Syncretic Processing of GOCE Satellite's SST and SGG Data Based on Spectral Combination Method
-
摘要: 不同类型重力测量数据的融合处理,是地球重力场模型化研究的难点和热点问题之一.基于调和分析方法推导了由GOCE卫星SST和SGG数据构建地球重力场模型的谱组合公式及对应谱权的具体形式,给出了多种类型重力测量数据联合处理的谱权及谱组合的通用表达式.结果表明,SST数据能够有效改善SGG数据解算模型在低阶部分的精度,从而提高了解算的地球重力场模型的质量和可靠性并拓宽了其频谱范围,使其精度和空间分辨率有更进一步的提高.Abstract: Syncretic processing of various types of gravimetric data is one of the challenging and hot issues in the modeling of Earth's gravitational field model (EGM). The general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are presented in this paper. What's more, the detailed expressions of spectral combination formulae and the corresponding spectral weights in the EGM determination using satellite-to-satellite tracking (SST) data and satellite gravity gradient (SGG) data of GOCE satellite are derived, based on spherical harmonic analysis method. Experimentation results show that the EGM computed by SGG data is improved by SST data in the low order, whatever the data are simulated or surveyed. It is concluded that as many types of gravimetric data as possible should be combined together in the data processing in order to improve the quality and reliability with widening scope and to improve the precision and spatial resolution of the computational results.
-
表 1 SST、SGG、SST+SGG恢复重力场模型的精度统计结果
Table 1. The precision statistical results of the EGM recovered by SST, SGG, SST+SGG data
数据类型 模型阶数
累计大地水准面
误差 (cm)
累计重力异常
误差 (mGal)SST 70 2.409 0.259 SGG 70 0.249 0.027 SST+SGG 70 0.199 0.021 SGG 200 3.041 0.934 SST+SGG 200 3.037 0.933 表 2 GOCE-SST、GOCE-SGG、GOCE-SST+GOCE-SGG、GOCE-SST-SGG、GO-CONS-TIM的精度统计
Table 2. The precision statistical results of the GOCE-SST, GOCE-SGG, GOCE-SST+GOCE-SGG, GOCE-SST-SGG and GO-CONS-TIM
数据类型 模型阶数
累计大地水准面
误差 (cm)
累计重力异常
误差 (mGal)SST 120 86.798 14.567 SGG 120 15.292 1.294 GOCE-SST+GOCE-SGG 120 8.545 1.156 GOCE-SST-SGG 120 92.815 13.358 GO-CONS-TIM 120 2.585 0.344 SGG 200 18.369 2.947 GOCE-SST+GOCE-SGG 200 13.289 2.889 GOCE-SST-SGG 200 590.001 151.670 GO-CONS-TIM 200 5.940 1.491 -
[1] Guo, D.M., Bao, L.F., Xu, H.Z., 2015.Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model.Earth Science, 40(10):1643-1652(in Chinese with English abstract). https://www.researchgate.net/publication/284735385_Tectonic_characteristics_of_the_Tibetan_plateau_based_on_EIGEN-6C2_gravity_field_model [2] Kern, M., Schwarz, K.P., Sneeuw, N., 2003.A Study on the Combination of Satellite, Airborne, and Terrestrial Gravity Data.Journal of Geodesy, 77:217-225.doi: 10.1007/s00190-003-0313-x [3] Liu, X.G., 2011.Theory and Methods of the Earth's Gravity Field Model Recovery from GOCE Data (Dissertation).Information Engineering University, Zhengzhou, 139-141(in Chinese with English abstract). [4] Liu, X.G., Pang, Z.X., Wu, J., 2012.Earth's Gravitational Field Model Determination from Different Types of Gravimetric Data Based on Iteration Method.Progress in Geophysics, 27(6):2342-2347(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201206009.htm [5] Liu, X.G., Sun, W., Li, X.X., et al., 2014.Study on Recovering Earth's Gravity Field with GOCE's SST-hl Data.J Geodesy and Geodynamics, 34(6):66-71(in Chinese with English abstract). http://www.jgg09.com/EN/abstract/abstract10305.shtml [6] Liu, X.G., Wu, X.P., Zhao, D.M., et al., 2010.Non-Singular Expression of the Disturbing Gravity Gradients.Geodaetica et Cartographica Sinica, 39(5):450-457(in Chinese with English abstract). https://www.researchgate.net/publication/288395916_Non-singular_expression_of_the_disturbing_gravity_gradients [7] Lu, Z.L., 1996.Theory and Method of the Earth's Gravity Field.PLA Publishing House, Beijing, 216-218(in Chinese). [8] Pail, R., Bruinsma, S., Migliaccio, F., et al., 2011.First GOCE Gravity Field Models Derived by Three Different Approaches.Journal of Geodesy, 85(11):819-843.doi: 10.1007/s00190-011-0467-x [9] Pail, R., Goiginger, H., Mayrhofer, R., et al., 2010.GOCE Gravity Field Model Derived from Orbit and Gradiometry Data Applying the Time-Wise Method.In:Lacoste-Francis, H., ed., Proceedings of the ESA Living Planet Symposium.ESA Publication, Bergen. [10] Shi, P., 1984.Integrated Determination of Disturbing Potential.Acta Geodaetica et Cartographica Sinica, 13(4):241-248(in Chinese with English abstract). http://adsabs.harvard.edu/abs/1980BITA...14..608P [11] Sjöberg, L.E., 1981.Least-Squares Combination of