Dolomite Formation Facilitated by Three Halophilic Archaea
-
摘要: 白云石成因问题是地质学上长期悬而未决的难题之一.近年来,微生物诱导白云石沉淀逐渐成为白云石成因的重要理论之一,但其中微生物的作用机理远未探明.现生白云石主要分布于高盐环境,该环境中的优势菌群为嗜盐菌,包括嗜盐细菌和嗜盐古菌.因而此次选取三株嗜盐古菌Natrinema sp.J7-1、Natrinema sp.J7-3和Natrinema sp.LJ7,研究其诱导白云石沉淀的能力,并对比不同细胞浓度对白云石沉淀的影响,以期更深入地了解微生物在白云石形成中的作用.通过X射线衍射 (XRD) 检测沉淀物的物相,利用扫描电子显微镜 (SEM) 观察所得矿物形态,同时辅以能量色散谱分析 (EDS) 分析矿物的元素组成.实验结果表明三株嗜盐古菌皆可诱导球型、哑铃型、花椰菜型以及球形聚集体等白云石的形成,且在较高细胞浓度下诱导形成的矿物中白云石含量增多.分析表明细胞浓度的增加会导致细胞表面羧基含量的增加,从而为白云石的沉淀提供更多的成核位点,有利于Mg进入矿物晶格,从而诱导白云石沉淀,本结果进一步提高了对微生物白云石成因机理的认识.Abstract: The dolomite formation problem has been puzzling geologists for a long time. Recently, microbial mediation is becoming one leading theory for dolomite formation, though many details still remain poorly understood. The exclusive occurrence of modern dolomite in saline environments leads to the investigation of the role of halophiles in dolomite formation. In this study, we focus on the effect of salinity and cell concentrations on dolomite mineralization with three halophilic archaea, Natrinema sp.J7-1, Natrinema sp.J7-3 and Natrinema sp.LJ7. These halophilic archaea were collected and subject to the mineral phase identification, morphology observation and element analysis via X-ray Diffraction (XRD) and Scanning Electronic Microscopy equipped with Energy Dispersive Spectrum (EDS). Results confirm that all the strains used are capable of facilitating the dolomite formation under higher salinity conditions, and the yields of dolomite increase with cell concentration. Morphologically, dolomite is of the shape of sphere, dumb-bell, cauliflower and conglobulation. It is proposed that high salinity and high cell density will result in the more carboxyl groups on cell surface which can serve as nucleation sites for dolomite formation, which is favorable for dolomite formation. The results offer more details about microbial role in dolomite formation and enhance our understanding about the mechanism.
-
Key words:
- dolomite /
- halophile /
- cell concentration /
- salinity /
- mineralogy
-
表 1 嗜盐古菌沉淀白云石实验体系的组成
Table 1. The componentsof dolomite precipitation experiments with halophilic archaea
组分 200‰沉淀体系 280‰沉淀体系 细胞悬液 10.00 mL 10.00 mL 1.00 mol/L MgCl2 2.00 mL 2.00 mL 0.10 mol/L CaCl2 2.00 mL 2.00 mL 0.20 mol/L Na2CO3 2.00 mL 2.00 mL NaCl 1.75 g 2.55 g 超纯水 补至20.00 mL 补至20.00 mL 表 2 各沉淀体系中白云石特征峰的“d值”及2θ角
Table 2. The"d valve" and 2θ of dolomite diffraction peaks in experiments with halophilic archaea
沉淀体系 d104值 (A) 2θ值 (°) d113值 (A) 2θ值 (°) J7-1-200-2.5* 2.887 7 30.941 J7-1-280-2.5 2.891 1 30.905 2.191 5 41.156 J7-3-200-2.5 2.911 6 30.681 J7-3-280-1.5 2.893 4 30.879 2.191 0 41.167 J7-3-280-2.0 2.908 0 30.720 2.191 0 41.167 J7-3-280-2.5 2.893 4 30.879 2.193 0 41.130 LJ7-200-2.5 2.908 5 30.715 2.101 0 40.971 LJ7-280-1.5 2.897 8 30.831 2.199 0 41.009 LJ7-280-2.0 2.902 0 30.785 2.201 0 40.971 LJ7-280-2.5 2.897 8 30.831 2.200 9 40.972 注:*为J7-1-200-2.5:J7-1为菌株名称,200为沉淀体系的盐度 (‰),2.5为细胞浓度 (OD600) 为2.5. -
