In-Situ Trace Elements and Sr Isotopes in Peridotite Xenoliths from Jining: Implications for Lithospheric Mantle Evolution
-
摘要: 为完整了解华北克拉通的破坏程度和机制,加深对其西部陆块岩石圈地幔的研究十分重要,而位于华北克拉通西部集宁新生代碱性玄武岩中的地幔橄榄岩包体,为研究人员认识该地区的岩石圈地幔的性质和演化起到指示作用.运用LA-ICP-MS和LA-MC-ICP-MS对集宁地区橄榄岩矿物进行原位微区测试,获得其主量、微量元素和Sr同位素成分的数据.根据矿物组成,可以将集宁地区的橄榄岩分为两类:第一类为贫单斜辉石橄榄岩 (单斜辉石体积分数小于8%),它们经历了高程度的部分熔融,可能是古老难熔岩石圈地幔的残留;第二类为二辉橄榄岩 (单斜辉石体积分数大于13%),其熔融程度低,代表了新生饱满的岩石圈地幔.第一类橄榄岩中单斜辉石REE含量整体偏低且轻微富集LREE,第二类橄榄岩中单斜辉石具有LREE富集和轻微亏损两种配分模式,大部分样品的核边有一定的强不相容元素及Sr同位素组成变化.这些微量元素和同位素特征都表明集宁橄榄岩包体经历过交代作用.(La/Yb)N和Ti/Eu比值特征表明它们经历过多阶段的交代作用,交代介质有硅酸盐、碳酸盐熔/流体,这些交代介质可能为来源于古亚洲洋板块俯冲时释放的熔/流体.Abstract: Further research on the lithospheric mantle beneath western North China craton is significant in order to understand the degree and evolution of its thinning and transformation thoroughly. Mantle peridotite xenoliths in the Cenozoic alkaline basalts from Jining of western North China craton provide important constraints on the nature and evolution of the lithospheric mantle beneath this area. The samples were analyzed by using LA-ICP-MS and LA-MC-ICP-MS to obtain major element, trace element and Sr isotopic compositions. According to the mineral composition, the peridotites were classified into two groups: (1) Clinopyroxene (Cpx)-poor peridotites (Cpx < 8%), which might have experienced high-degree partial melting, suggest relict of old and refractory lithospheric mantle under this area. (2) lherzolites (Cpx > 13%). They might have experienced low-degree partial melting, representing the fertilized lithospheric mantle. Cpx grains in Type 1 peridotite have relatively low REE contents and show slightly LREE-enriched patterns, while Cpx grains in Type 2 peridotite show both LREE-enriched and slightly LREE-depleted REE patterns. Most Cpx grains show core-rim variations in strong incompatible elements and Sr isotopic compositions. These features indicate that the peridotites could have experienced metamorphism. Variations of (La/Yb)N and Ti/Eu ratios imply multistage metasomatism, which could have been caused by silicate and carbonatite melts/fluids associated with the Paleo-Asian oceanic plate subduction.
-
Key words:
- western North China craton /
- Jining /
- perdotite xenoliths /
- in situ /
- Sr isotope /
- Paleo-Asian oceanic plate /
- geochemistry
-
图 1 华北克拉通主要构造单元和采样点位置
EB.东部陆块;WB.西部陆块;COB.中部造山带;据Zhao et al.(2001)
Fig. 1. Major tectonic units in the North China craton and sampling locations
图 3 单矿物中主量元素含量与Mg#关系
a.橄榄石MnO含量-Mg#图解;b.斜方辉石Al2O3含量-Mg#图解;c.单斜辉石Al2O3含量-Mg#图解;d.单斜辉石CaO含量-Mg#图解;山旺地区数据来自Zheng et al.(1998),鹤壁地区数据来自Zheng et al.(2001),集宁三义堂地区前人数据来自周媛婷等 (2010)和王亚妹等 (2011)
Fig. 3. Relationship between major elemeuts and Mg# in monominerals
图 4 单斜辉石稀土元素配分模式图和微量元素分布模式
a, b.第一类橄榄岩;c, d, e, f.第二类橄榄岩;球粒陨石值据Taylor and Mclennan (1985),原始地幔值据Mcdonough and Sun (1995);图例中c、r和sr分别表示核部、边部和海绵边
Fig. 4. CI-normalized REE patterns and PM-normalized trace element patterns of clinopyroxenes
图 5 单矿物中Cr#与Mg#关系
a.单斜辉石Cr#-Mg#图解;b.尖晶石Cr#-Mg#图解;山旺地区数据来自Zheng et al.(1998),鹤壁地区数据来自Zheng et al.(2001),集宁三义堂地区前人数据来自周媛婷等 (2010)和王亚妹等 (2011)
Fig. 5. Relationship between Cr# and Mg# in monominerals
图 7 单斜辉石原始地幔归一化的部分熔融模拟
原始地幔值据Mcdonough and Sun (1995)
Fig. 7. Modeling of partial melting using primitive mantle normalized compositions of clinopyroxenes
图 9 集宁橄榄岩包体矿物组成三角图解
尖晶石二辉橄榄岩标准矿物组成据Kelemen et al.(1992)
Fig. 9. Triangular plot of modal composition of the Jining peridotite xenoliths
图 10 单斜辉石的 (La/Yb)N-Ti/Eu值
数据来自周媛婷等 (2010)和王亚妹等 (2011);图例中c、r和sr分别表示核部、边部和海绵边
Fig. 10. Plots of (La/Yb)N versus Ti/Eu in clinopyroxenes
表 1 集宁橄榄岩包体岩性、矿物组成及平衡温度
Table 1. Lithology, modal mineralogy and equilibrium temperatures of the Jining peridotite xenoliths
样品号 岩性 体积分数 (%) 单斜辉石海绵边 伊丁石化程度 温度 (℃)(Brey and Köhler, 1990) 橄榄石 斜方辉石 单斜辉石 尖晶石 第一类橄榄岩 MLGT07-1 尖晶石二辉橄榄岩 62 29 8 1 无 无 836 MLGT13 方辉橄榄岩 65 32 / 3 无 轻微 1 013 第二类橄榄岩 MLGT01 尖晶石二辉橄榄岩 68 14 16 2 有 无 992 MLGT02 尖晶石二辉橄榄岩 57 18 24 1 部分有 无 1 026 MLGT11 尖晶石二辉橄榄岩 43 32 23 2 部分有 轻微 989 MLGT17 尖晶石二辉橄榄岩 41 43 15 1 部分有 无 947 MLGT18 尖晶石二辉橄榄岩 40 31 24 5 有 无 951 MLGT21 尖晶石二辉橄榄岩 70 12 13 5 部分有 无 886 附表 2 橄榄石主量元素 (%) 和微量元素 (×10-6) 组成
附表 2. Major oxides (%) and trace element (×10-6) compositions of olivines from the Jining peridotite xenoliths
样品 MLGT07-1 MLGT01 MLGT02 OL-1 OL-2 MLGT11 边 核 边 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 边 核 边 边 核 边 MgO 50.96 51.54 50.56 49.43 49.07 49.00 48.59 49.97 51.90 51.78 51.67 51.69 51.40 51.60 51.81 51.37 51.09 51.42 51.41 SiO2 39.16 38.66 39.31 40.08 40.37 40.40 40.88 39.40 38.76 38.81 38.90 38.89 39.12 38.78 38.72 39.07 39.33 39.03 38.94 Al2O3 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.04 0.04 0.04 P2O5 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.07 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 Na2O 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.10 0.11 0.11 0.10 0.11 0.10 0.10 0.10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.10 0.10 0.10 TiO2 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 MnO 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.13 0.13 0.13 FeO 9.13 9.06 9.35 9.69 9.75 9.80 9.74 9.83 8.72 8.80 8.82 8.81 8.86 9.00 8.87 8.94 8.83 8.80 8.90 Total 99.59 99.60 99.57 99.55 99.54 99.54 99.55 99.57 99.59 99.59 99.59 99.59 99.59 99.58 99.59 99.58 99.58 99.58 99.58 Mg# 90.90 91.00 90.60 90.10 90.00 89.90 89.90 90.10 91.40 91.30 91.30 91.30 91.20 91.10 91.20 91.10 91.20 91.20 91.20 Li 1.53 1.62 1.11 1.74 2.16 2.05 1.27 3.50 1.39 1.64 1.77 1.74 2.32 3.98 1.75 3.62 1.27 1.60 1.46 Sc 3.58 3.40 3.20 3.48 3.46 3.43 3.31 3.14 2.00 1.82 1.92 2.08 2.05 1.88 1.62 2.02 3.32 3.12 3.08 V 4.91 4.92 4.91 5.17 