Three Component Rotational Ground Motion Obtained from Explosive Source Data
-
摘要: 三分量旋转地震动是目前地球物理研究重点之一.利用爆炸震源的平动地震仪观测资料,通过间接计算获得三分量旋转地震动.利用了3炮500 kg炸药的观测资料,3个爆炸点到观测台阵的距离分别是1.8、2.8和8.9 km,计算得到了台阵相对于这3个爆炸点的旋转地震动,其最大峰值旋转角速度分别是41.65、21.98和0.29 μrads/s,与国际同行的旋转地震动结果量级接近.地震动峰值随震中距的衰减是地震工程中关注的问题.提取出三分量的旋转角速度峰值,利用指数函数对三分量的峰值进行拟合,初步得到三分量的旋转地震动角速度峰值随震中距的衰减关系.衰减曲线的主要特征是,1~3 km旋转角速度能量迅速衰减,大于5 km以后衰减逐渐减慢,随着震中距增大曲线的变化越来越趋于平缓.Abstract: Three component rotational ground motion is one of the most important point of geophysics research. In this paper, the rotational ground motions with three components were deduced by calculation using records of translational seismographs from explosions. The observational data used are from three shots with explosive charge of 500 kg for each and observational distances of 1.8, 2.8, 8.9 km respectively. The rotational motions of the array from these three shots were obtained by calculation. The largest peak angular velocities of ground motion are 41.65, 21.98 and 0.29 μrads/s respectively, which are quite near the results from international colleagues. How the peak values of the ground motion decay with the epicenter distance is always the focal problem in earthquake engineering. In this paper, the peak angular velocities of ground motion are fit with exponent function, and the decay of peak values with distance is obtained. The main features of the decay curves are as follows: The values decay very fast within 1-3 km and slow down gradually beyond 5 km. And with the increase of the distance, the curve tends to more and more flat.
-
Key words:
- seismology /
- translational--velocity /
- rotational--velocity /
- seismic array /
- explosive source.
-
表 1 三分量峰值旋转角速度
Table 1. Three component peak ground rotational velocities
炮点编号 Rx Ry Rz 震中距 (km) SP2 30.258 41.651 32.195 1.8 SP1 13.547 21.983 21.010 2.8 SP3 0.180 0.293 0.206 8.9 注:PGRV单位为μrad/s. 表 2 三分量峰值旋转角速度随震中距的衰减关系拟合系数
Table 2. Three component fitting attenuation coefficient of peak ground rotational velocities three component with the epicentral distance
拟合系数 Rx Ry Rz A 128.300 0 131.400 0 73.540 0 B -0.802 8 -0.638 5 -0.454 9 表 3 三分量峰值平动速度随震中距的衰减关系拟合系数
Table 3. Fitting attenuation coefficient of three component peak ground translational velocities with the epicentral distance
拟合系数 Tx Ty Tz A 5.009 0 3.102 0 3.038 0 B -0.669 8 -0.480 3 -0.563 8 -
[1] Cochard, A., Igel, H., Schuberth, B., et al., 2006.Rotational Motions in Seismology:Theory, Observation, Simulation.In:Teisseyre, R., Takeo, M., Majewski, E., eds., Earthquake Source Asymmetry, Structural Media and Rotation Effects.Springer-Verlag, Heidelberg, 391-411. [2] Huang, B.S., 2003.Ground Rotational Motions of the 1991 Chi-Chi, Taiwan Earthquake as Inferred from Dense Array Observations.Geophys.Res.Lett., 30(6):1307.doi: 10.1029/2002GL015157 [3] Igel, H., Schreiber, U., Flaws, A., et al., 2005.Rotational Motions Induced by the M 8.1 Tokachi-Oki Earthquake, September 25, 2003.Geophys.Res.Lett., 32:L08309.doi: 10.1029/2004GL022336 [4] Kozak, J.T., 2009.Tutorial on Earthquake Rotational Effects:Historical Examples.Bull.Seismol.Soc.Am., 99(2B):998-1010.doi: 10.1785/0120080308 [5] Lee, W.H.K., Igel, H., Trifunac, M.D., 2009a.Recent Advances in Rotational Seismology.Seismol.Res.Lett., 80(3):479-490.doi: 10.1785/gssrl.80.3.479 [6] Lee, W.H.K., Huang, B.S., Langston, C.A., et al., 2009b.Review:Progress in Rotational Ground-Motion Observations from Explosions and Local Earthquakes in Taiwan.Bull.Seismol.Soc.Am., 99(2B):958-967.doi: 10.1785/0120080205 [7] Li, S.L., Lai, X.L., Sun, Y., et al., 2012.Calculation of Ground Rotational Motions Using Seismic Array Data.Journal of Earth Science, 23(2):173-179.doi: 10.1007/s12583-012-0242-9 [8] Lin, C.J., Liu, C.C., Lee, W.H.K., 2009.Recording Rotational and Translational Ground Motions of two TAIGER Explosions in Northeasthern Taiwan on 4 March 2008.Bull.Seismol.Soc.Am., 99(2B):1237-1250.doi: 10.1785/0120080176 [9] Liu, C.C., Huang, B.S., Lee, W.H.K., et al., 2009.Observing Rotational and Translational Ground Motions at the HGSD Station in Taiwan from 2007 to 2008.Bull.Seismol.Soc.Am., 99(2B):1228-1236.doi: 10.1785/0120080156 [10] McLeod, D.P., Stedman, G.E., Webb, T.H., et al., 1998.Comparison of Standard and Ring Laser Rotational Seismograms.Bull.Seismol.Soc.Am., 88(1): 495-1503 [11] Spudich, P., Fletcher, J.B., 2008.Observation and Prediction of Dynamic Ground Strains, Tilts, and Torsions Caused by the M 6.0 2004 Parkfield, California, Earthquake and Aftershocks Derived from UPSAR Array Observations.Bull.Seismol.Soc.Am., 100(4):2348-2352.doi: 10.1785/0120100138 [12] Suryanto, W., Igel, H., Wassermann, J., et al., 2006. First Comparison of Array-Derived Rotational Ground Motions with Direct Ring Laser Measurements.Bull.Seismol.Soc.Am., 96(6):2059-2071.doi: 10.1785/0120060004 [13] Takeo, M., 1998.Ground Rotational Motions Recorded in Near-Source Region.Geophys.Res.Lett., 25(6): 789-792.doi: 10.1029/98GL00511 [14] Takeo, M., 2009.Rotational Motions Observed During an Earthquake Swarm in April 1998 Off-Shore Ito, Japan.Bull.Seismol.Soc.Am., 99(2B):1457-1467.doi: 10.1785/0120080173 [15] Wassermann, J., Lehndorfer, S., Igel, H., et al., 2009.Performance Test of a Commercial Rotational Motions Sensor.Bull.Seismol.Soc.Am., 99(2B):1449-1456.doi: 10.1785/0120080157 [16] Wu, C.F., Lee, W.H.K., Huang, H.C., 2009.Array Deployment to Observe Rotational and Translational Ground Motions along the Meishan Fault, Taiwan:A Progress Report.Bull.Seismol.Soc.Am., 99(2B): 1468-1474.doi: 10.1785/0120080185