• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    钻井液侵入时水合物近井壁地层物性响应特征

    郑明明 蒋国盛 刘天乐 彭力 宁伏龙 刘力 陈中轩 王震

    郑明明, 蒋国盛, 刘天乐, 彭力, 宁伏龙, 刘力, 陈中轩, 王震, 2017. 钻井液侵入时水合物近井壁地层物性响应特征. 地球科学, 42(3): 453-461. doi: 10.3799/dqkx.2017.035
    引用本文: 郑明明, 蒋国盛, 刘天乐, 彭力, 宁伏龙, 刘力, 陈中轩, 王震, 2017. 钻井液侵入时水合物近井壁地层物性响应特征. 地球科学, 42(3): 453-461. doi: 10.3799/dqkx.2017.035
    Zheng Mingming, Jiang Guosheng, Liu Tianle, Peng Li, Ning Fulong, Liu Li, Chen Zhongxuan, Wang Zhen, 2017. Physical Properties Response of Hydrate Bearing Sediments near Wellbore during Drilling Fluid Invasion. Earth Science, 42(3): 453-461. doi: 10.3799/dqkx.2017.035
    Citation: Zheng Mingming, Jiang Guosheng, Liu Tianle, Peng Li, Ning Fulong, Liu Li, Chen Zhongxuan, Wang Zhen, 2017. Physical Properties Response of Hydrate Bearing Sediments near Wellbore during Drilling Fluid Invasion. Earth Science, 42(3): 453-461. doi: 10.3799/dqkx.2017.035

    钻井液侵入时水合物近井壁地层物性响应特征

    doi: 10.3799/dqkx.2017.035
    基金项目: 

    中国地质大学 (武汉) 实验技术项目 CUGL140819

    湖北省自然科学基金重点项目 2012FFA047

    中国地质大学 (武汉) 中央高校基金项目 CUG120112

    中国地质大学 (武汉) 中央高校基金项目 G1323511453

    国家自然科学基金项目 41502346

    中南大学有色金属成矿预测与地质环境监测教育部重点实验室开放基金资助项目 2016YSJS005

    中南大学有色金属成矿预测与地质环境监测教育部重点实验室开放基金资助项目 2016YSJS011

    国家自然科学基金项目 51274177

    国家自然科学基金项目 40974071

    中国地质大学 (武汉) 中央高校基金项目 CUGL100410

    详细信息
      作者简介:

      郑明明 (1988-),男,讲师,主要研究方向是天然气水合物勘探与开发.ORCID:0000-0002-2312-9187.E-mail: mingming_zheng513@163.com

      通讯作者:

      宁伏龙,ORCID:0000-0003-1236-586X.E-mail: nflzx@cug.edu.cn

    • 中图分类号: P56

    Physical Properties Response of Hydrate Bearing Sediments near Wellbore during Drilling Fluid Invasion

    • 摘要: 目前,国内外学者对钻井液侵入水合物地层的室内实验模拟研究停留在较小尺度上且可靠性难以验证,尚需利用与实际地层物性参数较为贴近的沉积物模型, 开展大尺度的实验模拟,为改善水合物地层钻井过程中钻井液工艺和测井准确识别与评价水合物储层提供依据.根据墨西哥湾水合物地层主要物性参数指标压制了相应的人造岩心,进行了人造岩心钻井液侵入实验.结果表明:水合物在加热分解过程中,温度与压力呈上升趋势,而电阻率先升高后下降,水合物相平衡条件不仅与温压条件有关,还受孔隙水盐度不断变化的影响。钻井液侵入岩心过程中,压力的传递速率快于热量的传递,易使原始岩心孔隙中的水、气在压力升高而温度尚未改变的情况下生成二次水合物.钻井液温度是水合物分解的主要因素,而压差有利于提高孔隙水压力,保持水合物的稳定.高密度钻井液虽有利于形成高压差和抑制水合物在钻井液中形成,但也会导致钻井液低侵并使井周水合物更易分解.因此,在实际水合物地层钻井中,为了减少钻井安全事故,应在安全密度窗口范围内尽可能提高钻井液密度,选用温度较低的钻井液并加入一定量的动力学抑制剂或防漏失剂.电阻率测井应该选用随钻测井方式或者深侧向测井值,从而避免因水合物分解导致的测井失真.