5.24 5.14 5.23 6.46 1.60 1.52 1.16 1.40 2.60 1.61 1.45 2.59 6.81 4.88 5.19 Cr 186 193 186 193 199 198 194 198 38.8 37.3 38.8 38.5 43.2 48.2 33.6 42.5 168 165 165 Co 135 129 137 142 144 146 139 138 131 133 133 133 133 132 131 133 140 138 138 Ni 2 762 2 687 2 903 3 064 3 119 3 165 3 092 2 915 2 967 2 967 2 990 2 976 2 987 3 040 2 947 3 065 2 882 2 848 2 840 Cu 2.27 1.52 1.29 1.71 1.56 0.98 0.00 0.69 1.82 0.40 1.08 0.78 0.97 0.09 0.50 0.47 0.36 1.58 1.12 Zn 54.80 52.80 51.50 60.40 58.10 61.20 63.40 61.30 49.90 40.40 49.50 49.50 50.00 53.80 52.10 46.30 61.00 62.70 65.60 MgO 52.38 50.84 51.24 51.05 51.63 50.92 51.28 50.78 50.56 50.50 50.64 50.75 50.75 50.99 51.05 51.25 SiO2 38.96 41.15 40.38 40.88 39.77 38.96 38.73 39.06 39.68 39.72 39.68 39.16 39.18 39.05 39.01 38.80 Al2O3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.01 0.01 0.01 0.01 P2O5 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 Na2O 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.11 0.10 0.12 0.10 0.11 0.08 0.07 0.08 0.09 0.09 0.09 0.04 0.04 0.04 0.04 0.03 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 MnO 0.12 0.11 0.11 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.14 FeO 7.93 7.31 7.64 7.37 7.86 9.40 9.29 9.44 9.03 9.05 8.96 9.42 9.41 9.31 9.31 9.32 Total 99.57 99.60 99.58 99.60 99.56 99.58 99.59 99.58 99.59 99.59 99.60 99.59 99.57 99.58 99.59 99.59 Mg# 92.20 92.50 92.30 92.50 92.10 90.60 90.80 90.60 90.90 90.90 91.00 90.60 90.60 90.70 90.70 90.80 Li 1.91 1.88 1.45 2.28 2.00 1.46 1.63 1.65 2.59 1.82 1.90 2.83 1.64 1.46 1.76 1.48 Sc 3.97 3.05 2.71 3.27 3.23 3.12 3.31 2.76 2.92 3.28 3.31 2.46 1.58 1.68 1.90 1.75 V 4.71 3.97 4.44 4.38 4.39 3.99 4.24 3.84 4.94 4.55 4.93 6.88 2.16 2.01 1.83 2.04 Cr 319 313 321 308 323 113 117 115 142 145 142 86.4 24.9 29.8 24.4 25.0 Co 126 119 124 119 130 136 133 136 138 137 137 139 142 137 135 134 Ni 2 768 2 624 2 687 2 602 2 837 2 941 2 877 2 921 2 796 2 800 2 748 2 923 3 129 3 053 2 953 2 97 Cu 0.90 1.13 1.11 1.03 0.88 1.63 1.64 0.98 0.59 1.27 0.93 2.38 1.07 1.13 1.03 0.60 Zn 60.00 50.50 56.50 54.80 57.40 55.30 52.70 50.80 62.40 65.90 67.30 48.50 47.40 46.20 47.10 47.50 附表 3 斜方辉石主量元素 (%) 和微量元素 (×10-6) 组成
附表 3. Major oxides (%) and trace element (×10-6) compositions of orthopyroxenes from the Jining peridotite xenoliths
样品 MLGT01 MLGT02 MLGT07-1 MLGT11 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 边 核 边 MgO 33.42 33.38 33.53 33.61 33.27 33.42 33.63 33.57 33.64 33.38 34.99 35.05 35.17 35.24 34.98 33.83 34.41 33.81 Al2O3 5.25 5.06 4.88 4.79 4.99 5.17 5.00 4.96 5.09 5.11 2.46 2.49 2.54 2.55 2.45 5.05 5.02 5.13 SiO2 53.10 53.58 53.56 53.69 53.60 53.25 53.25 53.32 53.15 53.31 55.52 55.44 55.35 55.20 55.47 53.26 52.83 53.14 P2O5 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.15 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.03 0.03 0.03 0.03 0.03 0.16 0.16 0.16 CaO 1.14 1.07 1.01 1.03 1.11 1.15 1.15 1.16 1.16 1.16 0.45 0.45 0.48 0.46 0.46 1.05 1.00 1.09 TiO2 0.12 0.12 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.12 0.12 0.12 MnO 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 FeO 5.88 5.77 5.87 5.77 5.86 5.79 5.78 5.80 5.76 5.81 5.85 5.83 5.74 5.81 5.92 5.68 5.64 5.68 Total 99.23 99.28 99.27 99.30 99.26 99.24 99.26 99.25 99.24 99.23 99.50 99.50 99.50 99.49 99.51 99.33 99.35 99.31 Mg# 91.00 91.20 91.10 91.20 91.00 91.10 91.20 91.20 91.20 91.10 91.40 91.50 91.60 91.50 91.30 91.40 91.60 91.40 Li 4.33 2.47 1.50 2.20 4.28 10.80 17.00 19.60 19.40 14.90 1.90 1.60 2.25 1.93 2.16 15.20 2.51 9.37 Sc 19.50 19.80 18.90 19.00 19.10 19.30 18.80 18.70 19.60 19.30 17.80 18.30 19.50 19.00 18.40 19.20 18.30 18.40 V 98.40 94.70 95.00 92.90 96.70 99.50 98.80 97.30 99.30 99.10 75.80 77.30 76.60 78.00 74.70 92.60 91.40 94.90 Cr 4 305 4 052 4 050 3 876 4 135 4 254 4 092 4 122 4 200 4 282 2 596 2 625 2 608 2 661 2 583 3 620 3 490 3 727 Co 57.00 54.50 57.60 57.50 55.90 58.40 58.50 59.90 58.60 60.00 51.50 50.90 49.90 52.30 52.00 58.00 59.00 59.00 Ni 788 770 801 790 787 825 832 836 832 838 675 670 662 678 684 820 814 829 Zn 32.30 34.60 32.80 33.60 34.50 33.50 35.80 33.60 37.80 32.90 34.60 30.80 32.80 36.00 33.30 35.90 38.80 42.20 Rb 0.17 0 0.10 0. 0.12 0 0.06 0 0.24 0.07 0 0 0.10 0.13 0.03 0 0 0 Sr 1.09 0.96 0.79 0.64 0.95 1.10 1.19 1.12 1.23 1.02 0.13 0.12 0.24 0.11 0 0.33 0.27 0.68 Y 1.50 1.04 1.34 1.16 1.23 1.46 1.32 1.08 1.29 1.36 0.26 0.33 0.32 0.37 0.15 1.56 1.30 1.48 Zr 1.12 1.63 1.60 1.89 2.41 1.96 2.27 1.96 1.20 2.01 0.61 0.42 1.24 0.11 1.80 0 1.63 2.15 Nb 0.36 0.19 0.29 0.32 0.27 0.16 0.34 0.24 0.14 0.13 0.03 0 0.17 0.08 0.01 0.21 0 0.14 样品 MLGT01 MLGT02 MLGT07-1 MLGT11 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 边 过渡带 核 过渡带 边 MgO 34.18 34.20 34.41 34.30 34.70 33.94 33.92 33.96 34.01 34.00 32.50 32.83 32.82 32.76 32.69 34.85 33.99 34.38 34.54 34.41 Al2O3 2.89 2.88 2.87 3.11 2.72 4.89 4.87 4.86 4.91 4.96 5.03 4.91 5.07 5.12 5.15 4.31 4.72 4.73 4.55 4.12 SiO2 55.14 55.23 55.07 54.55 55.08 53.44 53.56 53.51 53.36 53.28 54.79 54.71 54.53 54.49 54.42 53.35 53.24 53.11 53.30 54.03 P2O5 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 K2O 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.08 0.08 0.08 0.18 0.08 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.07 0.10 0.08 0.07 0.06 CaO 1.24 1.19 1.11 1.13 1.01 0.87 0.84 0.83 0.82 0.83 1.01 0.88 0.84 0.88 0.97 0.53 0.90 0.62 0.50 0.49 TiO2 0.10 0.09 0.09 0.19 0.09 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.11 0.13 0.12 0.11 0.11 MnO 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.14 FeO 5.20 5.18 5.22 5.39 5.25 5.79 5.77 5.79 5.84 5.87 5.64 5.66 5.71 5.72 5.71 6.19 6.29 6.32 6.30 6.20 Total 