Preliminary Prediction and Evaluation of Source Rocks in the Lunpola Basin, Tibet, China
-
摘要: 伦坡拉盆地是西藏地区唯一获工业性油气流的盆地,油气勘探前景广阔,但其勘探和研究程度均较低,对古近系牛堡组烃源岩的发育状况认识不清,制约了盆地油气资源潜力评价和勘探选区.通过研究钻井、测井及相关化验测试等资料,利用测井多参数回归和盆地数值模拟等方法技术,分析了牛堡组主要亚段有机质丰度、类型及其展布等特征,模拟重建了烃源岩的热成熟演化历史,实现了对伦坡拉盆地牛堡组烃源岩的早期综合评价.研究表明:伦坡拉盆地古近系牛堡组烃源岩发育,并以牛二段中亚段分布最广、厚度最大,在蒋日阿错凹陷最厚在400 m以上,其中优质烃源岩 (TOC>1.0%) 最厚可达170 m;牛堡组总体上属较好级别的烃源岩,其中牛二段上亚段较好-优质烃源岩所占比例最高,牛二段中亚段次之;牛堡组烃源岩有机质类型以Ⅰ型和Ⅱ1为主;有机质成熟度总体呈中西部高、东部低的趋势,牛二段中亚段烃源岩现今多处于中-晚期生油阶段,牛二段上亚段和牛三段下亚段烃源岩现今多处于早期生油阶段.牛二段中亚段烃源岩为伦坡拉盆地主力烃源岩,蒋日阿错凹陷为最重要的生烃凹陷.Abstract: As the only one basin which oil has come to the industrial standard in Tibet, it is believed that the Lunpola basin extend into rich-oil area, but exploration and investigation activities were limited, so that the development of Niubao Formation, palaeogene, is not clear, which not only limited the evaluation of oil and gas, but also the exploration strategy. Based on the drilling, logging and related laboratory test data, an integrated approach involving the logging regression equation model and basin modeling technique was used to investigate the distribution of source rock, organic matter abundance and types in main period of Niubao Formation, and to reconstruct the source rock thermal evolution history, so an evaluation system for source rocks was presented in Lunpola basin. The following conclusions can be drawn: the Lunpola basin is riched by the source rocks of Niubao Formation, and the middle of the second member of Niubao Formation is widely distributed with large thickness, the date indicates that the source rock thickness in Jiangriacuo sag can reach above 400 m, what's more, the thickness of excellent source rocks (TOC > 1.0%) can reach more than 170 m; in general, the type of source rocks of Niubao Formation is good, with highest proportion of good-excellent source rock in the upper of the second member of Niubao Formation and lower proportion in the middle of the second member of Niubao Formation; parent material types of source rocks in Niubao Formation are mainly mixed type of type Ⅱ1-Ⅰ and have oil-prone characteristic; the maturities of organic matters are mainly high in the midwest and low in the east, the results indicate that the middle of the second member of Niubao Formation is middle and late mature, the upper of the second member of Niubao Formation and the bottom of the third member of Niubao Formation are immature to early mature to present-day. Therefore, in Lunpola basin, the middle of the second member of Niubao Formation is major source rock and Jiangriacuo sag is the most important hydrocarbon generating sag.