Satellite and Terrestrial Data in Physical Geodesy.Annals of Geophysics, 37:25-30. [12] Sjöberg, L.E., Eshagh, M., 2012.A Theory on Geoid Modelling by Spectral Combination of Data From Satellite Gravity Gradiometry, Terrestrial Gravity and an Earth Gravitational Model.Acta Geodaetica et Geophysica Hungarica, 47(1):13-28. doi: 10.1556/AGeod.47.2012.1.2 [13] Wichiencharoen, C., 1984.A Comparison of Gravimetric Undulations Computed by the Modified Molodenskij Truncated Method and the Method of Least Squares Spectral Combination by Optimal Integral Kernels.Bulletin Géodésique, 58:494-509. doi: 10.1007/BF02523696 [14] Wu, X., 2009.Theory and Methods of Satellite Gradiometry Data Processing (Dissertation).Information Engineering University, Zhengzhou, 1-10(in Chinese with English abstract). [15] Xu, T.H., Yang, Y.X., 2005.CHAMP Gravity Field Recovery Using Energy Conservation Method.Geodaetica et Cartographica Sinica, 34(1):1-6(in Chinese with English abstract). doi: 10.1029/2002GL015180/full [16] Xu, X.Y., 2008.Study of Determining the Earth's Gravity Field from Satellite Gravity Gradient and Satellite-to-Satellite Tracking Data (Dissertation).Wuhan University, Wuhan, 69-70(in Chinese with English abstract). [17] Yu, J.H., Wan, X.Y., 2012.Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor.Science in China (Series D), 42(9):1450-1458(in Chinese). http://earth.scichina.com:8080/sciDe/EN/abstract/abstract511426.shtml [18] Zhang, C.D., 2000.Satellite Gravimetry:Foundation, Modeling Methods, and Data Processing Algorithms (Dissertation).Information Engineering University, Zhengzhou, 1-7(in Chinese with English abstract). [19] Zheng, W., Shao, C.G., Luo, J., et al., 2008.Improving the Accuracy of GRACE Earth's Gravitational Field Using the Combination of Different Inclinations.Progress in Natural Science, 18(5):555-561. doi: 10.1016/j.pnsc.2007.11.017 [20] Zheng, W., Xu, H.Z., Zhong, M., et al., 2012a.Efficient Accuracy Improvement of GRACE Global Gravitational Field Recovery Using a New Inter-Satellite Range Interpolation Method.Journal of Geodynamics, 53:1-7.doi: 10.1016/j.jog.2011.07.003 [21] Zheng, W., Xu, H.Z., Zhong, M., et al., 2012b.Precise Recovery of the Earth's Gravitational Field with GRACE:Intersatellite Range-Rate Interpolation Approach.IEEE Geoscience and Remote Sensing Letters, 9(3):422-426.doi: 10.1109/LGRS.2011.2171475 [22] Zhong, B., 2010.Study on the Determination of the Earth's Gravity Field from Satellite Gravimetry Mission GOCE (Dissertation).Institute of Surveying and Mapping of Wuhan University, Wuhan, 184-188(in Chinese with English abstract). [23] Zhong, B., Liu, H.L., Luo, Z.C., et al., 2011.Reduction and Gridded Processing of Satellite Gravity Gradient Data.Journal of Geodesy and Geodynamics, 31(3):79-84(in Chinese with English abstract). http://www.jgg09.com/EN/abstract/abstract9137.shtml [24] 郭东美, 鲍李峰, 徐厚泽, 2015.基于EIGEN-6C2重力场模型反演青藏高原地壳结构.地球科学, 40(10): 1643-1652. http://www.earth-science.net/WebPage/Article.aspx?id=3167 [25] 刘晓刚, 2011. GOCE卫星测量恢复地球重力场模型的理论与方法 (博士学位论文). 郑州: 信息工程大学, 139-141. [26] 刘晓刚, 庞振兴, 吴娟, 2012.联合不同类型重力测量数据确定地球重力场模型的迭代法.地球物理学进展, 27(6): 2342-2347. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201206009.htm [27] 刘晓刚, 孙文, 李新星, 等, 2014.由GOCE卫星的高低卫卫跟踪数据反演地球重力场的模拟研究.大地测量与地球动力学, 34(6): 66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201406013.htm [28] 刘晓刚, 吴晓平, 赵东明, 等, 2010.扰动重力梯度的非奇异表示.测绘学报, 39(5): 450-457. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201005005.htm [29] 陆仲连, 1996.地球重力场理论与方法.北京:解放军出版社, 216-218. [30] 石磐, 1984.扰动位的综合确定.测绘学报, 13(4): 241-248. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB198404000.htm [31] 吴星, 2009. 卫星重力梯度数据处理理论与方法 (博士学位论文). 郑州: 信息工程大学, 1-10. http://cdmd.cnki.com.cn/Article/CDMD-90008-1011057312.htm [32] 徐天河, 杨元喜, 2005.基于能量守恒方法恢复CHAMP重力场模型.测绘学报, 34(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200501001.htm [33] 徐新禹, 2008. 利用卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究 (博士学位论文). 武汉: 武汉大学, 69-70. [34] 于锦海, 万晓云, 2012.利用引力梯度不变量解算的GOCE引力场模型.中国科学 (D辑), 42(9): 1450-1458. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201209014.htm [35] 张传定, 2000. 卫星重力测量--基础、模型化方法与数据处理算法 (博士学位论文). 郑州: 信息工程大学, 1-7. [36] 钟波, 2010. 基于GOCE卫星重力测量技术确定地球重力场的研究 (博士学位论文). 武汉: 武汉大学, 184-188. [37] 钟波, 刘华亮, 罗志才, 等, 2011.卫星重力梯度数据的归算与格网化处理.大地测量与地球动力学, 31(3): 79-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201103019.htm