98.99 99.01 99.02 99.06 99.09 99.38 99.39 99.38 99.37 99.38 99.42 99.44 99.41 99.40 99.40 99.60 99.54 99.55 99.56 99.60 Mg# 92.1 92.2 92.2 91.9 92.2 91.3 91.3 91.3 91.2 91.2 91.1 91.2 91.1 91.1 91.1 90.9 90.6 90.7 90.7 90.8 Li 12.5 17.0 15.2 7.7 0.88 12.2 7.94 15.2 12.2 17.9 13.3 3.27 0.88 5.08 11.1 22.5 13.3 7.40 17.0 16.9 Sc 17.8 17.8 17.6 17.6 16.8 18.6 18.8 18.1 18.6 19.3 18.3 18.3 17.9 18.3 19.6 15.4 17.6 17.4 16.0 15.6 V 73.8 73.5 74.0 76.6 70.2 95.6 95.1 93.7 95.2 95.3 94.8 92.0 93.3 94.9 96.0 91.7 102 101 96.3 88.0 Cr 5980 5852 5740 5459 5344 3332 3283 3280 3328 3314 2992 2952 3071 3161 3188 1890 2248 2197 2120 1826 Co 57.1 55.8 55.9 56.5 54.5 57.3 57.5 57.9 56.3 56.0 59.1 58.8 58.6 58.1 58.1 53.8 54.2 55.7 54.5 55.5 Ni 827 810 823 829 821 769 772 783 784 778 787 771 788 779 789 706 719 725 720 726 Zn 39.1 38.7 36.6 40.5 33.9 33.6 35.7 32.8 37.3 33.6 41.8 38.2 40.4 37.9 37.1 28.2 27.4 28.1 28.1 29.9 Rb 0.070 0.10 0 0.31 0 0 0 0 0 0.020 0 0 0 0 0.040 0 0.23 0 0.15 0.23 Sr 2.36 1.81 1.80 10.1 1.01 0.16 0 0.11 0.33 0.18 0.28 0.28 0.29 0.040 0.50 0.070 1.09 0.33 0.16 0.060 Y 0.45 0.51 0.36 0.97 0.35 1.29 1.27 1.12 1.23 1.25 1.42 1.33 1.26 1.44 1.57 0.88 1.35 1.18 0.82 0.88 Zr 2.41 1.06 1.97 7.06 1.35 2.60 3.10 1.99 2.46 3.00 1.58 0.99 2.08 2.43 1.96 0.52 1.85 0.95 1.54 0.32 Nb 0.16 0.14 0.22 0.92 0.12 0.040 0 0 0 0.010 0 0 0 0.020 0 0 0.11 0.10 0.010 0 附表 4 单斜辉石主量元素 (%) 和微量元素 (×10-6) 组成
附表 4. Major oxides (%) and trace element (×10-6) compositions of clinopyroxenes from the Jining peridotite xenoliths
样品 MLGT01 MLGT02 MLGT07-1 MLGT11 边 核 边 海绵边 海绵边 边 核 边 海绵边 边 核 边 海绵边 边 核 边 海绵边 MgO 17.40 17.40 17.40 17.70 16.00 17.40 17.50 17.40 17.50 17.70 17.50 17.60 17.80 17.10 17.20 17.30 17.30 Al2O3 6.09 5.95 6.22 5.39 5.68 6.38 6.21 6.47 6.22 3.24 3.35 3.14 3.08 6.76 6.73 6.87 6.15 SiO2 51.40 51.80 51.30 51.00 51.80 51.10 51.10 51.10 51.90 51.90 51.80 52.00 52.90 50.50 50.60 50.70 50.40 P2O5 0.04 0.04 0.05 0.06 0.17 0.05 0.05 0.05 0.24 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 K2O 0.01 0.01 0.01 0.27 1.07 0.01 0.01 0.01 1.24 0.00 0.00 0.00 0.20 0.01 0.01 0.01 0.17 Na2O 1.35 1.35 1.37 0.57 1.20 1.44 1.43 1.44 1.10 0.90 0.90 0.85 0.95 1.55 1.56 1.60 0.60 CaO 18.70 18.50 18.60 19.80 18.30 18.50 18.60 18.40 16.00 22.50 22.50 22.70 21.20 19.20 18.90 18.60 20.70 TiO2 0.34 0.33 0.35 0.72 1.45 0.35 0.34 0.35 1.05 0.10 0.11 0.10 0.16 0.42 0.41 0.39 0.47 MnO 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.07 0.07 0.07 0.08 0.10 0.10 0.10 0.09 FeO 3.40 3.42 3.46 3.12 3.03 3.52 3.53 3.49 3.44 2.54 2.53 2.49 2.56 3.29 3.27 3.33 2.93 Total 98.87 98.86 98.83 98.73 98.73 98.83 98.86 98.82 98.81 98.92 98.85 99.05 98.99 98.91 98.90 98.89 98.85 Mg# 90.1 90.1 90.0 91.0 90.4 89.8 89.8 89.9 90.1 92.6 92.5 92.7 92.5 90.3 90.4 90.2 91.3 Sc 56.2 56.2 53.6 59.2 64.9 51.1 53.5 50.6 53.0 94.5 96.3 98.4 93.0 61.8 59.8 55.3 57.5 V 214 218 215 248 296 219 219 218 247 235 240 234 232 234 233 224 242 Cr 6 803 6 859 6 892 7 695 7 475 6 813 6 821 7 063 6 669 6 578 7 067 5 697 6 000 6 592 6 656 6 631 6 965 Co 25.6 25.2 25.8 22.8 21.1 26.4 26.5 26.8 28.9 18.7 18.4 17.2 19.3 25.0 25.4 26.1 22.0 Ni 411 410 559 434 463 635 433 427 681 325 326 324 331 408 412 412 315 Cu 1.45 1.85 5.02 5.06 6.96 4.32 2.38 3.82 40.80 2.64 2.71 1.19 2.38 0.79 1.72 2.94 17.90 Zn 12.8 11.9 15.5 12.4 14.0 10.8 10.8 12.5 16.8 8.1 9.1 8.2 11.0 12.7 17.6 12.7 24.8 Rb 0.002 0 0.11 4.09 8.41 0.062 0 0.13 12.6 0.002 0 0.057 1.73 0.16 0.14 0 2.23 Sr 176 175 175 85.4 119 177 181 178 146 80.0 82.0 83.3 114 86.2 88.6 96.0 92.2 Cr# 9.70 10.0 9.60 12.1 11.2 9.30 9.60 9.50 9.40 16.4 16.9 14.9 15.8 8.60 8.70 8.50 9.80 Y 13.7 13.3 13.5 17.2 20.4 13.8 13.8 14.1 18.9 5.34 5.85 5.49 6.57 16.8 17.0 16.7 19.5 Zr 20.3 20.0 20.3 39.2 93.2 18.8 19.9 23.1 91.7 9.62 8.92 8.75 25.7 27.4 26.0 25.9 31.8 Nb 3.10 3.42 3.43 3.42 13.5 3.34 3.32 3.41 16.0 1.20 0.94 0.92 3.82 1.05 1.13 1.25 2.14 Cs 0.049 0 0 0 0.044 0.062 0.045 0 0.060 0.003 0 0.033 0 0 0 0.067 0.18 Ba 0.26 0.074 0.76 3.76 18.60 0 0.17 0 68.8 0.76 0 0.31 1.74 0 0.90 0.41 13.0 La 6.04 6.03 6.19 4.72 8.89 6.60 6.55 6.68 15.7 2.31 2.27 2.10 4.12 1.46 1.63 1.79 2.84 Ce 17.2 16.8 17.4 16.7 25.9 18.5 18.7 19.1 36.5 4.98 4.97 4.94 11.0 4.18 4.43 5.20 7.66 Pr 2.15 1.95 2.21 2.35 4.15 2.27 2.28 2.44 4.64 0.77 0.91 0.77 1.67 0.69 0.63 0.87 1.09 Nd 7.16 7.82 8.02 12.1 20.7 8.21 9.11 9.95 18.6 4.29 4.57 3.84 7.72 3.59 4.47 4.25 5.27 Sm 1.81 0.96 1.32 2.61 5.29 2.60 1.76 1.89 3.78 1.00 0.88 0.91 2.25 1.61 1.53 1.46 1.52 Eu 0.67 0.61 0.63 0.86 1.47 0.59 0.72 0.69 1.32 0.44 0.32 0.44 0.70 0.64 0.51 0.70 0.92 Gd 2.31 2.11 1.97 3.24 5.01 2.57 2.00 1.65 4.45 0.91 1.09 1.22 1.70 2.48 1.74 2.37 2.79 Tb 0.31 0.35 0.40 0.51 0.75 0.40 0.45 0.38 0.70 0.10 0.16 0.15 0.21 0.39 0.44 0.46 0.46 Dy 2.29 2.43 2.30 2.96 4.28 2.71 2.63 2.89 4.25 1.12 1.07 1.11 1.38 2.89 2.86 3.10 3.41 Ho 0.50 0.41 0.55 0.57 0.86 0.56 0.58 0.55 0.86 0.24 0.24 0.20 0.23 0.66 0.72 0.71 0.74 Er 1.25 1.17 1.65 1.75 2.10 1.73 1.83 1.69 2.46 0.59 0.68 0.74 0.73 1.69 2.01 1.72 2.14 Tm 0.20 0.15 0.19 0.26 0.34 0.15 0.24 0.26 0.32 0.074 0.074 0.060 0.076 0.22 0.25 0.23 0.29 Yb 1.46 1.06 0.87 1.73 1.78 1.61 1.44 1.75 1.20 0.41 0.91 0.57 0.60 2.11 1.72 2.00 2.05 Lu 0.12 0.18 0.17 0.18 0.19 0.18 0.24 0.21 0.31 0.08 0.15 0.087 0.10 0.21 0.22 0.27 0.21 Hf 0.54 0.62 0.57 1.45 2.58 0.79 0.48 0.76 2.17 0.18 0.32 0.18 0.47 0.81 0.73 0.83 0.87 Ta 0.45 0.40 0.37 0.34 1.20 0.54 0.48 0.61 1.43 0.027 0.028 0.025 0.27 0.034 0.065 0.016 0.16 Pb 0.042 0 0 0.077 0.28 0.010 0.051 0 0.25 0.57 0.55 0.64 0.50 0.058 0.18 0.13 0.050 Th 0.38 0.28 0.37 0.23 1.28 0.54 0.40 0.49 1.86 0.23 0.22 0.24 0.26 0.13 0.23 0.087 