-
表 1 烃源岩丰度评价标准
Table 1. Evaluation criterion of hydrocarbon source rock organic matter abundance
烃源岩类型 有机地化评价指标 总有机碳TOC (%) 氯仿沥青“A”(%) 总烃“HC”(%) 优质 >1.0 >0.10 >0.05 较好 1.0~0.6 0.05~0.10 0.02~0.05 较差 0.6~0.4 0.01~0.05 0.01~0.02 非烃源岩 <0.4 <0.01 <0.01 据黄第藩 (1992) 修改. 表 2 伦坡拉盆地W1井牛堡组烃源岩TOC测井预测模型优选
Table 2. TOC predication models with Well-W1 logging for mudstones in Lunpola basin
测井参数 总有机碳 (TOC) 定量预测模型 相关系数 回归标准 单参数模型 自然伽马 (GR) TOC=0.011 7GR-0.460 4 0.408 4 1.294 6 声波时差 (AC) TOC=0.075 8AC-4.273 0 0.513 2 1.266 7 电阻率 (RD) TOC=0.152 47RD+0.526 5 0.583 9 1.246 5 密度 (DEN) TOC=37.134 0/DEN-12.870 0 0.6184 1.236 1 中子 (CNL) TOC=0.118 8/CNL-1.476 4 0.483 0 1.274 8 多参数模型 Δ logRD法 TOC=0.049logRD+0.764AC-2.793 0595 6 1.251 0 lx指数法 TOC=0.0001lx其中lx=(ΔAC-ΔAC1)*(ΔGR-ΔGR1) 0.487 4 1.273 6 CARBOLOG法 TOC=-0.74AC+0.058RD-l/2-2.638 0.548 0 1.286 2 多参数回归法 $\text{TOC=}\frac{\left( 0.003AC+0.010GR+0.172RT+0.088CNL+15.001 \right)}{DEN}-6.201$ 0.851 7 1.136 0 注:参数单位为TOC(%);GR(API);CNL(%);DEN(g/cm3);RD(Ω·m);AC(μs/ft). 表 3 伦坡拉盆地W1井牛堡组烃源岩TOC预测精度分析
Table 3. The analysis on precision of TOC predication of the Niubao Formation of Well-W1 in Lunpola basin
深度 (m) TOC实测值 TOC预测值 绝对误差 相对误差 (%) 1 848.2 0.99 1.02 0.03 3.0 1 848.7 1.57 1.64 0.07 4.5 1 849.2 0.98 1.01 0.03 3.1 1 849.7 1.09 1.12 0.03 2.8 1 850.1 1.55 1.64 0.09 5.8 1 850.7 1.05 1.10 0.05 4.8 1 851.2 0.89 0.94 0.05 5.6 1 851.7 0.94 0.96 0.02 2.1 1 852.7 3.18 3.52 0.34 10.7 1 853.1 1.15 1.12 -0.03 2.6 1 853.7 1.30 1.42 0.12 9.2 1 854.3 0.78 0.91 0.13 16.7 1 854.8 0.77 0.88 0.11 14.3 1 855.1 0.72 0.81 0.09 12.5 1 855.7 0.64 0.71 0.07 10.9 1 856.2 0.74 0.76 0.02 2.7 1 856.7 0.54 0.56 0.02 3.7 1 857.1 0.88 0.79 -0.09 10.2 1 948.2 0.74 0.69 -0.05 6.8 1 948.6 1.03 1.21 0.18 17.5 1 949.1 0.76 0.78 0.02 2.6 1 950.9 1.01 1.13 0.12 11.9 1 951.6 0.23 0.24 0.01 4.3 1 952.1 0.33 0.35 0.02 6.1 表 4 伦坡拉盆地代表性单井牛堡组烃源岩厚度预测结果
Table 4. Prediction thickness of the source rocks of Niubao Formation in representative wells in Lunpola basin
凹陷 井名 层位 泥岩厚度 (m) 非烃源岩 较差烃源岩 较好烃源岩 优质烃源岩 厚度 (m) 比例 (%) 厚度 (m) 比例 (%) 厚度 (m) 比例 (%) 厚度 (m) 比例 (%) 蒋日阿错 XL3 E2n3-1 123.11 0 0 0.33 0.27 85.46 69.42 37.32 30.31 E2n2-3 168.50 0 0 0 0 67.19 39.88 101.31 60.12 E2n2-2 496.32 0 0 1.31 0.26 324.74 65.43 170.26 34.30 江加错 W1 E2n3-1 44.47 0 0 1.43 3.22 10.91 24.53 32.13 72.25 E2n2-3 124.58 0 0 7.27 5.84 29.66 23.81 87.65 70.36 E2n2-2 238.20 0 0 2.71 1.14 99.60 41.81 135.89 57.05 XL2 E2n3-1 59.09 0 0 1.52 2.57 57.58 97.44 0 0 E2n2-3 74.90 0 0 6.22 8.30 68.41 91.34 0.27 0.36 E2n2-2 86.04 0 0 11.33 13.17 74.71 86.84 0 0 XL8 E2n3-1 34.31 1.16 3.38 0.63 1.84 17.77 51.79 14.75 42.99 E2n2-3 83.94 0.13 0.15 1.29 1.54 58.53 69.73 23.99 28.58 E2n2-2 135.92 0 0 1.11 0.82 75.59 55.61 59.22 43.57 爬错 Z1 E2n3-1 53.30 0 0 3.76 7.05 36.12 67.77 13.42 25.18 E2n2-3 56.20 1.04 1.85 1.47 2.62 45.12 80.28 8.57 15.25 E2n2-2 399.20 15.66 3.92 21.61 5.41 287.16 71.93 74.77 18.73 XL4 E2n3-1 50.87 0 0 0 0 13.16 25.87 37.71 74.13 E2n2-3 130.05 2.45 1.88 7.03 5.41 57.17 43.96 63.41 48.76 E2n2-2 56.98 2.14 3.76 2.21 3.88 17.99 31.57 34.64 60.79 XL5 E2n3-1 12.37 0 0 0.19 1.54 12.19 98.53 0 0 E2n2-3 97.01 0 0 0.29 0.30 94.07 96.97 2.29 2.73 E2n2-2 209.69 0 0 0 0 208.26 99.32 0.93 0.68 表 5 伦坡拉盆地牛堡组烃源岩显微组分及有机质类型
