Effect of Parameter Sensitivity of van Genuchten Model on Numerical Simulation of Rainfall Recharge
-
摘要: 详细分析不同评价指标下的van Genuchten方程参数敏感性,对于深入认识参数物理意义、合理确定参数值、提高降水入渗数值模拟准确性具有重要意义.用HYDRUS软件建立一维变饱和水分运移模型,以实际补给量、补给过程曲线和极限蒸发深度作为评价指标,采用单因素扰动分析法对van Genuchten方程各参数敏感性进行理论分析,进而选取多组参数实例,分析同一岩性类别下,不同土样土壤水力参数差异及其对入渗补给模拟结果的影响.结果表明:形状系数 (n)、土壤进气值的倒数 (α) 与极限蒸发深度呈负相关关系,是影响极限蒸发深度的显著因素;饱和含水率 (θs)、n、饱和渗透系数 (Ks) 对于入渗补给影响的敏感性较高,三者在实际土样粒径分布、干密度和孔隙性的共同影响下发生同向变动.合理的参数敏感性分析及数值模拟调参过程需结合土壤参数的物理意义来开展.Abstract: The van Genuchten model is frequently used in expression of soil lithology and hydraulic feature of vadose zone. The included soil hydraulic parameters are sensitive factors in numerical simulation of rainfall recharge. It facilitates the understanding of the physical meaning of parameters, improving accuracy of numerical simulation of rainfall recharge and parameters regulation to analyze the sensitivity of each soil hydraulic parameter. In this study, one-dimensional variably saturated flow models were established by using HYDRUS software. Simulations were run under conditions of multiple sets of parameters which are set in the principle of changing one parameter and keeping the others invariant to evaluate parameter sensitivity of van Genuchten model by using actual recharge quantity, recharge process curve and maximum evaporation depth as the index. The case study chose multiple sets of measured parameters to evaluate the influence of parameter variation among different samples of the same lithology. The simulations results show that maximum evaporation depth is significantly affected by the n and α which are negatively related to it; θs, n, and Ks have a high sensibility to the variation of vertical groundwater recharge, however they will change with porosity, grain size distribution and bulk density of soil at the same time. It is concluded that the reasonable analysis of parameter sensitivity can only be done in combination of the study of their physical meaning.
-
Key words:
- van Genuchten model /
- parameter sensibility analysis /
- rainfall recharge /
- numerical simulation /
- HYDRUS /
- hydrogeology
-
表 1 敏感性分析参数设置
Table 1. Parameter list of sensitive analysis
砂质壤土 θr θs α(1/cm) n Ks(cm/d) 原值 0.065 0.410 0.075 0 1.890 106.10 增加 0.097 5(θr+) 0.615(θs+) 0.112 5(α+)
2.835(n+)
2.58(n1+)159.15(Ks+) 减小 0.032 5(θr-) 0.205(θs-) 0.037 5(α-) 1.2(n-) 53.05(Ks-) 注:数值后括号代表相应模型代号,如“n+”、“n1+”、“n-”分别代表在不改变其他参数的前提下,将n值增加50%、增加36.5%和减小36.5%. 表 2 华北平原参数实例
Table 2. Measured parameter of North China plain
位置 岩性 编号 粒径分布 干密度 (g/cm3) 土壤水力参数 砂粒 (%) 粉粒 (%) 黏粒 (%) θr θs α(1/cm) n Ks(cm/d) 辛集 1 82.19 13.45 4.38 1.41 0.042 7 0.407 9 0.040 7 1.871 1 193.96 桃园 砂壤土 2 74.04 20.16 5.78 1.58 0.037 4 0.358 5 0.043 7 1.560 9 58.81 藁城 3 56.51 29.65 13.84 1.72 0.039 6 0.325 4 0.033 2 1.289 5 10.28 桃园 粉砂质
黏壤土1 32.19 51.77 15.99 1.46 0.055 0 0.376 1 0.006 9 1.591 6 14.51 正定 2 21.29 60.74 17.92 1.58 0.058 7 0.366 2 0.006 6 1.577 1 8.04 正定 3 20.19 59.68 20.14 1.63 0.060 4 0.360 3 0.007 2 1.535 5 5.43 桃园 壤土 1 54.46 35.67 9.85 1.39 0.041 3 0.384 2 0.017 0 1.464 6 41.60 大河 2 52.96 37.14 9.88 1.47 0.039 8 0.366 7 0.017 9 1.449 4 30.12 藁城 3 41.31 44.04 14.68 1.67 0.043 0 0.328 7 0.015 4 1.385 3 7.40 -
