Instantaneous Seismic Attributes and Response Characteristics of Active Faults
-
摘要: 活断层探测是断层活动性评判的基础,也是天然地震灾害预防的依据,而浅层地震勘探是活断层探测的有效方法之一;而目前利用浅层地震方法评判断层活动性的能力亟待提高.通过构建了不同宽度破碎带的活断层理论模型,采用二维粘弹性波动方程有限差分法进行了波场响应特征模拟,运用希尔伯特变换方法提取了瞬时频率和相位属性.结果表明:地震水平叠加剖面和瞬时属性相结合可有效获取穿过第四系活断层的响应特征和实现断层活动性评判;当相干噪声达到30%时,水平叠加和瞬时频率属性剖面已难以追踪第四系中弱反射信号,而瞬时相位属性剖面仍可有效追踪;在实际活断层判定中,水平叠加、瞬时频率与瞬时相位地震属性剖面均可判断断层的存在,而穿过第四系的断层 (或破碎带) 特征瞬时相位属性最为明显和突出,水平叠加剖面次之,瞬时相位地震属性是判定断层活动性的重要和有效的属性.Abstract: Active fault detection is not only the foundation for the fault activity evaluation, but also the basis for prevention of natural earthquake disasters. The shallow seismic exploration is one of the effective methods for active fault detection. This study aims to further improve the fault activity evaluation with shallow seismic methods. We construct theoretical models of active fault of different fracture zone widths, apply the finite difference method of two-dimensional viscoelastic wave equation to simulate wave field response characteristics, use Hilbert transform method to extract the attributes of instantaneous frequency and instantaneous phase, and analyze the performance in the field of anti-noise and effect of practical applications of method. The results show: Combination of the vertical travel time section and seismic attributes can effectively obtain the response characteristics of active faults which cut through the Quaternary and achieve the evaluation of fault activity; However, when coherent noise reaches thirty percent, it is difficult to trace and identify the weak reflection signals in the Quaternary by the vertical travel time section and instantaneous frequency section, but instantaneous phase attributes can still effectively trace and identify the weak reflection signals with a high anti-noise ability. In the practical determination of active faults, both the vertical travel time section, instantaneous frequency section and instantaneous phase section can determine the existence of faults.The instantaneous phase attribute is the most obvious and prominent to show the characteristics of faults or fracture zones which cut through the Quaternary, whereas the vertical travel time section takes the second place.It is concluded that the instantaneous phase attribute is an important and effective seismic attribute to determine the fault activity.
-
表 1 非活动断层模型Ⅰ参数
Table 1. The parameters of inactive fault model
模型层号 厚度 (m) 界面深度 (m) 断层性质 断层倾角 (°) VP(m/s) VS(m/s) ρ(kg/m3) QP QS 备注 1 10 10 正 960 288 1 568 51.2 9.5 素填土层 2 10/14 20/24 正 45 1 000 300 1 600 56.0 10.4 第四系粘土层 3 10 30/34 正 45 1 400 600 1 800 117.4 44.6 风化层 4 正 45 2 000 900 2 000 257.3 107.9 基岩 注:VP、VS、ρ、QP和QS分别为纵波速度、横波速度、密度、纵波品质因子和横波品质因子. 表 2 活动断层破碎带模型参数
Table 2. The parameters of fracture zone in active fault model
模型
编号破碎带
厚度 (m)第四系粘土层破碎带 风化层破碎带 基岩破碎带 VP
(m/s)VS
(m/s)ρ
(kg/m3)QP QS VP
(m/s)VS
(m/s)ρ
(kg/m3)QP QS VP
(m/s)VS
(m/s)ρ
(kg/m3)QP QS Ⅱ 1.5 960 288 1 568 51.2 9.5 1 344 576 1 764 107.3 40.8 1 880 846 1 920 224.6 94.1 Ⅲ 2.9 960 288 1 568 51.2 9.5 1 344 576 1 764 107.3 40.8 1 880 846 1 920 224.6 94.1 Ⅳ 5.9 960 288 1 568 51.2 9.5 1 344 576 1 764 107.3 40.8 1 880 846 1 920 224.6 94.1 Ⅴ 11.8 960 288 1 568 51.2 9.5 1 344 576 1 764 107.3 40.8 1 880 846 1 920 224.6 94.1 -
[1] Alterman, Z., Karal, F. C., 1968.Propagation of Elastic Waves in Layered Media by Finite Difference Methods.Bulletin of the Seismological Society of America, 58(1):367-398. http://citeseerx.ist.psu.edu/showciting?cid=768883 [2] Chen, L., Song, H.B., 2009.The Estimation of Instantaneous Frequency of Seismic Signal.Chinese Journal of Geophysics, 52(1):206-214(in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract886.shtml [3] Di, B.R., Pei, Z.L., Xia, J.Z., et al., 2009.Forward Simulation of Viscoelastic Wave Equation in Thin-Interbedded Reservoir Model.Oil Geophysical Prospecting, 44(5):622-629(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200905020.htm [4] Feng, S.Y., Long, C.X., Gao, R., et al., 2010.Joint Application of High-Resolution Refraction and Shallow Reflection Seismic Exploration Approach to Active Fault Survey.Acta Seismologica Sinica, 32(6):718-724(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201006010.htm [5] Gu, Q.P., Kang, Q.Q., Xu, H.G., et al., 2013.Seismic Exploration Methods for Buried Faults and Its Up-Break Point in Thin Sediment Areas-An Example of The Feihuanghe Fault.Chinese Journal of Geophysics, 56(5):1609-1618 (in Chinese with English abstract). [6] Hastings, F.D., Schneider, J.B., Broschat, S.L., 1996.Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation.The Journal of the Acoustical Society of America, 100(5):3061-3069.doi: 10.1121/1.417118 [7] He, C.C., Li, X.R., Wang, J., et al., 2015.Seism-Tectonic Background, Deep Rheological Structure and Triggering Mechanism of Diqing Earthquake (Ms5.9), Yunnan.Earth Science, 40(10):1653-1666 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.149 [8] He, Z.Q., Pan, H., Hu, G., et al., 2010.Study on the Seismic Exploration Method to Detect Buried Fault in the Site of Nuclear Power Plant.Chinese Journal of Geophysics, 53(2):326-334 (in Chinese with English abstract). https://www.researchgate.net/publication/288544991_Study_on_the_seismic_exploration_method_to_detect_buried_fault_in_the_site_of_Nuclear_Power_Plant [9] Lan, X.W., Yan, X.F., Wang, C.H., 2008.Application of Seismic Modeling in the Shallow Seismic Prospecting Method to Urban Active Fault Detection.Northwestern Seismological Journal, 30(4):354-359(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ200804007.htm [10] Li, Q.Z., Wei, J.D., 2007.Influence of Array Effect on Cutoff Frequency of High Frequency in High-Density Seismic Acquisition:Oil Geophysical Prospecting, 42(4):363-369(in Chinese with English abstract). https://www.researchgate.net/publication/292724760_Influence_of_array_effect_on_cutoff_frequency_of_high_frequency_in_high-density_seismic_acquisition [11] Matheney, M.P., Nowack, R.L., 1995.Seismic Attenuation Values Obtained from Instantaneous-Frequency Matching and Spectral Ratios.Geophysical Journal International, 123(1):1-15.doi: 10.1111/j.1365-246X.1995.tb06658.x [12] Taner, M.T., Koehler, F., Sheriff, R.E., 1979.Complex Seismic Trace Analysis.Geophysics, 44(6):1041-1063.doi: 10.1190/1.1440994 [13] Xi, X., Yao, Y., 2004, The Analysis of the Wave Field Characteristics in 2D Viscoelastic Random Medium.Progress in Geophysics, 19(3):608-615(in Chinese with English abstract). http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract5880.shtml [14] Xu, F.K., Liu, Z.F., Zhang, Z.Q., et al., 2015.Double Difference Relocation and Focal Mechanisms of the Jinggu Ms6.6 Earthquake Sequences in Yunnan Province in 2014.Earth Science, 40(10):1741-1754 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.156 [15] 陈林, 宋海斌, 2009.地震信号瞬时频率的估算.地球物理学报, 52(1): 206-214. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901026.htm [16] 狄帮让, 裴正林, 夏吉庄, 等, 2009.薄互层油藏模型黏弹性波方程正演模拟研究.石油地球物理勘探, 44(5): 622-629. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200905020.htm [17] 酆少英, 龙长兴, 高锐, 等, 2010.高分辨折射和浅层反射地震方法在活断层探测中的联合应用.地震学报, 32(6): 718-724. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201006010.htm [18] 顾勤平, 康清清, 许汉刚, 等, 2013.薄覆盖层地区隐伏断层及其上断点探测的地震方法技术--以废黄河断层为例.地球物理学报, 56(5): 1609-1618. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305019.htm [19] 贺赤诚, 李献瑞, 王杰, 等, 2015.云南迪庆5.9级地震构造背景、深部流变结构与发震机制.地球科学, 40(10): 1653-1666. http://www.earth-science.net/WebPage/Article.aspx?id=3168 [20] 何正勤, 潘华, 胡刚, 等, 2010.核电厂址隐伏断裂探测中的地震勘探方法研究.地球物理学报, 53(2): 326-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201002011.htm [21] 兰晓雯, 晏信飞, 王成虎, 2008.地震正演模拟在高分辨率隐伏断层地震勘探中的应用.地震工程学报, 30(4): 354-359. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200804007.htm [22] 李庆忠, 魏继东, 2007.高密度地震采集中组合效应对高频截止频率的影响.石油地球物理勘探, 42(4): 363-369. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200704002.htm [23] 奚先, 姚姚, 2004.二维粘弹性随机介质中的波场特征分析.地球物理学进展, 19(3): 608-615. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200403019.htm [24] 徐甫坤, 刘自凤, 张竹琪, 2015.2014年云南景谷Ms6.6地震序列重定位与震源机制解特征.地球科学, 40(10): 1741-1754. http://www.earth-science.net/WebPage/Article.aspx?id=3175