Table 5. Microcomponents and kerogen types of the Niubao Formation in the Lunpola basin
凹陷 井名 样品深度 (m) 层位 干酪根显微组分相对质量分数 (%) 类型指数 (TI) 类型 腐泥组 壳质组 惰性组 镜质组 蒋日阿错 XL1 297.25 E2n3-2 94.08 1.23 1.23 3.45 90.88 Ⅰ 815.00 E2n2-2 95.43 0.21 0.87 3.48 92.05 Ⅰ 900.00 E2n2-2 85.71 2.14 5.00 7.14 76.43 Ⅱ1 江加错 W1 1 749.90 E2n3-1 85.70 0.00 0.00 14.30 74.98 Ⅱ1 1 751.00 E2n3-1 84.00 0.00 0.00 16.00 72.00 Ⅱ1 1 752.10 E2n3-1 84.30 0.00 0.00 15.70 72.53 Ⅱ1 1 752.80 E2n3-1 88.00 0.00 0.00 12.00 79.00 Ⅱ1 1 753.80 E2n3-1 82.70 0.00 0.00 17.30 69.73 Ⅱ1 1 755.00 E2n3-1 84.30 0.30 0.00 15.40 72.90 Ⅱ1 1 756.00 E2n3-1 80.30 0.00 0.00 19.70 65.53 Ⅱ1 1 756.90 E2n3-1 85.30 0.30 0.00 14.40 74.65 Ⅱ1 XL2 940.32 E2d 95.50 0.21 2.45 1.84 91.78 Ⅰ 1 305.00 E2n3-2 95.89 0.56 0.75 2.80 93.32 Ⅰ 爬错 Z1 1 780.00 E2n2-3 93.63 1.03 1.03 4.31 89.89 Ⅰ 1 994.00 E2n2-2 89.96 0.40 2.82 6.82 82.23 Ⅰ -
[1] Ai, G.H., Lan, L.Y., Zhu, H.Q., et al., 1998.The Forming Mechanism and Petroleum Geology of Tertiary Lunpola Basin, Tibet.Acta Petrolei Sinica, 19(2):32-38 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB802.003.htm [2] Bouaziz, A., Asmi, A.M.E., Skanji, A., et al., 2015.A New Borehole Temperature Adjustment in the Jeffara Basin (South-East Tunisia):Inferred Source Rock Maturation and Hydrocarbon Generation via 1D Modelin.AAPG Bulletin, 99(9):1649-1669.doi: 10.1306/0309151414 [3] Cao, Q., Ye, J.R., Shi, W.Z., et al., 2009.Preliminary Prediction and Evaluation of Source Rocks in Low-Exploration Basins:A Case Study on the Northeast Sag of the Northern South Yellow Sea Basin in China.Acta Petrolei Sinica, 30(4):523-529 (in Chinese with English abstract) [4] Fan, X.J., Pan, L., Li, F., et al., 2015.Hydrocarbon Accumulation Mechanism and Play Fairways of the Paleogene in Lunpola Basin.Tibet, Oil & Gas Geology, 36(3):362-369 (in Chinese with English abstract) https://www.researchgate.net/publication/283132055_Hydrocarbon_accumulation_mechanism_and_play_fairways_of_the_Paleogene_in_Lunpola_Basin_Tibet [5] Gu, Y., Shao, Z.B., Ye, D.L., et al., 1999.Characteristics of Source Rocks and Resource Prospect in the Lunpola Basin, Tibet.Experimental Petroleum Geology, 21(4):340-345 (in Chinese with English abstract) [6] He, S., 2010.Oil and Natural Gas Geology.China University of Geosciences Press, Wuhan (in Chinese) [7] Hu, W.R., Bao, J.W., Hu, B., 2013.Trend and Progress in Global Oil and Gas Exploration.Petroleum Exploration and Development, 40(4):409-413 (in Chinese with English