The Improved AHP Vulnerable Index Method Based on GIS
-
摘要: AHP法是煤层底板突水预测预报的关键技术之一,但传统基于“1~9”标度的AHP法往往存在一致性效果不够理想等问题.通过对AHP法的改进研究,提出了基于“10/10~18/2”标度的改进AHP法型脆弱性指数法评价技术.以成庄矿3#、9#和15#煤层底板奥灰突水脆弱性评价为例,在建立各主控因素专题层图基础上,应用基于“10/10~18/2”新标度的改进AHP法,确定了各主控因素的权重;进一步建立了煤层底板奥灰突水的脆弱性评价模型,得出了各煤层脆弱性评价分区.研究表明,改进的AHP法构建的判断矩阵具有较好的一致性;通过与传统突水系数法评价结果对比可知,基于GIS的改进AHP型脆弱性指数法评价能够真实反映多因素影响下煤层底板突水的非线性动力过程,评价结果更为吻合实际.Abstract: The AHP method is one of the key technologies in predicting coal seam floor water inrush. But, the traditional AHP method, which is based on 1-9 scale, often has some problems. For example, the consistency effect is not ideal. Therefore, through the research on these problems, the technique of the improved AHP vulnerable index method, which is based on 10/10-18/2 scale, was put forward. Then, the vulnerability evaluation of the No. 3, 9 and 15 coal in Chengzhuang coalmine was taken as an example. Firstly, based on the establishment of the thematic layers diagrams of eight main factors, the weight of each main factors was determined using the improved AHP method. Then, the vulnerability evaluation model of the floor water inrush from the Ordovician limestone aquifer was constructed. Finally, the vulnerability zoning of each part in the study area of the No.3, 9 and 15 coal mine were obtained. The results showed that the judgment matrix constructed by the improved AHP method has better consistency effect. Furthermore, compared with the results of the traditional water inrush coefficient method, the results of the improved AHP vulnerability index method, which can truly reflect the nonlinear dynamic process of the floor water inrush under multi-factor affection, are more consistent with the actual.
-
Key words:
- floor water inrush /
- vulnerable index method /
- improved AHP /
- nonlinear analysis /
- hydrogeology.
-
表 1 新标度与传统标度对照
Table 1. Comparison table of the new scale and the traditional scale
传统标度 (k)(k=1~9) 改进标度 (10/10~18/2) 释义 1 10/10 同等重要 3 12/8 稍微重要 5 14/6 明显重要 7 16/4 非常重要 9 18/2 极端重要 k (9+k)/(11-k) 表 2 10/10~18/2标度对应RI值
Table 2. The value ofRIin the 10/10-18/2 scale
m 1 2 3 4 5 6 7 8 9 RI 0 0 0.169 0 0.259 8 0.328 7 0.369 4 0.400 7 0.416 7 0.437 0 表 3 奥灰突水脆弱性评价的判断矩阵及权重 (j=1~3)
Table 3. Judgment matrix and weight of the water vulnerability evaluation of Ordovician limestone water inrush (j=1-3)
指标 B1 B2 B3 W(A/Bj) B1 10/10 12/8 9/11 0.350 1 B2 8/12 10/10 8/12 0.249 6 B3 11/9 12/8 10/10 0.400 3 λmax=3.004 5,CI0=0.002 2,CR0=0.013 0. 表 4 B层次判断矩阵及权重 (i=1~8, j=1~3)
Table 4. Judgment matrix and weight of level B (i=1-8, j=1-3)
指标 C1 C2 C3 C4 C5 C6 C7 C8 Bj/Ci 相关指标 C1 10/10 11/9 - -- -- -- -- -- 0.55 λmax=2,CI1=0,CR1不存在 C2 9/11 10/10 - -- -- -- -- -- 0.45 C3 -- -- 10/10 15/5 -- -- -- -- 0.75 λmax=2,CI2=0,CR2不存在 C4 -- -- 5/15 10/10 -- -- -- -- 0.25 C5 -- -- -- -- 10/10 10/10 16/4 17/3 0.43 λmax=4.025 6,
CI3=0.008 5,
CR3=0.032 8C6 -- -- -- -- 10/10 10/10 15/5 16/4 0.37 C7 -- -- -- -- 4/16 5/15 10/10 10/10 0.11 C8 -- -- -- -- 3/17 4/16 10/10 10/10 0.10 表 5 奥灰突水脆弱性评价指标权重
Table 5. The weight of the index of the vulnerability evaluation of Ordovician limestone water inrush
目标层 准则层 W(A/Bj) 指标层 W(Bj/Ci) W(A/Ci) 奥灰突水脆弱性评价 承压含水层 0.350 1 奥灰水压 0.550 0 0.192 6 奥灰富水性 0.450 0 0.157 5 底板隔水层 0.249 6 有效隔水层等效厚度 0.750 0 0.187 2 矿压破坏带下脆性岩厚度 0.250 0 0.062 4 地质构造 0.400 3 陷落柱分布 0.433 3 0.173 5 断层和褶皱轴分布 0.369 2 0.147 8 断层规模指数 0.106 5 0.042 6 断层和褶皱轴交点及端点分布 0.091 0 0.036 4 -