       

    • 图  1  蒸馏水与3.5% NaCl溶液中甲烷水合物相平衡曲线

      Fig.  1.  Methane hydrate equilibrium curve in distilled water and 3.5% NaCl solution

      图  2  水合物地层渗流与开采综合模拟系统示意

      Fig.  2.  Skech of hydrate formation seepage and mining simulation system

      图  3  钻井液侵入水合物地层示意

      Fig.  3.  Schematic diagram of drilling fluid invade into hydrate formation

      图  4  水合物形成与分解过程中温度、压力及电阻率变化曲线

      Fig.  4.  Temperature, pressure and resistivity curve in hydrate formation and decomposition process

      图  5  钻井液侵入过程中温度、压力及电阻率变化曲线

      Fig.  5.  Temperature, pressure and resistivity curve in drilling fluid invasion

      图  6  钻井液侵入过程中温度、压力与电阻率变化范围示意图

      TPR分别代表温度、压力和电阻率,箭头表明传递方向、深度或变化趋势,工字线表明电阻率变化范围

      Fig.  6.  Sketch of temperature, pressure and resistivity change range in drilling fluid invasion

      表  1  主要实验参数

      Table  1.   Main experimental parameters

      人造岩心物性参数水合物形成与分解实验钻井液侵入实验
      直径 (mm)50.0初始气体压力 (MPa)8.2初始温度 (℃)8.0
      总长度 (mm)119.5初始温度 (℃)16.2初始孔隙压力 (MPa)10.0
      渗透率 (mD)420.0初始孔隙水盐度 (%)3.5水合物饱和度 (%)27.15
      孔隙度 (%)31.0初始电阻率 (Ω·m)1.1钻井液初始温度 (℃)15.0
      主孔径范围 (μm)40~100反应后电阻率 (Ω·m)3.45钻井液盐度 (%)3.5
      驱替压力 (MPa)12.0
      下载: 导出CSV

      表  2  水合物形成与分解各阶段分界点温度、压力与电阻率值

      Table  2.   Temperature, pressure and resistivity values of demarcation points in hydrate formation and decomposition process