abstract) [8] Huo, Z.P., Jiang, T., Pang, X.Q., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074 (in Chinese with English abstract) https://www.researchgate.net/publication/289196381_Interpretation_of_carboniferous_low_velocity_anomalous_carbonate_in_the_Ba-Mai_area_Tarim_basin [9] Jiang, F.J., Pang, X.Q., Jiang, Z.X., et al., 2010.The Quality Evaluation and Hydrocarbon-Expulsion Characters of Source Rocks in the 3rd Member of Shahejie Formation in the Bohai Sea.Acta Petrolei Sinica, 31(6):906-912 (in Chinese with English abstract) [10] Kontorovich, A.E., Burshtein, L.M., Malyshev, N.A., et al., 2013.Historical-Geological Modeling of Hydrocarbon Generation in the Mesozoic-Cenozoic Sedimentary Basin of the Kara Sea (Basin Modeling).Russian Geology & Geophysics, 54(8):917-957.doi: 10.1016/j.rgg.2013.07.01 [11] Lei, Q.L., Fu, X.Y., Lu, Y.P., 1996.Petroleum Geological Features of Tertiary Terrestrial Lunpola Basin, Xizang (Tibet).Earth Science, 21(2):168-173 (in Chinese with English abstract) [12] Lei, C., Ye, J.R., Wu, J.F., et al., 2014.Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins:A Case Study of Xihu Depression.Earth Science, 39(7):837-847 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407006.htm [13] Li, S., 2012.Provenance and Subsidence Analysis for Lunpola Basin in Central Tibet (Diserrtation), China University of Geosciences, Beijing (in Chinese with English abstract) [14] Li, X., Shan, H.Q., Li, J.H., et al., 2007.A Review of Indicators of Thermal Evolution of Source Rocks.Xinjiang Petroleum Geology, 28(3):379-384 (in Chinese with English abstract) [15] Liu, J.M., Peng, P.A., Huang, K.Q., et al., 2008.An Improvement in CARBOLOG Technique and Its Preliminary Application to Evaluating Organic Carbon Content of Source Rocks.Geochimica, 37(6):581-586 (in Chinese with English abstract) https://www.researchgate.net/publication/283364163_An_improvement_in_CARBOLOG_technique_and_its_preliminary_application_to_evaluating_organic_carbon_content_of_source_rocks [16] Liu, Z., Chang, M., Zhao, Y., et al., 2007.Method of Early Prediction on Source Rocks in Basins with Low Exploration Activity.Earth Science Frontiers, 14(4):159-167 (in Chinese with English abstract) doi: 10.1016/S1872-5791(07)60031-1 [17] Ma, P., Wang, L., Wang, C., et al., 2015.Organic-Matter Accumulation of the Lacustrine Lunpola Oil Shale, Central Tibetan Plateau:Controlled by the Paleoclimate, Provenance, and Drainage System.Coal Geology, 11(2):58-70.http://dx.doi.org/10.1016/j.coal.2015.06.01"> http://dx.doi.org/10.1016/j.coal.2015.06.01 [18] Ma, P.F., Wang, L.C., Ran, B., 2013.Subsidence Analysis of the Cenozoic Lunpola Basin, Central Qinghai-Tibetan Plateau.Acta Petrologica Sinica, 29(3):990-1002 http://www.oalib.com/paper/1475572 [19] Pang, X.Q., Li, Q.W., Chen, J.F., et al., 2014.Recovery Method of Original TOC and Its Application in Source Rocks at High Mature-Over Mature Stage in Deep Petroliferous Basins.Journal of Palaeogeography, 16(6):769-789 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201406002.htm [20] Qing, J.Z., Zheng, L.J., Teng, G.E., 2007.Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Hydrocarbon Source Rocks.Earth Science, 32(6):853-860 (in Chinese with English abstract) doi: 10.1007/s11707-007-0059-5 [21] Rao, S., Zhu, C.Q., Wang, Q., et al., 2013.Thermal Evolution Patterns of the Sinian-Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China.Chinese Journal of Geophysics, 56(5):1549-1559 (in Chinese with English abstract) https://www.researchgate.net/publication/280642530_Thermal_evolution_patterns_of_the_Sinian-Lower_Paleozoic_source_rocks_in_the_Sichuan_basin_southwest_China [22] Shi, G.R., 1994.Numerical Methods of Petroliferous Basin Modeling.Petroleum Industry Press, Beijing (in Chinese) [23] Suzuki, N., Matsubayashi, H., Waples, D.W., 1993.A Simpler Kinetic Model of Vitrinite Reflectance.AAPG Bulletin, 77(9):1502-1508.doi: 10.1306/BDFF8ECA-1718-11D7-8645000102C1865 [24] Tong, Z.G., Zhao, Z.G., Yang, S.C., et al., 2012.Research on Thermal Evolution and Hydrocarbon Expulsion History of Source Rocks in Low-Exploration Basins:A Case Study on Jiaojiang Sag, East China Sea Basin.Petroleum Geology & Experiment, 34(3):319-324 (in Chinese with English abstract) [25] Wang, G.W., Zhu, Z.Y., Zhu, G.Y., et al., 1994.Logging Identification and Evaluation of Cambrian-Ordovician Source Rocks in Syneclise of Tarim Basin.Petroleum Exploration and Development, 29(4):50-52 (in Chinese with English abstract) [26] Wang, L., Wang, C., Li, Y., et al., 2011.Sedimentary and Organic Geochemical Investigation of Tertiary Lacustrine Oil Shale in the Central Tibetan Plateau:Palaeolimnological and Palaeoclimatic Signifi Cances.Coal Geology, 11(6):254-265 https://www.researchgate.net/publication/241080648_Sedimentary_and_organic_geochemical_investigation_of_tertiary_lacustrine_oil_shale_in_the_central_Tibetan_plateau_Palaeolimnological_and_palaeoclimatic_significances [27] Wang, Y.R., Liu, L.F., Yang, L.P., et al., 2013.Logging Evaluation of Organic Carbon Content of Chang 7 Source Rocks in Ordos Basin.Lithologic Reservoirs, 25(4):78-82 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GWCJ201502012.htm [28] Wu, J.F., Yang, S.C., Zhang, G.C., et al., 2013.Geothermal History and Thermal Evolution of the Source Rocks in the Deep-Water Area of the Northern South China Sea.Chinese Journal of Geophysics, 56(1):170-180 (in Chinese with English abstract) https://www.researchgate.net/publication/287472151_Cenozoic_thermal_history_of_the_deep_water_area_of_the_northern_margin_of_South_China_Sea [29] Xie, S.K., Du, B.W., Wang, J., et al., 2014.Geochemical Characteristics of Oil Shale Member of Dingqinghu Formation in Lunpola Basin of Tibet and Their Geological Implications.Acta