• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于GIS的改进AHP型脆弱性指数法

    刘守强 武强 曾一凡 宫厚健 李哲

    刘守强, 武强, 曾一凡, 宫厚健, 李哲, 2017. 基于GIS的改进AHP型脆弱性指数法. 地球科学, 42(4): 625-633. doi: 10.3799/dqkx.2017.049
    引用本文: 刘守强, 武强, 曾一凡, 宫厚健, 李哲, 2017. 基于GIS的改进AHP型脆弱性指数法. 地球科学, 42(4): 625-633. doi: 10.3799/dqkx.2017.049
    Liu Shouqiang, Wu Qiang, Zeng Yifan, Gong Houjian, Li Zhe, 2017. The Improved AHP Vulnerable Index Method Based on GIS. Earth Science, 42(4): 625-633. doi: 10.3799/dqkx.2017.049
    Citation: Liu Shouqiang, Wu Qiang, Zeng Yifan, Gong Houjian, Li Zhe, 2017. The Improved AHP Vulnerable Index Method Based on GIS. Earth Science, 42(4): 625-633. doi: 10.3799/dqkx.2017.049

    基于GIS的改进AHP型脆弱性指数法

    doi: 10.3799/dqkx.2017.049
    基金项目: 

    国家重点研发计划重点专项项目 2016YFC0801801

    国家自然科学基金项目 41602262

    高等学校博士学科点专项科研基金项目 20130023120018

    国家自然科学基金项目 41272276

    详细信息
      作者简介:

      刘守强 (1981-),男,博士,主要从事矿井水害方面的教学与研究工作.ORCID:0000-0003-2755-6853.E-mail: sqliu@cumtb.edu.cn

    • 中图分类号: P641.4

    The Improved AHP Vulnerable Index Method Based on GIS

    • 摘要: AHP法是煤层底板突水预测预报的关键技术之一,但传统基于“1~9”标度的AHP法往往存在一致性效果不够理想等问题.通过对AHP法的改进研究,提出了基于“10/10~18/2”标度的改进AHP法型脆弱性指数法评价技术.以成庄矿3#、9#和15#煤层底板奥灰突水脆弱性评价为例,在建立各主控因素专题层图基础上,应用基于“10/10~18/2”新标度的改进AHP法,确定了各主控因素的权重;进一步建立了煤层底板奥灰突水的脆弱性评价模型,得出了各煤层脆弱性评价分区.研究表明,改进的AHP法构建的判断矩阵具有较好的一致性;通过与传统突水系数法评价结果对比可知,基于GIS的改进AHP型脆弱性指数法评价能够真实反映多因素影响下煤层底板突水的非线性动力过程,评价结果更为吻合实际.

       

    • 图  1  水文地质概化模型

      Fig.  1.  Hydrogeological generalized model

      图  2  煤层底板奥灰带压分区

      a.3#煤层奥灰带压分区;b.9#煤层奥灰带压分区;c.15#煤层奥灰带压分区

      Fig.  2.  Pressure zoning sketch of the coal seam floor

      图  3  各煤层主控因素专题层

      a、d、g、j、m.3#煤层;b、e、h、k、n.9#煤层;c、f、i、l、o.15#煤层;a、b、c.有效隔水层等效厚度;d、e、f.矿压破坏带下脆性岩厚度;g、h、i.陷落柱分布危险性系数;j、k、l.断层和褶皱轴的分布危险性系数;m、n、o.断层和褶皱轴的交点及端点的分布危险性系数;厚度单位 (m)

      Fig.  3.  Thematic sketch of main control factors of each coal seam

      图  4  断层规模指数专题层

      Fig.  4.  Thematic sketch of the fault scale index

      图  5  奥灰富水性专题层

      Fig.  5.  Thematic sketch of the richness of limestone aquifer

      图  6  奥灰水压专题层

      Fig.  6.  Thematic sketch of the pressure of limestone aquifer

      图  7  3#、9#、15#煤层底板奥灰突水脆弱性评价层次分析结构模型

      Fig.  7.  Level analysis structural model of the water vulnerability evaluation of ordovician limestone under 3#、9#、15#coal

