• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    三株嗜盐古菌诱导形成白云石

    段勇 药彦辰 邱轩 王红梅

    段勇, 药彦辰, 邱轩, 王红梅, 2017. 三株嗜盐古菌诱导形成白云石. 地球科学, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    引用本文: 段勇, 药彦辰, 邱轩, 王红梅, 2017. 三株嗜盐古菌诱导形成白云石. 地球科学, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    Duan Yong, Yao Yanchen, Qiu Xuan, Wang Hongmei, 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    Citation: Duan Yong, Yao Yanchen, Qiu Xuan, Wang Hongmei, 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389-396. doi: 10.3799/dqkx.2017.029

    三株嗜盐古菌诱导形成白云石

    doi: 10.3799/dqkx.2017.029
    基金项目: 

    国家自然科学基金项目 41502317

    国家自然科学基金项目 41572323

    国家自然科学基金项目 41130207

    详细信息
      作者简介:

      段勇 (1991-),男,硕士研究生,主要从事微生物与矿物相互作用研究.ORCID:0000-0002-6725-9258.E-mail:dang-you@163.com

      通讯作者:

      王红梅,ORCID:0000-0001-7621-7810.E-mail:hmwang@cug.edu.cn

    • 中图分类号: P571

    Dolomite Formation Facilitated by Three Halophilic Archaea

    • 摘要: 白云石成因问题是地质学上长期悬而未决的难题之一.近年来,微生物诱导白云石沉淀逐渐成为白云石成因的重要理论之一,但其中微生物的作用机理远未探明.现生白云石主要分布于高盐环境,该环境中的优势菌群为嗜盐菌,包括嗜盐细菌和嗜盐古菌.因而此次选取三株嗜盐古菌Natrinema sp.J7-1、Natrinema sp.J7-3和Natrinema sp.LJ7,研究其诱导白云石沉淀的能力,并对比不同细胞浓度对白云石沉淀的影响,以期更深入地了解微生物在白云石形成中的作用.通过X射线衍射 (XRD) 检测沉淀物的物相,利用扫描电子显微镜 (SEM) 观察所得矿物形态,同时辅以能量色散谱分析 (EDS) 分析矿物的元素组成.实验结果表明三株嗜盐古菌皆可诱导球型、哑铃型、花椰菜型以及球形聚集体等白云石的形成,且在较高细胞浓度下诱导形成的矿物中白云石含量增多.分析表明细胞浓度的增加会导致细胞表面羧基含量的增加,从而为白云石的沉淀提供更多的成核位点,有利于Mg进入矿物晶格,从而诱导白云石沉淀,本结果进一步提高了对微生物白云石成因机理的认识.

       

    • 图  1  嗜盐古菌J7-1、J7-3、LJ7生长曲线

      a,c,e分别为J7-1、J7-3和LJ7在200‰盐度下的生长曲线;b,d,f分别为J7-1、J7-3和LJ7在280‰盐度下的生长曲线

      Fig.  1.  Growth curves of halophilic archaea J7-1, J7-3 and LJ7

      图  2  三株嗜盐古菌诱导形成的矿物的XRD图谱

      ①,③,⑤分别表示J7-1,J7-3,LJ7在200‰盐度下诱导形成的矿物XRD图谱;②,④,⑥分别表示J7-1,J7-3,LJ7在280‰盐度下诱导形成的矿物XRD图谱.x1~5分别表示沉淀体系中菌液浓度 (OD600) 为2.5,2.0,1.5,1.0和0;x为a,b,c,d,e,f.XRD图谱上标注的M.单水合方解石,A.文石,D.白云石

      Fig.  2.  XRD spectra of the precipitates induced by three halophilic archaeal strains

      图  3  嗜盐古菌诱导形成的白云石的形态特征及元素组成

      a.J7-1-200-2.5体系中哑铃型白云石;b.J7-1-280-2.5体系中球型白云石;c.LJ7-200-2.5体系中花椰菜型白云石;d.J7-1-200-2.5体系中聚集体型白云石

      Fig.  3.  Morphology and elemental composition of dolomite induced by halophilic archaea

      表  1  嗜盐古菌沉淀白云石实验体系的组成

      Table  1.   The componentsof dolomite precipitation experiments with halophilic archaea

      组分 200‰沉淀体系 280‰沉淀体系
      细胞悬液 10.00 mL 10.00 mL
      1.00 mol/L MgCl2 2.00 mL 2.00 mL
      0.10 mol/L CaCl2 2.00 mL 2.00 mL
      0.20 mol/L Na2CO3 2.00 mL 2.00 mL
      NaCl 1.75 g 2.55 g
      超纯水 补至20.00 mL 补至20.00 mL
      下载: 导出CSV

      表  2  各沉淀体系中白云石特征峰的“d值”及2θ

      Table  2.   The"d valve" and 2θ of dolomite diffraction peaks in experiments with halophilic archaea