[1] Adams, J.E., Rhodes, M.L., 1960.Dolomitization by Seepage Refluxion.AAPG Bulletin, 44(12):1912-1920.doi: 10.1306/0bda6263-16bd-11d7-8645000102c1865d [2] Beveridge, T.J., Murray, R.G., 1980.Sites of Metal Deposition in the Cell Wall of Bacillus Subtilis.Journal of Bacteriology, 141(2):876-887. [3] Bontognali, T.R.R., McKenzie, J.A., Warthmann, R.J., et al., 2014.Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria.Terra Nova, 26(1):72-77.doi: 10.1111/ter.12072 [4] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008.Microbes Produce Nanobacteria-Like Structures, Avoiding Cell Entombment.Geology, 36(8):663-666.doi: 10.1130/G24755A.1 [5] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2012.Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE).Terra Nova, 24(3):248-254.doi: 10.1111/j.1365-3121.2012.01065.x [6] Deng, S., Dong, H., Lü, G., et al., 2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results From Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278(3):151-159.doi: 10.1016/j.chemgeo.2010.09.008 [7] Fortin, D., Ferris, F., Beveridge, T.J., 1997.Surface-Mediated Mineral Development by Bacteria.Reviews in Mineralogy and Geochemistry, 35(1):161-180. [8] García-Del-Cura, M.Á., Sanz-Montero, M.E., De-Los-Ríos, M.A., et al., 2014.Microbial Dolomite in Fresh Water Carbonate Deposits.Sedimentology, 61(1):41-55.doi: 10.1111/sed.12047 [9] Hsü, K.J., Siegenthaler, C., 1969.Preliminary Experiments on Hydrodynamic Movement Induced by Evaporation and Their Bearing on the Dolomite Problem.Sedimentology, 12(1-2):11-25.doi: 10.1111/j.1365-3091.1969.tb00161.x [10] Jiang, W.Y., Wu, H.B., Chu, G.Q., et al., 2010.Origin of Dolomite in Lake Bayanchagan, Inner Mongolia and Its Palaeoclimatic Implications.Quaternary Sciences, 30(6):1116-1120(in Chinese with English abstract). [11] Kenward, P.A., Fowle, D.A., Goldstein, R.H., et al., 2013.Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls.AAPG Bulletin, 97(11):2113-2125.doi: 10.1306/05171312168 [12] Kenward, P.A., Goldstein, R.H., González, L.A., et al., 2009.Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium:The Role of Methanogenic Archaea.Geobiology, 7(5):556-565.doi: 10.1111/j.1472-4669.2009.00210.x [13] Land, L.S., 1998.Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000-Fold Oversaturation after 32 Years.Aquatic Geochemistry, 4(3):361-368.doi: 10.1023/A:1009688315854 [14] Last, F.M., Last, W.M., Halden, N.M., 2012.Modern and Late Holocene Dolomite Formation:Manito Lake, Saskatchewan, Canada.Sedimentary Geology, 281:222-237.doi: 10.1016/j.sedgeo.2012.09.012 [15] Liu, S.G., Huang, W.M., Zhang, C.J., et al., 2008.Research Status of Dolomite Genesis and Its Problemsin Sichuan Basin.Lithologic Reservoirs, 20(2):6-15(in Chinese with English abstract). [16] Mei, M.X., 2012.Brief Introduction of "Dolostone Problem" in Sedimentology According to Three Scientific Ideas.Journal of Paleogeography, 14(1):1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201201003.htm [17] Nan, J.X., Yang, Y.H., 2001.Diagenesis and Trap of the Dolomite Rock Reservoir in Changqing Gas Field.China Petroleum Exploration, 6(4):44-49 (in Chinese with English abstract). [18] Oren, A., 2013.Life at High Salt Concentrations.In:Dworkin, M., Falkow, S., Rosenberg, E., eds., The Prokaryotes.Springer, Berlin, 421-440. [19] Patterson, R.J., Kinsman, D.J.J., 1982.Formation of Diagenetic Dolomite in Coastal Sabkha along Arabian (Persian) Gulf.AAPG Bulletin, 66(1):28-43. https://www.researchgate.net/publication/255532481_Formation_of_diagenetic_dolomite_in_Coastal_Sabkha_along_Arabian_Persian_Gulf [20] Peterson, M.N.A., Bien, G.S., Berner, R.A., 1963.Radiocarbon Studies of Recent Dolomite from Deep Spring Lake, California.Journal of Geophysical Research, 68(24):6493-6505.doi: 10.1029/JZ068i024p06493 [21] Qiu, X., 2014.Microbial Organics and Water Hydrochemical Conditions Intergrately Affect the Formation of Mg-CaCO3(Dissertation).China University of Geosciences, Wuhan, 45-50 (in Chinese with English abstract). [22] Roberts, J.A., Kenward, P.A., Fowle, D.A., et al., 2013.Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature.Proceedings of the National Academy of Sciences, 110(36):14540-14545. doi: 10.1073/pnas.1305403110 [23] Sánchez-Román, M., McKenzie, J.A., Wagener, A.L.R., et al., 2009.Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation.Earth and Planetary Science Letters, 285(1-2):131-139.doi: 10.1016/j.epsl.2009.06.003 [24] Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008.Aerobic Microbial Dolomite at the Nanometer Scale:Implications for the Geologic Record.Geology, 36(11):879-882.doi: 10.1130/G25013A.1 [25] VanLith, Y., Warthmann, R.J., Vasconcelos, C., et al., 2003.Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation.Geobiology, 1(1):71-79.doi: 10.1046/j.1472-4669.2003.00003.x [26] Vasconcelos, C., McKenzie, J.A., 1997.Microbial Mediation of Modern Dolomite Precipitation and Diagenesis Under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67(3):378-390. [27] Vasconcelos, C., McKenzia, J.A., Bernasconi, S., et al., 1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 377(6546):220-222.doi: 10.1038/377220a0 [28] Voegerl, R.S., 2014.Quantifying the Carboxyl Group Density of Microbial Cell Surfaces as a Function of Salinity:Insights into Microbial Precipitation of Low-Temperature Dolomite (Dissertation).University of Kansas, Kansas, 8-12. [29] Wang, D., Wallace, A.F., de Yoreo, J.J., et al., 2009.Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates During Calcification.Proceedings of the National Academy of Sciences, 106(51):21511-21516. doi: 10.1073/pnas.0906741106 [30] Wang, H.M., Liu, S., Liu, D., 2015.Comparison between Reductive Dissolution of Jarosite by Sulfate Reducing Bacteria and Dissimilatory Iron Reducing Bacteria.Earth Science, 40(2):305-316.doi: 10.3799/dqkx.2015.023(in Chinese with English abstract) [31] Yu, B.S., Dong, H.L., Jiang, H.C., et al., 2007.Discovery of Spheric Dolomite Aggregations in Sediments from the Bottom of Qinghai Lake and Its Significance for Dolomite Problem.Geoscience, 21(1):66-70(in Chinese with English abstract). [32] Zhang, F., Xu, H., Shelobolina, E.S., et al., 2015.The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation:Implications for the "Dolomite Problem".American Mineralogist, 100(2-3):483-494. doi: 10.2138/am-2015-4999 [33] Zhang, Z.Q., Liu, Y., Wang, S., et al., 2012.Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to that of Plasmid PHH205.Virology, 434(2):233-241.doi: 10.1016/j.virol.2012.05.036 [34] 姜文英, 吴海斌, 储国强, 等, 2010.内蒙古巴彦查干湖白云石的成因及其环境意义.第四纪研究, 30(6):1116-1120. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006006.htm [35] 刘树根, 黄文明, 张长俊, 等, 2008.四川盆地白云岩成因的研究现状及存在问题.岩性油气藏, 20(2):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200802003.htm [36] 梅冥相, 2012.从3个科学理念简论沉积学中的"白云岩问题".古地理学报, 14(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201003.htm [37] 南君祥, 杨奕华, 2001.长庆气田白云岩储层的成岩作用与成岩圈闭.中国石油勘探, 6(4):44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200104006.htm [38] 邱轩, 2014. 微生物有机质与水化学条件协同影响碳酸钙镁矿物沉淀 (博士学位论文). 武汉: 中国地质大学, 45-50. [39] 王红梅, 刘烁, 刘邓, 2015.硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比.地球科学, 40(2):305-316. http://www.earth-science.net/WebPage/Article.aspx?id=3180 [40] 于炳松, 董海良, 蒋宏忱, 等, 2007.青海湖底沉积物中球状白云石集合体的发现及其地质意义.现代地质, 21(1):66-70. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200701006.htm