      图  8  煤层底板脆弱性指数频数直方图

      Fig.  8.  Frequency histogram of the vulnerability index of the coal seam floor

      图  9  煤层脆弱性指数法评价分区

      a.3#脆弱性指数法评价分区;b.9#脆弱性指数法评价分区;c.15#脆弱性指数法评价分区

      Fig.  9.  Evaluation of the coal using the vulnerability

      图  10  突水系数法评价分区

      a.3#突水系数法评价分区;b.9#突水系数法评价分区;c.15#突水系数法评价分区

      Fig.  10.  Evaluation of the coal using the water inrush coefficient method

      表  1  新标度与传统标度对照

      Table  1.   Comparison table of the new scale and the traditional scale

      传统标度 (k)(k=1~9)改进标度 (10/10~18/2)释义
      110/10同等重要
      312/8稍微重要
      514/6明显重要
      716/4非常重要
      918/2极端重要
      k(9+k)/(11-k)
      下载: 导出CSV

      表  2  10/10~18/2标度对应RI

      Table  2.   The value ofRIin the 10/10-18/2 scale

      m123456789
      RI000.169 00.259 80.328 70.369 40.400 70.416 70.437 0
      下载: 导出CSV

      表  3  奥灰突水脆弱性评价的判断矩阵及权重 (j=1~3)

      Table  3.   Judgment matrix and weight of the water vulnerability evaluation of Ordovician limestone water inrush (j=1-3)

      指标B1B2B3W(A/Bj)
      B110/1012/89/110.350 1
      B28/1210/108/120.249 6
      B311/912/810/100.400 3
      λmax=3.004 5,CI0=0.002 2,CR0=0.013 0.
      下载: 导出CSV

      表  4  B层次判断矩阵及权重 (i=1~8, j=1~3)

      Table  4.   Judgment matrix and weight of level B (i=1-8, j=1-3)

      指标C1C2C3C4C5C6C7C8Bj/Ci相关指标
      C110/1011/9-----------0.55λmax=2,CI1=0,CR1不存在
      C29/1110/10-----------0.45
      C3----10/1015/5--------0.75λmax=2,CI2=0,CR2不存在
      C4----5/1510/10--------0.25
      C5--------10/1010/1016/417/30.43λmax=4.025 6,
      CI3=0.008 5,
      CR3=0.032 8
      C6--------10/1010/1015/516/40.37
      C7--------4/165/1510/1010/100.11
      C8--------3/174/1610/1010/100.10
      下载: 导出CSV

      表  5  奥灰突水脆弱性评价指标权重

      Table  5.   The weight of the index of the vulnerability evaluation of Ordovician limestone water inrush