      温度 (℃)压力 (MPa)电阻率 (Ω·m)时间 (h)
      测点2测点6测点2测点6测点2~3测点6~7
      初始16.216.28.28.21.001.100.0
      A9.89.87.97.80.961.040.4
      B2.12.36.96.91.411.542.0
      C3.43.65.95.62.782.803.0
      D2.22.05.25.33.383.508.8
      E2.22.15.05.03.403.5011.2
      e3.13.05.45.23.603.6511.7
      F9.79.58.08.02.452.4514.0
      下载: 导出CSV
    • [1] Cao, H., 2011.Research on Characteristics of Geomechanical Response of Hydrate Bearing Sediment Near Wellbore to the Behaviors of Drilling and Production (Dissertation).China University of Geosciences, Wuhan, 95-98 (in Chinese with English abstract).
      [2] Chen, F., Zhuang, C., Zhang, G.X., et al., 2014.Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period.Earth Science, 39(11):1517-1526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201411006.htm
      [3] Collett, T.S., Lee, M.W., Zyrianova, M.V., et al., 2012.Gulf of Mexico Gas Hydrate Joint Industry Project Leg Ⅱ Logging-While-Drilling Data Acquisition and Analysis.Marine and Petroleum Geology, 34(1):41-61.doi: 10.1016/j.marpetgeo.2011.08.003
      [4] Klauda, J.B., Sandler, S.I., 2005.Global Distribution of Methane Hydrate in Ocean Sediment.Energy & Fuels, 19(2):459-470.doi: 10.1021/ef049798o
      [5] Konno, Y., Masuda, Y., Takenaka, T., et al., 2008.Numerical Study on Permeability Hysteresis During Hydrate Dissociation in Hot Water Injection.Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver.
      [6] Kvenvolden, K.A., 1993.Gas Hydrates-Geological Perspective and Global Change.Reviews of Geophysics, 31(2):173.doi: 10.1029/93rg00268
      [7] Lee, J., 2009.Experimental Study on the Dissociation Behavior and Productivity of Gas Hydrate by Brine Injection Scheme in Porous Rock.Energy & Fuels, 24(1):456-463.doi: 10.1021/ef900791r
      [8] Lee, J., 2012.Physical Property Measurements of Marine Gas Hydrate-Bearing Sediments during Lab-Scale Test Production.2nd Gordon Research Conference on Natural Gas Hydrate Systems, Ventura.
      [9] Lee, M.W., Collett, T.S., Lewis, K.A., 2012.Anisotropic Models to Account for Large Borehole Washouts to Estimate Gas Hydrate Saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg Ⅱ Alaminos Canyon 21 B Well.Marine and Petroleum Geology, 34(1):85-95.doi: 10.1016/j.marpetgeo.2011.06.010
      [10] Li, S.X., 2006.The Study of Physical and Numerical Simulation on the Exploitation of Natural Gas Hydrate (Dissertation).China University of Petroleum, Dongying, 32-34 (in Chinese with English abstract).
      [11] Liang, H., 2014.Progress in Research on Methane Hydrate Extraction in Japan.International Petroleum Economics, (4):54-59 (in Chinese).
      [12] Liu, T.L., Li, L.X., Jiang, G.S., et al., 2015.A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments.Earth Science, 40(11):1913-1921 (in Chinese with English abstract). https://www.researchgate.net/publication/304106254_A_new_low-cost_drilling_fluid_for_drilling_in_natural_gas_hydrate-bearing_sediments
      [13] Makogon, Y., 1966.Peculiarities a Gas-Field Development in Permafrost.Moscow, 5-10.
      [14] Ning, F.L., Zhang, K.N., Wu, N.Y., et al., 2013.Invasion of Drilling Mud into Gas-Hydrate-Bearing Sediments.Part Ⅰ:Effect of Drilling Mud Properties.Geophysical Journal International, 193(3):1370-1384.doi: 10.1093/gji/ggt015
      [15] Ning, F.L., Zhang, K.N., Wu, N.Y., et al., 2013.Invasion of Water-Based Drilling Mud into Oceanic Gas-Hydrate-Bearing Sediment:One-Dimensional Numerical Simulations.Chinese Journal of Geophysics, 56(1):204-218 (in Chinese with English abstract). https://www.researchgate.net/publication/287857347_Invasion_of_water-based_drilling_mud_into_oceanic_gas-hydrate-bearing_sediment_One-dimensional_numerical_simulations
      [16] Ning, F.L., Jiang, G.S., Zhang, L., et al., 2008.Analysis of Key Factors Affecting Wellbore Stability in Gas Hydrate Formations.Petroleum Drilling Techniques, 36(3):59-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200803016.htm