[1] Ge, L.T., Ye, G.J., Gao, H.L., 2000.China Coal Field Hydrology Geology.China Coal Industry Publishing House, Beijing (in Chinese). [2] Kuznetsov, S.V., Trofimov, V.A., 2002.Hydrodynamic Effect of Coal Seam Compression.Journal of Mining Science, 38(3):205-212.doi: 10.1023/A:1021981716467. [3] Li, B.Y., 1999."Down Three Zones" in the Prediction of the Water Inrush from Coalbed Floor Aquifer-Theory, Development and Application.Journal of Shandong Institute of Mining and Technology (Natural Science), 18(4):11-18 (in Chinese with English abstract). [4] Mughieda, O., Omar, M.T., 2008.Stress Analysis for Rock Mass Failure with Offset Joints.Geotechnical and Geological Engineering, 26(5):543-552.doi: 10.1007/s10706-008-9188-1 [5] Qian, M.G., Miao, X.X., Xu, J.L., 1996.Theoretical Study of Key Stratum in Ground Control.Journal of China Coal Society, 21(3):225-230 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB603.000.htm [6] Qu, S., 2009.Research about Improving AHP and Applying to Security Decision Field.Journal of Safety Science and Technology, 5(5):111-114 (in Chinese with English abstract). [7] Saaty, T.L., 1980.The Analytic Hierarchy Process.McGraw Hill, New York. [8] Sammarco, O., 1988.Inrush Prevention in an Underground Mine.International Journal of Mine Water, 7(4):43-52.doi: 10.1007/BF02505391 [9] Slisalifs, B., 1983.Conditions for Safe Coal Mining under Water Bodies.Development and Practice of Mine Water Control Technology in Foreign Countries.Beijing General Research Institute of Mining & Metallurgy, Beijing (in Chinese). [10] Wang, H.B., Liu, B., 2007.Mine Water Disaster Prevention and Control Technology.China Coal Industry Publishing House, Beijing (in Chinese). [11] Wu, D.T., Li, D.F., 2004.Shortcomings of Analytical Hierarchy Process and the Path to Improve the Method.Journal of Beijing Normal University (Natural Science), 40(2):264-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSDZ200402024.htm [12] Wu, Q., 2014.Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China.Journal of China Coal Society, 39(5):795-805 (in Chinese with English abstract). [13] Wu, Q., Jin, Y.J., 1995.Decision Making System of Mine Water Prevention and Control in North China Type Coal Field.China Coal Industry Publishing House, Beijing (in Chinese). [14] Wu, Q., Liu, S.Q., 2011b.Discussion on the Evaluation and Prediction of Coal Mine Water Disaster Emergency Rescue Plan.China Engineering Science and Technology Forum 118th-2011 International Coal Mine Gas Control and Safety, China University of Mining and Technology Press, Xuzhou, 295-301 (in Chinese with English abstract). [15] Wu, Q., Wang, J.H., Liu, D.H., et al., 2009.A New Practical Methodology of the Coal Floor Water Bursting Evaluating Ⅳ:The Application of AHP Vulnerable Index Method Based on GIS.Journal of China Coal Society, 34(2):233-238 (in Chinese with English abstract). https://www.researchgate.net/publication/292118313_New_practical_methodology_of_the_coal_floor_water_bursting_evaluating_IV_The_application_of_AHP_vulnerable_index_method_based_on_GIS [16] Wu, Q., Wang, M.Y., 2006.Characterization of Water Bursting and Discharge into Underground Mines with Multi-Layered Groundwater Flow Systems in the North China Coal Basin.Hydrogeology Journal, 14(6):882-893.doi: 10.1007/s10040-006-0021-8 [17] Wu, Q., Zhang, B., Zhao, W.D., et al., 2013.A New Practical Methodology of Coal Seam Floor Water Burst Evaluation:the Comparison Study among ANN, the Weight of Evidence and the Logistic Regression Vulnerable Index Method Based on GIS.Journal of China Coal Society, 