in Hanoi (Vietnam) by Means of Stable Nitrogen Isotope (δ15N) Values.Applied Geochemistry, 61:248-258.doi: 10.1016/j.apgeochem.2015.06.009 [18] Sophocleous, M., 2002.Interactions between Groundwater and Surface Water:The State of the Science.Hydrogeology Journal, 10(1):52-67.doi: 10.1007/s10040-001-0170-8 [19] Teng, Y.G., Zuo, R., Wang, J.S., 2007.Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function.Earth and Environment, 35(1):1-8(in Chinese with English abstract). [20] Wang, D.S., 1998.Relation between Fresh Groundwater Evolution and Some Diseases Caused by Drinking Water.Acta Geoscientia Sinica, 19(4):443-448 (in Chinese with English abstract). [21] Wang, L.S., Shi, X.Y., Zhang, C.S., 2010.Distribution and Origins of Organic Carbon and Organic Nitrogen in ECS Sediments of High-Frequency HABs Areas.Marine Environmental Science, 29(2):165-169(in Chinese with English abstract). [22] Ye, X.C., Zhang, S.T., Song, X.L., et al., 2007.Nitrogen Distribution and Pollution Mechanism of Fleet Layer Groundwater in Kunming Basin.Journal of Soil and Water Conservation, 21(4):185-188, 200 (in Chinese with English abstract). [23] Zhang, L., Wang, S.R., Wu, Z.H., 2014.Coupling Effect of pH and Dissolved Oxygen in Water Column on Nitrogen Release at Water-Sediment Interface of Erhai Lake, China.Estuarine, Coastal and Shelf Science, 149:178-186.doi: 10.1016/j.ecss.2014.08.009 [24] Zhang, Y.F., Li, C.A., Sun, X.L., et al., 2016.Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain.Earth Science, 41(7):1225-1230(in Chinese with English abstract). [25] Zhao, T.K., Zhang, C.J., Du, L.F., et al., 2007.Investigation on Nitrate Concentration in Groundwater in Seven Provinces (City) Surrounding the Bo-Hai Sea.Journal of Agro-Environment Science, 26(2):779-783(in Chinese with English abstract). [26] Zheng, Q.L., Wang, Y.Y., Yan, Y.N., et al., 2016.Identification of Prior Control Areas for Nitrogen Pollution Blocking in Shallow Groundwater in Huai River Basin.Journal of Nanjing University(Natural Sciences), 52(1):103-114 (in Chinese with English abstract). [27] 陈新明, 马腾, 蔡鹤生, 等, 2013.地下水氮污染的区域性调控策略.地质科技情报, 32(6):130-143, 149. [28] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 [29] 李勇, 张维维, 袁佳慧, 等, 2016.潜流带水流特性及氮素运移转化研究进展.河海大学学报:自然科学版, 44(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm [30] 鲁彩艳, 陈欣, 2004.有机碳源添加对不同C/N比有机物料氮矿化进程的影响.中国科学院研究生院学报, 21(1):108-112. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB200401016.htm [31] 马洪斌, 李晓欣, 胡春胜, 2012.中国地下水硝态氮污染现状研究.土壤通报, 43(6):1532-1536. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm [32] 马红波, 宋金明, 吕晓霞, 等, 2003.渤海沉积物中氮的形态及其在循环中的作用.地球化学, 32(1):48-54. http://cdmd.cnki.com.cn/Article/CDMD-80068-2001002959.htm [33] 中华人命共和国环境保护部, 2012.土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提取-分光光度法, HJ 634-2012.北京:中国环境科学出版社. [34] 中华人民共和国国土资源部, 2015.地下水水质标准, DZ/T 0290-2015.北京:地质出版社. [35] 滕彦国, 左锐, 王金生, 2007.地表水-地下水的交错带及其生态功能.地球与环境, 35(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200701000.htm [36] 王东升, 1998.地下淡水演变与水致疾病.地球学报, 19(4):443-448. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB804.018.htm [37] 王丽莎, 石晓勇, 张传松, 2010.东海赤潮高发区沉积物中有机碳、有机氮的分布及其来源.海洋环境科学, 29(2):165-169. http://cdmd.cnki.com.cn/Article/CDMD-10423-2008012607.htm [38] 叶许春, 张世涛, 宋学良, 等, 2007.昆明盆地浅层地下水氮的分布及污染机理.水土保持学报, 21(4):185-188, 200. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200704042.htm [39] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.11764/j.issn.1672-1926.2016.07.1225 [40] 赵同科, 张成军, 杜连凤, 等, 2007.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报, 26(2):779-783. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200702071.htm [41] 郑倩琳, 王妍妍, 闫雅妮, 等, 2016.淮河流域浅层地下水氮污染阻断优先控制区识别.南京大学学报:自然科学, 52(1):103-114. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201601012.htm