      目标层准则层W(A/Bj)指标层W(Bj/Ci)W(A/Ci)
      奥灰突水脆弱性评价承压含水层0.350 1奥灰水压0.550 00.192 6
      奥灰富水性0.450 00.157 5
      底板隔水层0.249 6有效隔水层等效厚度0.750 00.187 2
      矿压破坏带下脆性岩厚度0.250 00.062 4
      地质构造0.400 3陷落柱分布0.433 30.173 5
      断层和褶皱轴分布0.369 20.147 8
      断层规模指数0.106 50.042 6
      断层和褶皱轴交点及端点分布0.091 00.036 4
      下载: 导出CSV
    • [1] Ge, L.T., Ye, G.J., Gao, H.L., 2000.China Coal Field Hydrology Geology.China Coal Industry Publishing House, Beijing (in Chinese).
      [2] Kuznetsov, S.V., Trofimov, V.A., 2002.Hydrodynamic Effect of Coal Seam Compression.Journal of Mining Science, 38(3):205-212.doi: 10.1023/A:1021981716467.
      [3] Li, B.Y., 1999."Down Three Zones" in the Prediction of the Water Inrush from Coalbed Floor Aquifer-Theory, Development and Application.Journal of Shandong Institute of Mining and Technology (Natural Science), 18(4):11-18 (in Chinese with English abstract).
      [4] Mughieda, O., Omar, M.T., 2008.Stress Analysis for Rock Mass Failure with Offset Joints.Geotechnical and Geological Engineering, 26(5):543-552.doi: 10.1007/s10706-008-9188-1
      [5] Qian, M.G., Miao, X.X., Xu, J.L., 1996.Theoretical Study of Key Stratum in Ground Control.Journal of China Coal Society, 21(3):225-230 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB603.000.htm
      [6] Qu, S., 2009.Research about Improving AHP and Applying to Security Decision Field.Journal of Safety Science and Technology, 5(5):111-114 (in Chinese with English abstract).
      [7] Saaty, T.L., 1980.The Analytic Hierarchy Process.McGraw Hill, New York.
      [8] Sammarco, O., 1988.Inrush Prevention in an Underground Mine.International Journal of Mine Water, 7(4):43-52.doi: 10.1007/BF02505391
      [9] Slisalifs, B., 1983.Conditions for Safe Coal Mining under Water Bodies.Development and Practice of Mine Water Control Technology in Foreign Countries.Beijing General Research Institute of Mining & Metallurgy, Beijing (in Chinese).
      [10] Wang, H.B., Liu, B., 2007.Mine Water Disaster Prevention and Control Technology.China Coal Industry Publishing House, Beijing (in Chinese).
      [11] Wu, D.T., Li, D.F., 2004.Shortcomings of Analytical Hierarchy Process and the Path to Improve the Method.Journal of Beijing Normal University (Natural Science), 40(2):264-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSDZ200402024.htm
      [12] Wu, Q., 2014.Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China.Journal of China Coal Society, 39(5):795-805 (in Chinese with English abstract).
      [13] Wu, Q., Jin, Y.J., 1995.Decision Making System of Mine Water Prevention and Control in North China Type Coal Field.China Coal Industry Publishing House, Beijing (in Chinese).
      [14] Wu, Q., Liu, S.Q., 2011b.Discussion on the Evaluation and Prediction of Coal Mine Water Disaster Emergency Rescue Plan.China Engineering Science and Technology Forum 118th-2011 International Coal Mine Gas Control and Safety, China University of Mining and Technology Press, Xuzhou, 295-301 (in Chinese with English abstract).
      [15] Wu, Q., Wang, J.H., Liu, D.H., et al., 2009.A New Practical Methodology of the Coal Floor Water Bursting Evaluating Ⅳ:The Application of AHP Vulnerable Index Method Based on GIS.Journal of China Coal Society, 34(2):233-238 (in Chinese with English abstract). https://www.researchgate.net/publication/292118313_New_practical_methodology_of_the_coal_floor_water_bursting_evaluating_IV_The_application_of_AHP_vulnerable_index_method_based_on_GIS
      [16] Wu, Q., Wang, M.Y., 2006.Characterization of Water Bursting and Discharge into Underground Mines with Multi-Layered Groundwater Flow Systems in the North China Coal Basin.Hydrogeology Journal, 14(6):882-893.doi: 10.1007/s10040-006-0021-8