38(1):21-26 (in Chinese with English abstract). https://www.researchgate.net/publication/263338598_A_new_practical_methodology_of_coal_seam_floor_water_burst_evaluationthe_comparison_study_among_ANNthe_weight_of_evidence_and_the_logistic-regression_vulnerable_index_method_based_on_GIS [18] Wu, Q., Zhang, Z.L., Ma, J.F., 2007a.A New Practical Methodology of the Coal Floor Water Bursting EvaluatingⅠ:The Master Controlling Index System Construction.Journal of China Coal Society, 32(1):42-47 (in Chinese with English abstract). https://www.researchgate.net/publication/292062735_New_practical_methodology_of_the_coal_floor_water_bursting_evaluating_III_The_application_of_ANN_vulnerable_index_method_based_on_GIS [19] Wu, Q., Zhang, Z.L., Zhang, S.Y., et al., 2007b.A New Practical Methodology of the Coal Floor Water Bursting Evaluating Ⅱ:The Vulnerable Index Method.Journal of China Coal Society, 32(11):1121-1126 (in Chinese with English abstract). [20] Wu, Q., Zhao, S.Q., Dong, S.N., et al., 2012.Dissection of Main Technical Points in "Coal Mine Safety Regulations" (Water Control Part) Modification.Coal Geology of China, 24(7):34-37 (in Chinese with English abstract). [21] Wu, Q., Zhao, S.Q., Li, J.S, et al., 2011a.The Preparation Background and the Main Points of Rule of Mine Prevention and Cure Water Disaster.Journal of China Coal Society, 36(1):70-74 (in Chinese with English abstract). https://www.researchgate.net/publication/263593426_The_preparation_background_and_the_main_points_of_Rule_of_Mine_Prevention_and_Cure_Water_Disaster [22] Xu, S.B., 1998.Principle of Analytic Hierarchy Process.Tianjin University Press, Tianjin (in Chinese). [23] B.斯列萨列夫, 1983.水体下安全采煤的条件.国外矿山防治水技术的发展与实践.北京:冶金矿山设计院. [24] 葛亮涛, 叶贵军, 高洪烈, 2000.中国煤田水文地质学.北京:煤炭工业出版社. [25] 李白英, 1999.预防矿井底板突水的"下三带"理论及其发展与应用.山东矿业学院学报 (自然科学版), 18(4): 11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm [26] 钱鸣高, 缪协兴, 许家林, 1996.岩层控制中的关键层理论研究.煤炭学报, 21(3): 225-230. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405027.htm [27] 曲生, 2009.层次分析法的改进及在安全决策中应用的研究.中国安全生产科学技术, 5(5): 111-114. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200905030.htm [28] 王宏斌, 刘伯, 2007.矿井水害防治技术.北京:煤炭工业出版社. [29] 吴殿廷, 李东方, 2004.层次分析法的不足及其改进的途径.北京师范大学报 (自然科学版), (2): 264-267. http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200501015.htm [30] 武强, 2014.我国矿井水防控与资源化利用的研究进展、问题和展望.煤炭学报, 39(5): 795-805. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201405001.htm [31] 武强, 金玉洁, 1995.华北型煤田矿井防治水决策系统.北京:煤炭工业出版社. [32] 武强, 刘守强, 2011b.煤矿水害预测评价与应急救援预案探讨.中国工程科技论坛第118场-2011国际煤矿瓦斯治理及安全论文集, 徐州:中国矿业大学出版社, 295-301. [33] 武强, 王金华, 刘东海, 等, 2009.煤层底板突水评价的新型实用方法Ⅳ——基于GIS的AHP型脆弱性指数法应用.煤炭学报, 34(2): 233-238. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200902022.htm [34] 武强, 张波, 赵文德, 等, 2013, 煤层底板突水评价的新型实用方法Ⅴ——基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较.煤炭学报, 38(1): 21-26. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301003.htm [35] 武强, 张志龙, 马积福, 2007a.煤层底板突水评价的新型实用方法Ⅰ——主控指标体系的建设.煤炭学报, 32(1): 42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200701008.htm [36] 武强, 张志龙, 张生元, 等, 2007b.煤层底板突水评价的新型实用方法Ⅱ——脆弱性指数法.煤炭学报, 32(11): 1121-1126. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200902022.htm [37] 武强, 赵苏启, 董书宁, 等, 2012.《煤矿安全规程》(防治水部分) 修改技术要点剖析.中国煤炭地质, 24(7): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207009.htm [38] 武强, 赵苏启, 李竞生, 等, 2011a.《煤矿防治水规定》编制背景与要点.煤炭学报, 36(1): 70-74. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101016.htm [39] 许树柏, 1998.层次分析法原理.天津:天津大学出版社.