      [17] Paull, C.K., Ussler, W., Borowski, W.S., et al., 1995.Methane-Rich Plumes on the Carolina Continental Rise:Associations with Gas Hydrates.Geology, 23(1):89.doi:10.1130/0091-7613(1995)023<0089:mrpotc>2.3.co;2
      [18] Ruppel, C., Boswell, R., Jones, E., 2008.Scientific Results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling:Introduction and Overview.Marine and Petroleum Geology, 25(9):819-829.doi: 10.1016/j.marpetgeo.2008.02.007
      [19] Sloan, E.D., 2003.Clathrate Hydrate Measurements:Microscopic, Mesoscopic, and Macroscopic.The Journal of Chemical Thermodynamics, 35(1):41-53.doi: 10.1016/s0021-9614(02)00302-6
      [20] Sloan, E.D., Koh, C., 2007.Clathrate Hydrates of Natural Gases, CRC Press, 482-492.
      [21] Tu, Y.Z., 2010.The Study on Drilling Fluid for Drilling in Marine Natural Gas Hydrate Bearing Formations (Dissertation).China University of Geosciences, Wuhan, 23-26 (in Chinese with English abstract).
      [22] Waite, W.F., Kneafsey, T.J., Winters, W.J., et al., 2008.Physical Property Changes in Hydrate-Bearing Sediment due to Depressurization and Subsequent Repressurization.Journal of Geophysical Research, 113(B7):1978-2012.doi: 10.1029/2007jb005351
      [23] Winters, W.J., Waite, W.F., Mason, D.H., et al., 2007.Methane Gas Hydrate Effect on Sediment Acoustic and Strength Properties.Journal of Petroleum Science and Engineering, 56(1-3):127-135.doi: 10.1016/j.petrol.2006.02.003
      [24] Yun, T.S., Narsilio, G.A., Santamarina, J.C., 2006.Physical Characterization of Core Samples Recovered from Gulf of Mexico.Marine and Petroleum Geology, 23(9-10):893-900.doi: 10.1016/j.marpetgeo.2006.08.002
      [25] Yun, T.S., Santamarina, J.C., Ruppel, C., 2007.Mechanical Properties of Sand, Silt, and Clay Containing Tetrahydrofuran Hydrate.Journal of Geophysical Research:Solid Earth, 112(B4):1978-2012.doi: 10.1029/2006jb004484
      [26] Zheng, M.M., Jiang, G.S., Ning, F.L., et al., 2014.Experimental Study on Artificial Core Samples of Simulating Hydrate Bearing Sediment Skeleton in Permafrost.Natural Gas Geoscience, 25(7):1120-1126 (in Chinese with English abstract). https://www.researchgate.net/publication/287388104_Experimental_study_on_artificial_core_samples_of_simulating_hydrate_bearing_sediment_skeleton_in_permafrost
      [27] Zheng, M., Sun, Q., Jiang, G., et al., 2014.Artificial Cores Technology of Simulating In-Situ Hydrate Bearing Sediment.Electronic Journal of Geotechnical Engineering, 19(Z7):19029-19043.
      [28] 曹函, 2011. 钻采水合物过程中近井壁地层物性响应特征研究 (博士学位论文). 武汉: 中国地质大学, 95-98.
      [29] 陈芳, 庄畅, 张光学, 等, 2014.南海东沙海域末次冰期异常沉积事件与水合物分解.地球科学, 39(11): 1517-1526. http://www.earth-science.net/WebPage/Article.aspx?id=2964
      [30] 李淑霞, 2006. 天然气水合物开采物理模拟与数值模拟研究 (博士学位论文). 东营: 中国石油大学, 32-34.
      [31] 梁慧, 2014.日本天然气水合物研究进展与评价.国际石油经济, (4): 54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201404008.htm
      [32] 刘天乐, 李丽霞, 蒋国盛, 等, 2015.一种海洋水合物地层钻井用新型钻井液.地球科学, 40(11): 1913-1921. http://www.earth-science.net/WebPage/Article.aspx?id=3198
      [33] 宁伏龙, 蒋国盛, 张凌, 等, 2008.影响含天然气水合物地层井壁稳定的关键因素分析.石油钻探技术, 36(3): 59-61. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200803016.htm
      [34] 宁伏龙, 张可霓, 吴能友, 等, 2013.钻井液侵入海洋含水合物地层的一维数值模拟研究.地球物理学报, 56(1): 204-218. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301022.htm
      [35] 涂运中, 2010. 海洋天然气水合物地层钻井的钻井液研究 (博士学位论文). 武汉: 中国地质大学, 23-26. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250554.htm
      [36] 郑明明, 蒋国盛, 宁伏龙, 等, 2014.模拟冻土区水合物地层骨架的人造岩心实验研究.天然气地球科学, 25(7): 1120-1126. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407022.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  4205
    • HTML全文浏览量:  1717
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-10-09
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回