0.16 U 0.073 0.14 0.14 0.091 0.36 0.073 0.11 0.13 0.56 0.061 0.064 0.074 0.12 0 0.033 0.042 0.037 (La/Yb)N 2.81 3.86 4.83 1.85 3.39 2.78 3.09 2.59 8.89 3.83 1.69 2.50 4.66 0.47 0.64 0.61 0.94 样品 MLGT17 MLGT18 MLGT21 海绵边 边 核 边 海绵边 海绵边 边 核 边 海绵边 边 核 核 边 海绵边 MgO 19.00 16.80 16.80 16.80 18.70 17.60 16.70 16.70 16.70 17.80 16.01 15.90 15.81 16.00 18.62 Al2O3 4.90 6.80 6.80 6.80 5.00 4.99 6.80 6.86 6.85 5.21 6.30 6.62 6.85 6.46 4.08 SiO2 50.50 50.50 50.50 50.70 50.40 51.40 51.30 51.10 51.50 51.40 50.67 50.35 50.07 50.39 51.47 P2O5 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 K2O 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.04 Na2O 0.50 1.60 1.60 1.60 0.50 0.55 1.53 1.50 1.52 0.56 1.56 1.59 1.64 1.58 0.54 CaO 20.20 19.70 19.80 19.50 20.70 21.00 19.20 19.30 18.90 20.60 21.21 21.24 21.29 21.22 20.03 TiO2 0.60 0.50 0.50 0.50 0.50 0.49 0.46 0.47 0.45 0.48 0.55 0.56 0.56 0.56 0.64 MnO 0.10 0.10 0.10 0.10 0.10 0.09 0.10 0.09 0.10 0.10 0.08 0.08 0.08 0.08 0.08 FeO 3.00 2.90 2.80 2.90 3.00 2.74 2.96 2.91 2.98 2.80 2.85 2.85 2.86 2.90 3.52 Total 98.90 98.90 98.90 98.90 98.90 98.92 99.02 99.03 99.03 98.93 99.27 99.24 99.20 99.22 99.06 Mg# 91.8 91.1 91.4 91.1 91.6 92.0 90.9 91.1 90.9 91.9 91.0 91.9 90.9 90.9 90.5 Sc 67.4 65.0 65.5 63.3 67.1 63.4 59.0 61.7 60.6 63.3 75.7 73.7 68.4 74.4 95.6 V 254 240 241 240 253 256 230 232 230 255 268 265 262 268 333 Cr 6637 6311 6538 6527 6924 6493 5783 5781 5730 6477 4136 4339 4650 4455 5124 Co 24.6 23.1 22.6 22.7 3.0 23.1 24.8 24.0 24.8 23.7 18.6 18.4 17.8 18.6 20.5 Ni 424 378 379 379 24 359 388 389 388 360 325 326 321 328 351 Cu 8.70 3.00 2.80 3.40 400.00 5.21 1.84 2.15 2.41 3.27 3.36 1.77 1.04 3.05 143.61 Zn 11.2 9.7 10.9 12.9 3.2 16.3 11.8 12.8 11.8 15.5 7.2 7.1 4.9 5.9 25.4 Rb 1.20 0.10 0 0.10 1.40 0.29 0.10 0 0 0.15 0.033 0.008 0 0 1.09 Sr 73.5 75.3 72.7 80.1 56.3 43.2 66.4 67.5 66.7 43.8 44.5 45.0 47.4 45.0 253 Cr# 11.6 8.30 8.50 8.50 11.8 11.1 7.60 7.50 7.40 10.7 6.00 6.00 6.20 6.30 11.0 Y 18.4 17.9 17.8 17.2 18.3 20.4 18.3 18.8 18.1 20.5 21.0 21.9 22.4 21.6 24.8 Zr 36.9 30.9 29.0 27.9 26.9 27.4 26.7 27.1 27.1 24.6 21.4 23.7 19.4 20.5 24.1 Nb 0.60 0.30 0.30 0.40 0.80 0.55 0.16 0.23 0.29 0.41 0 0.15 0.12 0.17 2.57 Cs 0 0 0 0 0 0 0.019 0 0.005 0.013 0.044 0.019 0.045 0.16 0 Ba 2.40 0.90 0 0 1.00 3.42 0.55 0 0 0.61 0 0 1.15 0.49 25.6 La 2.80 1.10 1.00 1.20 1.40 1.36 0.91 0.90 0.92 1.05 0.46 0.55 0.51 0.46 1.06 Ce 8.70 3.70 3.60 3.90 4.70 4.58 3.65 3.58 3.41 3.83 2.40 2.51 2.43 2.44 2.52 Pr 1.30 0.60 0.70 0.70 0.70 0.82 0.68 0.53 0.68 0.77 0.45 0.67 0.57 0.46 0.58 Nd 7.60 4.60 4.10 3.60 4.50 4.86 4.05 4.11 4.01 4.46 3.32 3.47 3.57 4.18 5.03 Sm 2.20 1.50 1.10 1.80 1.90 2.00 1.55 1.18 1.23 2.15 2.15 1.70 1.67 2.12 1.38 Eu 0.80 0.70 0.80 0.50 0.70 0.89 0.69 0.48 0.61 0.73 0.60 0.81 0.74 0.58 0.78 Gd 3.10 2.00 3.10 3.30 2.40 3.03 2.70 2.63 2.55 3.01 3.19 2.60 3.06 2.26 3.31 Tb 0.50 0.50 0.50 0.40 0.50 0.52 0.55 0.44 0.44 0.48 0.47 0.57 0.55 0.46 0.45 Dy 3.70 3.00 3.20 3.30 3.60 3.54 3.14 3.10 3.12 3.34 3.31 3.65 3.51 3.60 3.82 Ho 0.70 0.70 0.80 0.60 0.70 0.69 0.64 0.65 0.68 0.69 0.80 0.76 0.88 0.72 0.90 Er 1.90 2.30 2.10 2.10 2.20 2.02 1.95 2.17 2.20 2.13 2.51 2.26 2.48 2.31 2.69 Tm 0.30 0.30 0.30 0.20 0.30 0.31 0.29 0.25 0.33 0.36 0.30 0.36 0.34 0.36 0.43 Yb 1.70 1.90 2.10 1.70 1.70 1.65 1.90 2.19 1.75 1.62 1.88 2.29 2.20 2.57 2.49 Lu 0.20 0.20 0.20 0.30 0.20 0.28 0.25 0.26 0.25 0.29 0.34 0.29 0.30 0.32 0.35 Hf 1.20 1.00 0.80 1.00 0.90 1.02 0.90 0.91 1.05 0.89 0.72 0.84 1.23 0.79 0.86 Ta 0.10 0 0 0 0 0.037 0 0.020 0.037 0.076 0.027 0.005 0.017 0 0.079 Pb 0.10 0 0.10 0 0 0.004 0.094 0.054 0.10 0.015 0.18 0.19 0.080 0.050 0.86 Th 0.10 0.10 0 0 0 0.015 0.024 0 0.034 0.012 0.040 0.055 0 0.017 0.091 U 0.019 0.041 0 0.039 0.027 0.006 0.033 0.032 0 0.046 0.065 0.027 0.032 0 0.023 (La/Yb)N 1.12 0.39 0.32 0.48 0.56 0.56 0.33 0.28 0.36 0.44 0.17 0.16 0.16 0.12 0.29 附表 6 单斜辉石Sr同位素组成
附表 6. Sr isotopic compositions of clinopyroxenes from the Jining peridotite xenoliths
样品号 类型 标注 Sr (×10-6) Rb (×10-6) Rb/Sr 87Sr/86Sr 2σ 84Sr/86Sr 2σ 85Rb/86Sr 2σ MLGT07-1 第一类 海绵边 192 4.730 0.024 6 0.704 2 0.000 6 0.061 3 0.000 6 0.478 7 0.018 2 边 133 0.003 0 0.704 6 0.000 7 0.073 6 0.001 0 0.000 1 0.000 6 核 133 0.140 0.001 0 0.704 0 0.000 7 0.070 0 0.001 1 0.019 2 0.002 0 边 123 0.003 0 0.704 3 0.000 7 0.070 6 0.001 2 0.000 1 0.000 9 MLGT01 第二类 边 174 2.680 0.015 4 0.703 8 0.000 4 0.067 0 0.000 5 0.290 4 0.014 2 核 264 0 0 0.703 5 0.000 2 0.063 9 0.000 3 0 0.000 1 边 255 0.120 0 5 0.703 8 0.000 2 0.063 1 0.000 4 0.008 6 0.001 3 MLGT11 第二类 边 140 0 0 0.703 0 0.000 6 0.070 0 0.001 0 0.000 8 0.000 4 核 142 0.004 0 0.702 4 0.000 6 0.070 9 0.001 0 0.000 1 0.000 4 边 147 0.010 0.000 1 0.702 9 0.000 5 0.065 5 0.000 9 0.001 0 0.000 8 海绵边 116 1.910 0.016 4 0.703 5 0.000 7 0.073 9 0.001 2 0.322 9 0.014 2 MLGT18 第二类 边 73.2 0.520 0.007 1 0.703 8 0.000 8 0.092 3 0.000 7 0.149 5 0.006 1 102 0.004 0 0.702 4 0.000 7 0.082 3 0.000 5 0.000 3 0.000 4 核 101 0.004 0 0.703 2 0.000 6 0.082 2 0.000 5 0.000 3 0.000 4 101 0.016 0.000 2 0.702 4 0.000 6 0.081 4 0.000 5 0.002 5 0.000 5 边 146 4.390 0.030 1 0.704 4 0.000 4 0.068 9 0.000 5 0.641 4 0.010 8 表 5 尖晶石主量元素 (%) 和微量元素 (10-6) 组成
Table 5. Major oxides (%) and trace element (10-6) compositions of spinels from the Jining peridotite xenoliths
