• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于COSMIC数据电离层电子密度空间分布变化

    马新欣 林湛 陈化然 金红林 刘晓灿 焦立果

    马新欣, 林湛, 陈化然, 金红林, 刘晓灿, 焦立果, 2017. 基于COSMIC数据电离层电子密度空间分布变化. 地球科学, 42(3): 479-484. doi: 10.3799/dqkx.2017.038
    引用本文: 马新欣, 林湛, 陈化然, 金红林, 刘晓灿, 焦立果, 2017. 基于COSMIC数据电离层电子密度空间分布变化. 地球科学, 42(3): 479-484. doi: 10.3799/dqkx.2017.038
    Ma Xinxin, Lin Zhan, Chen Huaran, Jin Honglin, Liu Xiaocan, Jiao Liguo, 2017. Spatial Distribution Variations of Ionospheric Electron Density Based on COSMIC Data. Earth Science, 42(3): 479-484. doi: 10.3799/dqkx.2017.038
    Citation: Ma Xinxin, Lin Zhan, Chen Huaran, Jin Honglin, Liu Xiaocan, Jiao Liguo, 2017. Spatial Distribution Variations of Ionospheric Electron Density Based on COSMIC Data. Earth Science, 42(3): 479-484. doi: 10.3799/dqkx.2017.038

    基于COSMIC数据电离层电子密度空间分布变化

    doi: 10.3799/dqkx.2017.038
    基金项目: 

    国家自然科学基金项目 41174056

    中央公益性科研院所基本科研业务经费 DQJB16B08

    省级地震行业专项 201108004

    详细信息
      作者简介:

      马新欣 (1983-),女,助理研究员,主要从事电离层数据分析工作.ORCID:0000-0003-2217-8734.E-mail: maxinxin0923@163.com

      通讯作者:

      林湛,ORCID:0000-0002-0359-2051.E-mail:linzhan1982@yeah.net

    • 中图分类号: P351

    Spatial Distribution Variations of Ionospheric Electron Density Based on COSMIC Data

    • 摘要: 天基GPS探测可以提供分布全球、高精度、高垂直分辨率的电离层观测资料, 弥补地基GPS探测受地域限制、垂直分辨率低的问题.利用COSMIC掩星2008—2011年数据,网格化统计分析了太阳活动处于不同水平下的电子密度空间分布变化,以期为分析电离层电子密度的空间扰动变化提供参考背景.研究表明,电子密度存在明显赤道异常和威德尔海异常现象,并发现随太阳活动性增强,在250~350 km高度范围电子密度赤道异常现象扩展到中纬地区,在300~500 km高度范围威德尔海异常现象不仅发生在南半球夏季,春秋季电子密度夜间值比白天也显著增强;在250~500 km高度范围,电子密度存在明显的威德尔海异常现象,并随着太阳活动性增强,异常区域地理范围扩宽.

       

    • 图  1  2008—2011年期间F107指数

      Fig.  1.  The variation of F107 during the period 2008—2011

      图  2  太阳活动低年和高年300~350 km高度范围Ne白天 (LT12-15) 和夜间 (LT00-03) 年变化

      左侧为太阳活动低年,右侧为太阳活动高年

      Fig.  2.  The annual variation of electron density in the daytime and nighttime during the low and high solar activity levels from 300~350 km height range

      图  3  太阳活动低年和高年300~350 km高度范围Ne (电子密度) 白天 (LT12-15) 地磁季节变化

      左侧为太阳活动低年,右侧为太阳活动高年

      Fig.  3.  The seasonal variation of electron density in the daytime during low and high solar activity levels from 300~350 km height range

      图  4  太阳活动低年和高年300~350 km高度范围Ne (电子密度) 夜间 (LT00-03) 地磁季节变化

      左侧为太阳活动低年,右侧为太阳活动高年

      Fig.  4.  The seasonal variation of electron density in the nighttime during low and high solar activity levels from 300~350 km height rang

      图  5  太阳活动低年200~500 km高度范围,50 km间隔Ne (电子密度) 夜间 (LT00-03) 变化

      Fig.  5.  The variation of electron density in the nighttime during low solar activity level from 200 km to 500 km height range

      图  6  太阳活动高年200~500 km高度范围,50 km间隔Ne (电子密度) 夜间 (LT00-03) 变化

      Fig.  6.  The variation of electron density in the nighttime during high solar activity level from 200~500 km height range