      [17] Wu, Q., Zhang, B., Zhao, W.D., et al., 2013.A New Practical Methodology of Coal Seam Floor Water Burst Evaluation:the Comparison Study among ANN, the Weight of Evidence and the Logistic Regression Vulnerable Index Method Based on GIS.Journal of China Coal Society, 38(1):21-26 (in Chinese with English abstract). https://www.researchgate.net/publication/263338598_A_new_practical_methodology_of_coal_seam_floor_water_burst_evaluationthe_comparison_study_among_ANNthe_weight_of_evidence_and_the_logistic-regression_vulnerable_index_method_based_on_GIS
      [18] Wu, Q., Zhang, Z.L., Ma, J.F., 2007a.A New Practical Methodology of the Coal Floor Water Bursting EvaluatingⅠ:The Master Controlling Index System Construction.Journal of China Coal Society, 32(1):42-47 (in Chinese with English abstract). https://www.researchgate.net/publication/292062735_New_practical_methodology_of_the_coal_floor_water_bursting_evaluating_III_The_application_of_ANN_vulnerable_index_method_based_on_GIS
      [19] Wu, Q., Zhang, Z.L., Zhang, S.Y., et al., 2007b.A New Practical Methodology of the Coal Floor Water Bursting Evaluating Ⅱ:The Vulnerable Index Method.Journal of China Coal Society, 32(11):1121-1126 (in Chinese with English abstract).
      [20] Wu, Q., Zhao, S.Q., Dong, S.N., et al., 2012.Dissection of Main Technical Points in "Coal Mine Safety Regulations" (Water Control Part) Modification.Coal Geology of China, 24(7):34-37 (in Chinese with English abstract).
      [21] Wu, Q., Zhao, S.Q., Li, J.S, et al., 2011a.The Preparation Background and the Main Points of Rule of Mine Prevention and Cure Water Disaster.Journal of China Coal Society, 36(1):70-74 (in Chinese with English abstract). https://www.researchgate.net/publication/263593426_The_preparation_background_and_the_main_points_of_Rule_of_Mine_Prevention_and_Cure_Water_Disaster
      [22] Xu, S.B., 1998.Principle of Analytic Hierarchy Process.Tianjin University Press, Tianjin (in Chinese).
      [23] B.斯列萨列夫, 1983.水体下安全采煤的条件.国外矿山防治水技术的发展与实践.北京:冶金矿山设计院.
      [24] 葛亮涛, 叶贵军, 高洪烈, 2000.中国煤田水文地质学.北京:煤炭工业出版社.
      [25] 李白英, 1999.预防矿井底板突水的"下三带"理论及其发展与应用.山东矿业学院学报 (自然科学版), 18(4): 11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm
      [26] 钱鸣高, 缪协兴, 许家林, 1996.岩层控制中的关键层理论研究.煤炭学报, 21(3): 225-230. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405027.htm
      [27] 曲生, 2009.层次分析法的改进及在安全决策中应用的研究.中国安全生产科学技术, 5(5): 111-114. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200905030.htm
      [28] 王宏斌, 刘伯, 2007.矿井水害防治技术.北京:煤炭工业出版社.
      [29] 吴殿廷, 李东方, 2004.层次分析法的不足及其改进的途径.北京师范大学报 (自然科学版), (2): 264-267. http://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200501015.htm
      [30] 武强, 2014.我国矿井水防控与资源化利用的研究进展、问题和展望.煤炭学报, 39(5): 795-805. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201405001.htm
      [31] 武强, 金玉洁, 1995.华北型煤田矿井防治水决策系统.北京:煤炭工业出版社.
      [32] 武强, 刘守强, 2011b.煤矿水害预测评价与应急救援预案探讨.中国工程科技论坛第118场-2011国际煤矿瓦斯治理及安全论文集, 徐州:中国矿业大学出版社, 295-301.
      [33] 武强, 王金华, 刘东海, 等, 2009.煤层底板突水评价的新型实用方法Ⅳ——基于GIS的AHP型脆弱性指数法应用.煤炭学报, 34(2): 233-238. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200902022.htm
      [34] 武强, 张波, 赵文德, 等, 2013, 煤层底板突水评价的新型实用方法Ⅴ——基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较.煤炭学报, 38(1): 21-26. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301003.htm
      [35] 武强, 张志龙, 马积福, 2007a.煤层底板突水评价的新型实用方法Ⅰ——主控指标体系的建设.煤炭学报, 32(1): 42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200701008.htm
      [36] 武强, 张志龙, 张生元, 等, 2007b.煤层底板突水评价的新型实用方法Ⅱ——脆弱性指数法.煤炭学报, 32(11): 1121-1126. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200902022.htm
      [37] 武强, 赵苏启, 董书宁, 等, 2012.《煤矿安全规程》(防治水部分) 修改技术要点剖析.中国煤炭地质, 24(7): 34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207009.htm
      [38] 武强, 赵苏启, 李竞生, 等, 2011a.《煤矿防治水规定》编制背景与要点.煤炭学报, 36(1): 70-74. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101016.htm
      [39] 许树柏, 1998.层次分析法原理.天津:天津大学出版社.
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  3847
    • HTML全文浏览量:  1700
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-12
    • 刊出日期:  2017-04-15

    目录

      /

      返回文章
      返回