样品 MLGT01 MLGT02 MLGT07-1 MLGT11 MLGT13 MLGT17 MLGT18 MLGT21 SiO2 0.27 0.23 0.13 0.230 0.25 0.230 0.21 0.160 TiO2 0.23 0.22 0.09 0.200 0.47 0.190 0.19 0.100 Na2O 0.00 0.00 0.00 0.000 0.01 0.000 0.00 0.000 MgO 21.10 20.80 17.10 21.900 16.20 21.800 22.60 23.200 Al2O3 47.50 46.70 36.60 49.400 26.10 51.600 53.60 55.500 K2O 0.00 0.00 0.00 0.000 0.01 0.000 0.00 0.000 CaO 0.00 0.02 0.02 0.000 0.01 0.000 0.00 0.000 MnO 0.10 0.10 0.13 0.100 0.13 0.100 0.10 0.100 FeO 12.30 12.80 14.80 11.800 13.70 11.500 10.80 12.400 Mg# 75.40 74.30 67.40 76.800 67.70 77.200 78.90 77.000 Cr# 19.90 20.70 35.40 17.500 51.90 15.200 12.70 8.600 Li 0.85 0.65 1.53 0.047 0.99 0.090 0.13 0.090 Sc 1.24 1.20 1.59 1.750 3.92 0.830 0.74 0.000 V 487.00 514.00 884.00 438.000 791.00 438.000 418.00 385.000 Co 188.00 190.00 259.00 203.000 189.00 205.000 203.00 271.000 Ni 2 694.00 2 741.00 1 836.00 2 941.000 1 382.00 2 922.000 2 941.00 3 812.000 Cu 3.69 3.75 3.97 3.820 1.60 4.710 1.44 4.330 Zn 561.00 515.00 1 308.00 666.000 650.00 687.000 656.00 1 052.000 -
[1] Blundy, J., Dalton, J., 2000.Experimental Comparison of Trace Element Partitioning between Clinopyroxene and Melt in Carbonate and Silicate Systems, and Implications for Mantle Metasomatism.Contributions to Mineralogy & Petrology, 139(3):356-371.doi: 10.1007/s004100000139 [2] Brey, G.P., Köhler, T., 1990.Geothermobarometry in Four-Phase Lherzolites Ⅱ.New Thermobarometers, and Practical Assessment of Existing Thermobarometers.Journal of Petrology, 31(6):1353-1378.doi: 10.1093/petrology/31.6.1353 [3] Cao, Z.Q., Zhai, W.J., Jiang, X.F., et al., 2016.About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance.Earth Science, 41(4):570-585 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqkx201604002 [4] Chen, C.F., Liu, Y.S., Stephen, F., 2016.Paleo-Asian Oceanic Slab Under the North China Craton Revealed by Carbonatites Derived from Subducted Limestones.Geology, 44(12):1039-1042.doi: 10.1130/G38365.1 [5] Coltorti, M., Bonadiman, C., Hinton, R.W., et al., 1999.Carbonatite Metasomatism of the Oceanic Upper Mantle:Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean.Journal of Petrology, 40(1):133-165.doi: 10.1093/petroj/40.1.133 [6] Cope, T., Ritts, B.D., Darby, B.J., et al., 2010.Late Paleozoic Sedimentation on the Northern Margin of the North China Block:Implications for Regional Tectonics and Climate Change.International Geology Review, 47(3):270-296.doi: 10.2747/0020-6814.47.3.270 [7] Davis, G.A., Yadong, Z., Cong, W., 2002.Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt with Emphasis On Hebei and Liaoning Provinces, Northern China.Beijing Geology, 10(2):171-197 https://www.researchgate.net/profile/Gregory_Davis4/publication/283364958_Mesozoic_tectonic_evolution_of_the_Yanshan_fold_and_thrust_belt_With_emphasis_on_Hebei_and_Liaoning_provinces_northern_ChinaHendrix_Davis_Paleozoic_and_Mesozoic_Tectonic_evolution_of_central_Asia_From/links/577d227908aeaa6988aba3d9.pdf?origin=publication_detail [8] Deng, J.F., Su, S.G., Liu, C., et al., 2006.Discussion on the Lithospheric Thinning of the North China Craton:Delamination?or Thermal Erosion and Chemical Metasomatism?Earth Science Frontiers, 13(2):105-119 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxqy200602009.aspx [9] Du, W., Han, B.F., Zhang, W.H., et al., 2006.The Discovery of Peridotite Xenoliths and Megacrysts in Jining, Inner Mongolia.Acta Petrologica et Mineralogica, (01):13-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200601001.htm [10] Fan, W., Menzies, M., 1992.Destruction of Aged Lower Lithosphere and Accretion of Asthenosphere Mantle Beneath Eastern China.Geotectonica et Metallogenia, 16:171-180. https://pure.royalholloway.ac.uk/portal/en/publications/destruction-of-aged-lower-lithosphere-and-accretion-of-asthenosphere-mantle-beneath-eastern-china(5807f052-c717-4821-aebe-1c3430c74027).html [11] Gao, S., Rudnick, R.L., Carlson, R.W., et al., 2002.Re-Os Evidence for Replacement of Ancient Mantle Lithosphere Beneath the North China Craton.Earth & Planetary Science Letters, 198(3-4):307-322.doi:10.1016/S0012-821X (02)00489-2 [12] Gao, S., Rudnick, R.L., Xu, W., et al., 2008.Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton.Earth and Planetary Science Letters, 270(1-2):41-53.doi: 10.1016/j.epsl.2008.03.008 [13] Grégoire, M., Mcinnes, B.I.A., O'Reilly, S.Y., 2001.Hydrous Metasomatism of Oceanic Sub-Arc Mantle, Lihir, Papua New Guinea:Part 2.Trace Element Characteristics of Slab-Derived Fluids.Lithos, 59(3):91-108.doi: 10.1016/S0024-4937(01)00058-5 [14] Griffin, W.L., Andi, Z., O'Reilly, S.Y., et al., 1998.Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton.Geodynamics Series, 27:107-126.doi: 10.1029/GD027p0107 [15] Griffin, W.L., O Reilly, S.Y., Abe, N., et al., 2003.The Origin and Evolution of Archean Lithospheric Mantle.Precambrian Research, 127(1-3):19-41.doi: 10.1016/S0301-9268(03)00180-3 [16] He, D.T., Liu, Y.S., Tong, X.R., et al., 2013.Multiple Exsolutions in a Rare Clinopyroxene Megacryst from the Hannuoba Basalt, North China:Implications for Subducted Slab-Related Crustal Thickening and Recycling.Lithos, 177(3):136-147.doi: 10.1016/j.lithos.2013.06.018 [17] Hellebrand, E., Snow, J.E., Dick, H.J., et al., 2001.Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites.Nature, 410(6829):677-81.doi: 10.1038/35070546 [18] Huang, J., Zhao, D., 2006.High-Resolution Mantle Tomography of China and Surrounding Regions.Journal of Geophysical Research Solid Earth, 111(B9):4813-4825.doi: 10.1029/2005JB004066 [19] Ionov, D.A., O'Reilly, S.Y., Dupuy, C., et al., 1993.Carbonated Peridotite Xenoliths From Spitsbergen:Implications for Trace Element Signature of Mantle Carbonate Metasomatism.Earth & Planetary Science Letters, 119(3):283-297.doi:10.1016/0012-821X (93)90139-Z [20] Jochum, K.P., Stoll, B., Weis, U., et al., 2009.In Situ Sr Isotopic Analysis of Low Sr Silicates Using LA-ICP-MS.Geochmica et Cosmochimica Acta, 73(13):A598.doi: 10.1039/B905045K [21] Jones, A.P., Genge, M., Carmody, L., 2013.Carbonate Melts and Carbonatites.Reviews in Mineralogy and Geochemistry, 75(1):289-322.doi: 10.2138/rmg.2013.75.10 [22] Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358(6388):635-641.doi: 10.1038/358635a0 [23] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth & Planetary Science Letters, 164(1):387-406.doi:10.1016/S0012-821X (98)00233-7 [24] Kubo, K., 2002.Dunite Formation Processes in Highly Depleted Peridotite:Case Study of the Iwanaidake Peridotite, Hokkaido, Japan.Journal of Petrology, 43(3):423-448.doi: 10.1093/petrology/43.3.423 [25] Li, S.G., Xiao, Y.L., Liu, D.L., et al., 1993.Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites:Timing and Processes.Chemical Geology, 109(1-4):89-111.doi: 10.1016/0009-2541(93)90063-O [26] Lin, J., Liu, Y.S., Yang, Y.H., et al., 2016.Calibration and Correction of LA-ICP-MS and LA-MC-ICP-MS Analyses for Element Contents and Isotopic Ratios.Solid Earth Sciences, 1(1):5-27.doi: 10.1016/j.sesci.2016.04.002 [27] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992.Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton.Geology, 20(4):339.doi:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO; 2 [28] Liu, J.G., Rudnick, R.L., Walker, R.J., et al., 2011.Mapping Lithospheric Boundaries Using Os Isotopes of Mantle Xenoliths:An Example from the North China Craton.Geochimica et Cosmochimica Acta, 75(13):3881-3902.doi: 10.1016/j.gca.2011.04.018 [29] Liu, Y.S., 2010.Continental and Oceanic Crust Recycling-Induced Melt Peridotite Interactions in the Trans-North China Orogen:UPb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):392-9.doi: 10.1093/petrology/egp082 [30] Liu, Y.S., Gao, S., Lee, C.T.A., et al., 2005.Melt-Peridotite Interactions:Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust, Earth Planet.Earth & Planetary Science Letters, 234(1-2):39-57.doi: 10.1016/j.epsl.2005.02.034 [31] Liu, Y.S., He, D.T., Gao, C.G., et al., 2015.First Direct Evidence of Sedimentary Carbonate Recycling in Subduction-Related Xenoliths.Scientific Reports, 5:11547.doi: 10.1038/srep11547 [32] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 [33] Lu, F.X., Han, Z.G., Zheng, J.P., et al., 1991.Characteristic of Paleozoic Mantle-Lithosphere in Fuxian, Liaoning Province.Geological Science and Technology Information, (S1):2-20, 141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ1991S1001.htm [34] Mcdonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253.doi: 10.1016/0009-2541(94)00140-4 [35] Menzies, M.A., Fan, W., Zhang, M., 1993.Palaeozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archaean Lithosphere, Sino-Korean Craton, China.Journal of the Geological Society, 76(1):71-81 doi: 10.1144/GSL.SP.1993.076.01.04 [36] Menzies, M.A., Xu, Y., 2013.Geodynamics of the North China Craton.Mantle Dynamics & Plate Interactions in East Asia, 27(1):155-165.doi: 10.1144/GSL.SP.1993.076.01.04 [37] Norman, M.D., 1998.Melting and Metasomatism in the Continental Lithosphere:Laser Ablation ICPMS Analysis of Minerals in Spinel Lherzolites From Eastern Australia.Contributions to Mineralogy & Petrology, 130(3-4):240-255.doi: 10.1007/s004100050363 [38] Orman, J.A.V., Grove, T.L., Shimizu, N., 1998.Uranium and Thorium Diffusion in Diopside.Earth & Planetary Science Letters, 160(160):505-519.doi:10.1016/S0012-821X (98)00107-1 [39] Orman, J.A.V., Grove, T.L., Shimizu, N., 2001.Rare Earth Element Diffusion in Diopside:Influence of Temperature, Pressure, and Ionic Radius, and an Elastic Model for Diffusion in Silicates.Contributions to Mineralogy & Petrology, 141(6):687-703.doi: 10.1007/s004100100269 [40] Rudnick, R.L., Gao, S., Ling, W., et al., 2004.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton.Lithos, 77(1-4):609-637.doi: 10.1016/j.lithos.2004.03.033 [41] Rudnick, R.L., Ionov, D.A., 2007.Lithium Elemental and Isotopic Disequilibrium in Minerals From Peridotite Xenoliths from Far-East Russia:Product of Recent Melt/Fluid-Rock Reaction.Earth & Planetary Science Letters, 256(1-2):278-293.doi: 10.1016/j.epsl.2007.01.035 [42] Rudnick, R.L., Mcdonough, W.F., Chappell, B.W., 1993.Carbonatite Metasomatism in the Northern Tanzanian Mantle:Petrographic and Geochemical Characteristics.Earth & Planetary Science Letters, 114(4):463-475.doi:10.1016/0012-821X (93)90076-L [43] Russell, W.A., Papanastassiou, D.A., Tombrello, T.A., 1978.Ca Isotope Fractionation On the Earth and Other Solar System Materials.Geochimica et Cosmochimica Acta, 42(8):1075-1090.doi: 10.1016/0016-7037(78)90105-9 [44] Santosh, M., 2010.Assembling North China Craton within the Columbia Supercontinent:The Role of Double-Sided Subduction.Precambrian Research, 178(1-4):149-167.doi: 10.1016/j.precamres.2010.02.003 [45] Sneeringer, M., Hart, S.R., Shimizu, N., 1981.Strontium and Samarium Diffusion in Diopside.Geochimica et Cosmochimica Acta, 48(8):1589-1608.doi: 10.1016/0016-7037(84)90329-6 [46] Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3800 to 2500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China.Precambrian Research, 78(1-3):79-94.doi: 10.1016/0301-9268(95)00070-4 [47] Su, B.X., Zhang, H.F., Sakyi, P.A., et al., 2011.The Origin of Spongy Texture in Minerals of Mantle Xenoliths From the Western Qinling, Central China.Contributions to Mineralogy and Petrology, 161(3):465-482 doi: 10.1007/s00410-010-0543-x [48] Tang, Y.J., Zhang, H.F., Ying, J.F., 2013.Secular Evolution of Lithospheric Mantle Beneath the Central North China Craton:Implication from Basaltic Rocks and Their Xenoliths.Petrology-New Perspectives and Applications, doi: 10.5772/230 [49] Taylor, S.R., Mclennan, S.M., 1985.The Continental Crust:Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks.Blackwell Scientific Publication, Blackwell, 328. https://www.researchgate.net/publication/224929850_The_Continental_Crust_its_Composition_and_Evolution_An_Examination_of_the_Geochemical_Record_Preserved_in_Sedimentary_Rocks [50] Tong, X.R., Liu, Y.S., Hu, Z.C., et al., 2016.Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS.Geostandards & Geoanalytical Research, 40(1):85-99.doi: 10.1111/j.1751-908X.2015.00315.x [51] Wang, C.Y., Liu, Y.S., Min, N., et al., 2016.Paleo-Asian Oceanic Subduction-Related Modification of the Lithospheric Mantle Under the North China Craton:Evidence From Peridotite Xenoliths in the Datong Basalts.Lithos, 261:109-127.doi: 10.1016/j.lithos.2015.12.011 [52] Wang, Y.M., Griffin, W.L., Han, B.F., 2011.A Preliminary Study on the Cenozoic Lithospheric Mantle Beneath the Northern Part of the Western North China Craton.Acta Petrologica Sinica, 27(10):2912-2926 (in Chinese with English abstract). http://www.oalib.com/paper/1474879 [53] Windley, B.F., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):8-1.doi: 10.1029/2002TC001484 [54] Windley, B.F., Maruyama, S., Xiao, W.J., 2010.Delamination/Thinning of Sub-Continental Lithospheric Mantle Under Eastern China:The Role of Water and Multiple Subduction.American Journal of Science, 310(10):1250-1293.doi: 10.2475/10.2010.03 [55] Wu, F.Y., Walker, R.J., Ren, X.W., et al., 2003.Osmium Isotopic Constraints On the Age of Lithospheric Mantle Beneath Northeastern China.Chemical Geology, 196(1-4):107-129.doi: 10.1016/S0009-2541(02)00409-6 [56] Wu, F.Y., Xu, Y.G., Gao, S., et al., 2008.Lithospheric Thinning and Destruction of the North China Craton.Acta Petrologica Sinica, 24(6):1145-1174 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/261187 [57] Wulff, P.E., Neumann, E.R., Jensen, B.B., 1996.The Upper Mantle Under La Palma, Canary Islands:Formation of Si-K-Na-rich Melt and its Importance as a Metasomatic Agent.Contributions to Mineralogy & Petrology, 125(2-3):113-139.doi: 10.1007/s004100050210 [58] Xu, R., Liu, Y.S., Tong, X.R., et al., 2013.In-Situ Trace Elements and Li and Sr Isotopes in Peridotite Xenoliths From Kuandian, North China Craton:Insights Into Pacific Slab Subduction-Related Mantle Modification.Chemical Geology, 354:107-123.doi: 10.1016/j.chemgeo.2013.06.022 [59] Xu, R., Liu, Y.S., Zong, K.Q., et al., 2013a.Micro-geochemistry of Peridotite Xenoliths from Kuandian:Implications for Evolution of Lithospheric Mantle.Acta Petrologica et Mineralogica, (5):613-636 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201305006.htm [60] Xu, W.L., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth & Planetary Science Letters, 265(1):123-137.doi: 10.1016/j.epsl.2007.09.041 [61] Xu, W.L., Zhou, Q.J., Pei, F.P., et al., 2013b.Destruction of the North China Craton:Delamination or Thermal/Chemical Erosion?Mineral Chemistry and Oxygen Isotope Insights from Websterite Xenoliths.Gondwana Research, 23(1):119-129.doi: 10.1016/j.gr.2012.02.008 [62] Xu, Y.G., 2001.Thermo-Tectonic Destruction of the Archaean Lithospheric Keel Beneath the Sino-Korean Craton in China:Evidence, Timing and Mechanism.Physics & Chemistry of the Earth Part A Solid Earth & Geodesy, 26(9):747-757.doi: 10.1016/S1464-1895(01)00124-7 [63] Xu, Y.G., 2002.Evidence for Crustal Components in the Mantle and Constraints On Crustal Recycling Mechanisms:Pyroxenite Xenoliths from Hannuoba, North China.Chemical Geology, 182(2):301-322.doi: 10.1016/S0009-2541(01)00300-X [64] Xu, Y.G., Blusztajn, J., Ma, J., et al., 2008.Late Archean to Early Proterozoic Lithospheric Mantle Beneath the Western North China Craton:Sr-Nd-Os Isotopes of Peridotite Xenoliths from Yangyuan and Fansi.Lithos, 102(1-2):25-42.doi: 10.1016/j.lithos.2007.04.005 [65] Xu, Y.G., Shi, L., 2004.Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sino-Korean Craton:Constraints from Geochemistry of Basalts and Mantle Xenoliths.Journal of Geology, 112(5):593-605.doi: 10.1086/422668 [66] Yan, G.H., Mou, B.L., Zeng, Y.S., et al., 2007.Igneous Carbonatites in North China Craton:The Temporal and Spatial Distribution, Sr and Nd Isotopic Charateristics and Their Geological Significance.Geological Journal of China Universities, (3):463-473 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703010.htm [67] Ye, H., 1987.The Cenozoic Tectonic Evolution of the Great North China:Two Types of Rifting and Crustal Necking in the Great North China and Their Tectonic Implications.Tectonophysics, 133(3):217-227.doi: 10.1016/0040-1951(87)90265-4 [68] Zhai, M.G., 2008.Lower Crust and Lithospheric Mantle Beneath the North China Craton before the Mesozoic Lithospheric Disruption.Acta Petrologica Sinica, 24(10):2185-2204 (in Chinese with English abstract). http://www.oalib.com/paper/1471112 [69] Zhang, H.F., 2006.Peridotite-Melt Interaction:an Important Mechanism for the Compositional Transformation of Lithospheric Mantle.Earth Science Frontiers, 13(2):065-075 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602006.htm [70] Zhang, H.F., Goldstein, S.L., Zhou, X.H., et al., 2009.Comprehensive Refertilization of Lithospheric Mantle Beneath the North China Craton:Further Os-Sr-Nd Isotopic Constraints.Journal of the Geological Society, 166(2):249-259.doi: 10.1144/0016-76492007-152 [71] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003.Secular Evolution of the Lithosphere Beneath the Eastern North China Craton:Evidence from Mesozoic Basalts and High-Mg Andesites.Geochimica et Cosmochimica Acta, 67(22):4373-4387.doi: 10.1016/S0016-7037(03)00377-6 [72] Zhang, H.F., Sun, Y.L., Tang, Y.J., et al., 2012.Melt-Peridotite Interaction in the Pre-Cambrian Mantle Beneath the Western North China Craton:Petrology, Geochemistry and Sr, Nd and Re Isotopes.Lithos, 149:100-114.doi: 10.1016/j.lithos.2012.01.027 [73] Zhang, W.H., Han, B.F., Du, W., et al., 2005.Characteristic of Mantle Source for Jining Cenozoic Basalts from Southern Inner Mongolia:Evidence from Element and Sr-Nd-Pb Isotopic Geochemistry.Acta Petrologica Sinica, 21(06):1569-1582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200506008.htm [74] Zhao, G.C, Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1-2):45-73.doi: 10.1016/S0301-9268(00)00154-6 [75] Zhao, X.M., Zhang, H.F., Zhu, X.K., et al., 2007.Metasomatism of Mesozoic and Cenozoic Lithospheric Mantle Beneath the North China Craton:Evidence from Phlogopite-Bearing Mantle Xenoliths.Acta Petrologica Sinica, 23(06):1281-1293 (in Chinese with English abstract). https://www.researchgate.net/publication/272182697_Metasomatism_of_Mesozoic_and_Cenozoic_lithospheric_mantle_beneath_the_North_China_Craton_Evidence_from_phlogopite-bearing_mantle_xenoliths [76] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2007.Mechanism and Timing of Lithospheric Modification and Replacement Beneath the Eastern North China Craton:Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis.Geochimica et Cosmochimica Acta, 71(21):5203-5225.doi: 10.1016/j.gca.2007.07.028 [77] Zheng, J.P., Lu, F.X., 1999.Mantle Xenoliths from Kimberlites, Shandong and Liaoning:Paleozoic Mantle Character and Its Heterogeneity.Acta Petrologica Sinica, 15(1):65-74 (in Chinese with English abstract). https://www.researchgate.net/publication/279675433_Mantle_xenoliths_from_kimberlites_Shandong_and_Liaoning_Paleozoic_mantle_character_and_its_heterogeneity [78] Zheng, J.P., Lu, F.X., Yu, C.M., et al., 2006.Peridotite Petrochemistry of the Eastern North China:Significance for Lithospheric Mantle Evolution.Earth Science, 31(1):49-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200601007.htm [79] Zheng, J.P., O'Reilly, S.Y., Griffin, W.L., et al., 1998.Nature and Evolution of Cenozoic Lithospheric Mantle Beneath Shandong Peninsula, Sino-Korean Craton, Eastern China.International Geology Review, 40(6):471-499. doi: 10.1080/00206819809465220 [80] Zheng, J.P., O'Reilly, S.Y., Griffin, W.L., et al., 2001.Relict Refractory Mantle Beneath the Eastern North China Block:Significance for Lithosphere Evolution.Lithos, 57(1):43-66.doi: 10.1016/S0024-4937(00)00073-6 [81] Zheng, J.P., Yu, C.M., Lu, F.X., et al., 2007.Age and Composition of Continental Mantle Peridotites and Implications for the Lithospheric Thinning, Eastern North China.Earth Science Frontiers, 14(2):087-097 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60013-X [82] Zhou, Y.T., Zheng, J.P., Yu, C.M., et al., 2010.Peridotite Xenoliths in Jining Cenozoic Basalts:Mineral-Chemistry and Significance for Lithospheric Mantle Evolution Beneath the North China Craton.Acta Petrologica et Mineralogica, (3):243-257 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302006.htm [83] Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012.Destruction of the North China Craton.Science China Earth Sciences, 55(10):1565-1587. doi: 10.1007/s11430-012-4516-y [84] 曹正琦, 翟文建, 蒋幸福, 等, 2016.华北克拉通南缘约2.5 Ga构造变质事件及意义.地球科学, 41(4): 570-585. http://www.earth-science.net/WebPage/Article.aspx?id=3275 [85] 邓晋福, 苏尚国, 刘翠, 等, 2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉, 还是热侵蚀和化学交代?地学前缘, 13(2): 105-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602012.htm [86] 杜蔚, 韩宝福, 张文慧, 等, 2006.内蒙古集宁新生代玄武岩中橄榄岩包体和巨晶的发现及意义.岩石矿物学杂志, 25(1): 13-24. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200601001.htm [87] 路凤香, 韩柱国, 郑建平, 等, 1991.辽宁复县地区古生代岩石圈地幔特征.地质科技情报, (S1): 2-20, 141. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1991S1001.htm [88] 王亚妹, William, L.G., 韩宝福, 2011.华北克拉通西部陆块北缘新生代岩石圈地幔特征的初步研究.岩石学报, 27(10): 2912-2926. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110012.htm [89] 吴福元, 徐义刚, 高山, 等, 2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报, 24(6): 1145-1174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm [90] 徐荣, 刘勇胜, 宗克清, 等, 2013.宽甸橄榄岩包体微区地球化学特征及其岩石圈地幔演化.岩石矿物学杂志, 32(5): 613-636. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201305006.htm [91] 阎国翰, 牟保磊, 曾贻善, 等, 2007.华北克拉通火成碳酸岩时空分布和锶钕同位素特征及其地质意义.高校地质学报, 13(3): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703010.htm [92] 翟明国, 2008.华北克拉通中生代破坏前的岩石圈地幔与下地壳.岩石学报, 24(10): 2185-2204. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810001.htm [93] 张宏福, 2006.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘, 13(2): 65-75. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602006.htm [94] 张文慧, 韩宝福, 杜蔚, 等, 2005.内蒙古集宁新生代玄武岩的地幔源区特征:元素及Sr-Nd-Pb同位素地球化学证据.岩石学报, 21(6): 1569-1582. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506008.htm [95] 赵新苗, 张宏福, 朱祥坤, 等, 2007.华北中、新生代岩石圈地幔的交代作用:含金云母地幔岩提供的证据.岩石学报, 23(6): 1281-1293. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706004.htm [96] 郑建平, 路凤香, 1999.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性.岩石学报, (1): 66-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.006.htm [97] 郑建平, 路凤香, 余淳梅, 等, 2006.华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义.地球科学, 31(1): 49-56. http://www.earth-science.net/WebPage/Article.aspx?id=1536 [98] 郑建平, 余淳梅, 路凤香, 等, 2007.华北东部大陆地幔橄榄岩组成、年龄与岩石圈减薄.地学前缘, 14(2): 87-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702006.htm [99] 周媛婷, 郑建平, 余淳梅, 等, 2010.内蒙古集宁新生代玄武岩中橄榄岩包体矿物化学特征及其地幔演化意义.岩石矿物学杂志, 29(3): 243-257. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201003002.htm