[1] Allison, G.B., Gee, G.W., Tyler, S.W., 1994.Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions.Soil Science Society of America Journal, 58(1):6-14.doi: 10.2136/sssaj1994.03615995005800010002x [2] Bi, J.W., Zhang, J.B., Chen, X.M., et al., 2003.Modeling of Soil Water Drainage and Nitrate N Leaching in Arable Soils.Journal of Irrigation and Drainage, 22(6):23-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS200306006.htm [3] Brooks, R.H., Corey, A.T., 1964.Hydraulic Properties of Porous Media.Hydrology Paper, 3:27. http://www.worldcat.org/title/hydraulic-properties-of-porous-media/oclc/3441493 [4] Durner, W., 1994.Hydraulic Conductivity Estimation for Soils with Heterogeneous Pore Structure.Water Resource Research, 30(2):211-223.doi: 10.1029/93WR02676 [5] Huo, S.Y., Jin, M.G., Liang, X., et al., 2014.Changes of Vertical Groundwater Recharge with Increase in Thickness of Vadose Zone.Journal of Earth Science, 25(6):1043-1050.doi: 10.1007/s12583-014-0486-7 [6] Huo, S.Y., 2015.Research on the Effect of Water Table Decline on Vertical Groundwater Recharge:A Case Study in the North China Plain (Dissertation).China University of Geosciences, Wuhan, 29-30(in Chinese with English abstract). [7] Jimenez-Martinez, J., Skaggs, T.H., van Genuchten, M.T.V., et al., 2009.A Root Zone Modeling Approach to Estimating Groundwater Recharge form Irrigated Areas.Journal of Hydrology, 367(1-2):138-149.doi:org/ 10.1016/j.jhydrol.2009.01.002 [8] Kosugi, K., 1996.Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties.Water Resource Research, 32(9):2697-2703.doi: 10.1029/96WR01776 [9] Lu, X.H., Jin, M.G., van Genuchten, M.T.V., et al., 2011.Groundwater Recharge at Five Representative Sites in the Hebei Plain, China.Ground Water, 49(2):286-294.doi: 10.1111/j.1745-6584.2009.00667.x [10] Meng, J.L., 2004.Numerical Modeling of Water and Salt Movement and Drainage System (Dissertation).Xingjiang Agricultural University, Urumchi, 35-36(in Chinese with English abstract). [11] Scan lon, B.R., Healy, R.W., Cook, P.G., 2002.Choosing Appropriate Techniques for Quantifying Groundwater Recharge.Hydrogeology Journal, 10(1):18-39.doi: 10.1007/s10040-001-0176-2 [12] Simunek, J., van Genuchten, M.T.V., Šejna, M., 2008.Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes.Vadose Zone Journal, 7(2):587-600.doi: 10.2136/vzj2007.0077 [13] Tian, Y., Lei, X.H., Jiang, Y.Z., et al., 2010.Comment on Parameter Sensitivity Analysis of Hydrological Model.Journal of China Hydrology, 30(4):9-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWZZ201004004.htm [14] van Genuchten, M.T., 1980.A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.Soil Science Society of America Journal, 44(5):892-898.doi: 10.2136/sssaj1980.03615995004400050002x [15] van Genuchten, M.T., Leij, F.J., Yates, S.R., 1991.The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils.U.S.Department of Agriculture, Washington, D.C. [16] Vogel, T., Císlerová, M., 1988.On the Reliability of Unsaturated Hydraulic Conductivity Calculated from the Moisture Retention Curve.Transport in Porous Media, 3(1):1-15.doi: 10.1007/BF00222683 [17] Wang, Z.T., Jiao, X.Y., Han, H.L., et al., 2013.Sensitivity Analysis of VG Model Parameters with Vertical One-Dimensional Soil Infiltration.Journal of Hohai University (Natural Sciences), 41(1):80-84 (in Chinese with English abstract). https://www.researchgate.net/publication/290673026_Sensitivity_analysis_of_VG_model_parameters_with_vertical_one-dimensional_soil_infiltration [18] 毕经纬, 张佳宝, 陈效民, 等, 2003.农田土壤中土壤水渗漏与硝态氮淋失的模拟研究.灌溉排水学报, 22(6): 23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200306006.htm [19] 霍思远, 2015. 潜水位下降对入渗补给的影响研究--以华北平原为例 (博士学位论文). 武汉: 中国地质大学 (武汉), 29-30. http://cdmd.cnki.com.cn/Article/CDMD-10491-1015709828.htm [20] 孟江丽, 2004. 水盐与排水系统的模拟研究 (硕士学位论文). 乌鲁木齐: 新疆农业大学, 35-36. http://cdmd.cnki.com.cn/Article/CDMD-10758-2004118594.htm [21] 田雨, 雷晓辉, 蒋云钟, 等, 2010.水文模型参数敏感性分析方法研究评述.水文, 30(4): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201004004.htm [22] 王志涛, 缴锡云, 韩红亮, 等, 2013.土壤垂直一维入渗对VG模型参数的敏感性分析.河海大学学报 (自然科学版), 41(1): 80-84. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201301018.htm