Petrologica et Mineralogica, 33(3):503-510 (in Chinese with English abstract) [30] Xu, Z.Y., Rao, K.M., Lian, Y.Q., et al., 1983.Geotectonic Attributes and Tectonic Evolution of the Lunpola Area, Xizang (Tibet).Regional Geology of China, 3(1):90-98 (in Chinese with English abstract) [31] Xu, X.H., Huang, H.P., Lu, S.N., 1998.A Quantitative Relationship between Well Logging Information and Organic Carbon Content.Journal of Jianghan Petroleum Institute, 20(3):11-15 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX803.001.htm [32] Yang, T.T., Fan, G.Z., Lü, F.L., et al., 2013.The Logging Features and Identification Methods of Source Rock.Natural Gas Geoscience, 24(2):414-422 (in Chinese with English abstract) [33] Yuan, C.P., Xu, S.H., Xue, L., 2014.Prediction and Evaluation with Logging of Main Source Rocks in Huizhou Sag.Pearl River Mouth Basin, Petroleum Geology & Experiment, 36(1):110-116 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201401020.htm [34] Zhang, H., Peng, P.A., 2011.Study on the Recovery of Original Organic Carbon Content of Source Rock.Geochimica, 40(1):56-62 (in Chinese with English abstract) [35] Zhang, K.Y., Mou, Z.H., Zhu, H.Q., et al., 2000.Analysis of the Dynamic System for Forming Reservoirs in Lunpola Basin (Tibet).Xinjiang Petroleum Geology, 21(2):93-96 (in Chinese with English abstract) [36] Zhao, J.C., 2011.A Study on the Structural Characters of the Lunpoia Basin in Tibet (Diserrtation).Chengdu University of Technology, Chengdu (in Chinese with English abstract) [37] Zhao, Y.C., Ma, Z., Yao, G.Q., 1995.Using Waxman-Smith Equation to Evaluate Source Rock:Overlay and Dual Porosity Methods.Earth Science, 20(3):306-313 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX503.010.htm [38] Zhu, Z.Y., Wang, G.W., Zhu, G.Y., 2002.The Application of Artificial Neural Network to the Source Rocks Evaluation.Progress in Geophysics, 17(1):137-140 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract6126.shtml [39] 艾华国, 兰林英, 朱宏权, 等, 1998.伦坡拉第三纪盆地的形成机理和石油地质特征.石油学报, 19(2): 32-38 doi: 10.7623/syxb199802006 [40] 曹强, 叶加仁, 石万忠, 等, 2009.低勘探程度盆地烃源岩早期评价——以南黄海北部盆地东北凹为例.石油学报, 30(4): 522-529 doi: 10.7623/syxb200904008 [41] 范小军, 潘磊, 李凤, 等, 2015.西藏伦坡拉盆地古近系油藏成藏机理及有利区带预测.石油与天然气地质, 36(3): 362-369 doi: 10.11743/ogg20150303 [42] 顾忆, 邵志兵, 叶德燎, 等, 1999.西藏伦坡拉盆地烃源岩特征及资源条件.石油实验地质, 21(4): 340-345 doi: 10.11781/sysydz199904340 [43] 何生, 2010.石油及天然气地质学.武汉:中国地质大学出版社. [44] 胡文瑞, 鲍敬伟, 胡滨, 2013.全球油气勘探进展与趋势.石油勘探与开发, 40(4): 409-413 doi: 10.11698/PED.2013.04.03 [45] 霍志鹏, 姜涛, 庞雄奇, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏贡献.地球科学, 41(12): 2061-2074 http://www.earth-science.net/WebPage/Article.aspx?id=3401 [46] 姜福杰, 庞雄奇, 姜振学, 等, 2010.渤海海域沙三段烃源岩评价及排烃特征.石油学报, 31(6): 906-912 doi: 10.7623/syxb201006006 [47] 雷闯, 叶加仁, 吴景富, 等, 2014.低勘探程度盆地成藏动力学过程:以西湖凹陷中部地区为例.