    • [1] Burns, A.G., Solomon, S.C., Wang, W., et al., 2011.The Summer Evening Anomaly and Conjugate Effects.Journal of Geophysical Research:Space Physics, 116(A1):A01311, doi: 10.1029/2010JA015648
      [2] Burns, A.G., Solomon, S.C., Wang, W., et al., 2012.Daytime Climatology of Ionospheric NmF2 and HmF2 from COSMIC Data.Journal of Geophysical Research:Space Physics, 117(A9):667-672.doi: 10.1029/2012ja017529
      [3] Burns, A.G., Zeng, Z., Wang, W., et al., 2008.Behavior of the F2 Peak Ionosphere over the South Pacific at Dusk during Quiet Summer Conditions from COSMIC Data.Journal of Geophysical Research:Space Physics, 113(A12):2036-2044.doi: 10.1029/2008ja013308
      [4] Guo, P., Hong, Z.J., Zhang, D.H., 2002.COSMIC Project.Progress in Astronomy, 22(4):324-336(in Chinese with English abstract). https://www.researchgate.net/publication/252975664_COSMIC_project
      [5] Jee, G., Burns, A.G., Kim, Y.H., et al., 2009.Seasonal and Solar Activity Variations of the Weddell Sea Anomaly Observed in the TOPEX Total Electron Content Measurements.Journal of Geophysical Research:Space Physics, 114(A4):A04307.doi: 10.1029/2008ja013801
      [6] Li, L.Y., Yang, Y.J., Cao, J.B., et al., 2011.Statisical Backgrounds of Topside-Ionospheric Electron Density and Temperature and Variations during Geomagnetic Activity.Chinese Journal of Geophysics, 54(10):2437-2444(in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract8184.shtml
      [7] Lin, C.H., Liu, C.H., Liu, J.Y., et al., 2010.Midlatitude Summer Nighttime Anomaly of the Ionospheric Electron Density Observed by FORMOSAT-3/COSMIC.Journal of Geophysical Research:Space Physics, 115(A3):1-11.doi: 10.1029/2009ja014084
      [8] Lin, C.H., Liu, J.Y., Cheng, C.Z., et al., 2009.Three-Dimensional Ionospheric Electron Density Structure of the Weddell Sea Anomaly.Journal of Geophysical Research:Space Physics, 114(A2):A02312.doi: 10.1029/2008ja013455
      [9] Liu, L.B., Zhao, B.Q., Wan, W.X., et al., 2009.Seasonal Variations of the Ionospheric Electron Densities Retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate Mission Radio Occultation Measurements.Journal of Geophysical Research:Space Physics, 114(A2):A02302.doi: 10.1029/2008ja013819
      [10] Ma, X.X., 2015.Study on the Distribution Characteristics and Seismic Response of Ionosphere Using COSMIC Occultation Data.Recent Developments in World Seismology, (4):47-48 (in Chinese with English abstract).
      [11] Ma, X.X., Lin, Z., Chen, H.R., 2014.Analysis on Ionospheric Perturbation of TEC and NmF2 Based on GPS and COSMIC Data before and after the Wenchuan Earthquake.Chinese Journal of Geophysics, 57(8):2415-2422(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201408003.htm
      [12] Rishbeth, H., 1998.How the Thermospheric Circulation Affects the Ionospheric F2-Layer.Journal of Atmospheric and Solar-Terrestrial Physics, 60(14):1385-1402.doi: 10.1016/s1364-6826(98)00062-5
      [13] Tulasi, R.S., Su, S.Y., Liu, C.H., 2009.FORMOSAT-3/COSMIC Observations of Seasonal and Longitudinal Variations of Equatorial Ionization Anomaly and Its Interhemispheric Asymmetry during the Solar Minimum Period.Journal of Geophysical Research:Space Physics, 114(A6):272-276.doi: 10.1029/2008ja013880
      [14] Yu, T., Wan, W.X., Liu, L.B., et al., 2006.Using IGS Data to Analysis the Global TEC Annual and Semiannual Variation.Chinese Journal of Geophysics, 49(4):943-949(in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract21.shtml
      [15] 郭鹏, 洪振杰, 张大海, 2002.COSMIC计划.天文学进展, 22(4): 324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-TWJZ200204003.htm
      [16] 李柳元, 杨英俊, 曹晋滨, 等, 2011.顶部电离层电子密度和温度的统计背景及其地磁活动的变化.地球物理学报, 54(10): 2437-2444. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201110002.htm
      [17] 马新欣, 2015.基于COSMIC掩星数据的电离层分布特征及地震响应研究.国际地震动态, (4): 47-48. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201503011.htm
      [18] 马新欣, 林湛, 陈化然, 等, 2014.基于GPS和COSMIC数据分析汶川地震TEC和NmF2扰动.地球物理学报, 57(8): 2415-2422. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408003.htm
      [19] 余涛, 万卫星, 刘立波, 等, 2006.利用IGS数据分析全球TEC的周年和半年变化特性.地球物理学报, 49(4): 943-949. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200604002.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  5411
    • HTML全文浏览量:  1702
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-07-02
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回