地球科学, 39(7): 837-847. http://www.earth-science.net/WebPage/Article.aspx?id=2886 [48] 雷清亮, 付孝悦, 卢亚平, 1996.伦坡拉第三纪陆相盆地油气地质特征分析.地球科学, 21(2): 168-173 http://www.earth-science.net/WebPage/Article.aspx?id=354 [49] 李鑫, 尚鸿群, 李继宏, 等, 2007.烃源岩热演化指标研究现状.新疆石油地质, 28(3): 379-384 http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200703034.htm [50] 林松, 2012. 西藏伦坡拉盆地物源区与沉降史研究 (硕士学位论文). 北京: 中国地质大学 [51] 刘俊民, 彭平安, 黄开权, 等, 2008.改进评价生油岩有机质含量的CARBOLOG法及其初步应用.地球化学, 37(6): 581-586 http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200806008.htm [52] 刘震, 常迈, 赵阳, 等, 2007.低勘探程度盆地烃源岩早期预测方法研究.地学前缘, 14(4): 159-167 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200704020.htm [53] 马鹏飞, 王立成, 冉波, 2013.青藏高原中部新生代伦坡拉盆地沉降史分析.岩石学报, 29(3): 990-1002 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303021.htm [54] 庞雄奇, 李倩文, 陈践发, 等, 2014.含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用.古地理学报, 16(6): 769-789 doi: 10.7605/gdlxb.2014.06.062 [55] 秦建中, 郑伦举, 腾格尔, 2007.海相高演化烃源岩总有机碳恢复系数研究.地球科学, 32(6): 853-860 http://www.earth-science.net/WebPage/Article.aspx?id=3513 [56] 饶松, 朱传庆, 王强, 等, 2013.四川盆地震旦系—下古生界烃源岩热演化模式及主控因素.地球物理学报, 56(5): 1549-1559 doi: 10.6038/cjg20130513 [57] 石广仁, 1994.油气盆地数值模拟方法.北京:石油工业出版社. [58] 仝志刚, 赵志刚, 杨树春, 等, 2012.低勘探程度盆地烃源岩热演化及排烃史研究——以东海椒江凹陷为例.石油实验地质, 34(3): 319-324 doi: 10.11781/sysydz201203319 [59] 王贵文, 朱振宇, 朱广宇, 等, 1994.烃源岩测井识别与评价方法研究.石油勘探与开发, 29(4): 50-52 http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200204015.htm [60] 王艳茹, 刘洛夫, 杨丽萍, 等, 2013.鄂尔多斯盆地长7烃源岩有机碳测井评价.岩性油气藏, 25(4): 78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201304017.htm [61] 吴景富, 杨树春, 张功成, 等, 2013.南海北部深水区盆地热历史及烃源岩热演化研究.地球物理学报, 56(1): 170-180. doi: 10.6038/cjg20130117 [62] 谢尚克, 杜佰伟, 王剑, 等, 2014.西藏伦坡拉盆地丁青湖组油页岩地球化学特征及其地质意义.岩石矿物学杂志, 33(3): 503-510 http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201403008.htm [63] 徐正余, 饶克敏, 连玉秋, 1983.西藏伦坡拉地区的大地构造属性与构造演化.中国区域地质, 3(1): 90-98 http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198301007.htm [64] 许晓宏, 黄海平, 卢松年, 1998.测井资料与烃源岩有机碳含量的定量关系研究.江汉石油学院学报, 20(3): 11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX803.001.htm [65] 杨涛涛, 范国章, 吕福亮, 等, 2013.烃源岩测井响应特征及识别评价方法.天然气地球科学, 24(2): 414-422 http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302029.htm [66] 袁彩萍, 徐思煌, 薛罗, 2014.珠江口盆地惠州凹陷主力烃源岩测井预测及评价.石油实验地质, 36(1): 110-116 doi: 10.11781/sysydz201401110 [67] 张辉, 彭平安, 2011.烃源岩有机碳含量恢复探讨.地球化学, 40(1): 56-62 http://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201602006.htm [68] 张克银, 牟泽辉, 朱宏权, 等, 2000.西藏伦坡拉盆地成藏动力学系统分析.新疆石油地质, 21(2): 93-96 http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200002000.htm [69] 赵建成, 2011. 西藏伦坡拉盆地构造特征研究 (硕士学位论文). 成都: 成都理工大学 [70] 赵彦超, 马正, 姚光庆, 1995.Waxman-Smith方程在生油岩评价中的应用:重叠法和双孔隙度法.地球科学, 20(3): 306-313 http://www.earth-science.net/WebPage/Article.aspx?id=225 [71] 朱振宇, 王贵文, 朱广宇, 2002.人工神经网络法在烃源岩测井评价中的应用.地球物理学进展, 17(1): 137-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200201020.htm