      沉淀体系 d104值 (A) 2θ值 (°) d113值 (A) 2θ值 (°)
      J7-1-200-2.5* 2.887 7 30.941
      J7-1-280-2.5 2.891 1 30.905 2.191 5 41.156
      J7-3-200-2.5 2.911 6 30.681
      J7-3-280-1.5 2.893 4 30.879 2.191 0 41.167
      J7-3-280-2.0 2.908 0 30.720 2.191 0 41.167
      J7-3-280-2.5 2.893 4 30.879 2.193 0 41.130
      LJ7-200-2.5 2.908 5 30.715 2.101 0 40.971
      LJ7-280-1.5 2.897 8 30.831 2.199 0 41.009
      LJ7-280-2.0 2.902 0 30.785 2.201 0 40.971
      LJ7-280-2.5 2.897 8 30.831 2.200 9 40.972
        注:*为J7-1-200-2.5:J7-1为菌株名称,200为沉淀体系的盐度 (‰),2.5为细胞浓度 (OD600) 为2.5.
      下载: 导出CSV
    • [1] Adams, J.E., Rhodes, M.L., 1960.Dolomitization by Seepage Refluxion.AAPG Bulletin, 44(12):1912-1920.doi: 10.1306/0bda6263-16bd-11d7-8645000102c1865d
      [2] Beveridge, T.J., Murray, R.G., 1980.Sites of Metal Deposition in the Cell Wall of Bacillus Subtilis.Journal of Bacteriology, 141(2):876-887.
      [3] Bontognali, T.R.R., McKenzie, J.A., Warthmann, R.J., et al., 2014.Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria.Terra Nova, 26(1):72-77.doi: 10.1111/ter.12072
      [4] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008.Microbes Produce Nanobacteria-Like Structures, Avoiding Cell Entombment.Geology, 36(8):663-666.doi: 10.1130/G24755A.1
      [5] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2012.Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE).Terra Nova, 24(3):248-254.doi: 10.1111/j.1365-3121.2012.01065.x
      [6] Deng, S., Dong, H., Lü, G., et al., 2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results From Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278(3):151-159.doi: 10.1016/j.chemgeo.2010.09.008
      [7] Fortin, D., Ferris, F., Beveridge, T.J., 1997.Surface-Mediated Mineral Development by Bacteria.Reviews in Mineralogy and Geochemistry, 35(1):161-180.
      [8] García-Del-Cura, M.Á., Sanz-Montero, M.E., De-Los-Ríos, M.A., et al., 2014.Microbial Dolomite in Fresh Water Carbonate Deposits.Sedimentology, 61(1):41-55.doi: 10.1111/sed.12047
      [9] Hsü, K.J., Siegenthaler, C., 1969.Preliminary Experiments on Hydrodynamic Movement Induced by Evaporation and Their Bearing on the Dolomite Problem.Sedimentology, 12(1-2):11-25.doi: 10.1111/j.1365-3091.1969.tb00161.x
      [10] Jiang, W.Y., Wu, H.B., Chu, G.Q., et al., 2010.Origin of Dolomite in Lake Bayanchagan, Inner Mongolia and Its Palaeoclimatic Implications.Quaternary Sciences, 30(6):1116-1120(in Chinese with English abstract).
      [11] Kenward, P.A., Fowle, D.A., Goldstein, R.H., et al., 2013.Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls.AAPG Bulletin, 97(11):2113-2125.doi: 10.1306/05171312168
      [12] Kenward, P.A., Goldstein, R.H., González, L.A., et al., 2009.Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium:The Role of Methanogenic Archaea.Geobiology, 7(5):556-565.doi: 10.1111/j.1472-4669.2009.00210.x
      [13] Land, L.S., 1998.Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000-Fold Oversaturation after 32 Years.Aquatic Geochemistry, 4(3):361-368.doi: 10.1023/A:1009688315854
      [14] Last, F.M., Last, W.M., Halden, N.M., 2012.Modern and Late Holocene Dolomite Formation:Manito Lake, Saskatchewan, Canada.Sedimentary Geology, 281:222-237.doi: 10.1016/j.sedgeo.2012.09.012
      [15] Liu, S.G., Huang, W.M., Zhang, C.J., et al., 2008.Research Status of Dolomite Genesis and Its Problemsin Sichuan Basin.Lithologic Reservoirs, 20(2):6-15(in Chinese with English abstract).
      [16] Mei, M.X., 2012.Brief Introduction of "Dolostone Problem" in Sedimentology According to Three Scientific Ideas.Journal of Paleogeography, 14(1):1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201201003.htm
      [17] Nan, J.X., Yang, Y.H., 2001.Diagenesis and Trap of the Dolomite Rock Reservoir in Changqing Gas Field.China Petroleum Exploration, 6(4):44-49 (in Chinese with English abstract).
      [18] Oren, A., 2013.Life at High Salt Concentrations.In:Dworkin, M., Falkow, S., Rosenberg, E., eds., The Prokaryotes.Springer, Berlin, 421-440.
      [19] Patterson, R.J., Kinsman, D.J.J., 1982.Formation of Diagenetic Dolomite in Coastal Sabkha along Arabian (Persian) Gulf.AAPG Bulletin, 66(1):28-43. https://www.researchgate.net/publication/255532481_Formation_of_diagenetic_dolomite_in_Coastal_Sabkha_along_Arabian_Persian_Gulf
      [20] Peterson, M.N.A., Bien, G.S., Berner, R.A., 1963.Radiocarbon Studies of Recent Dolomite from Deep Spring Lake, California.Journal of Geophysical Research, 68(24):6493-6505.doi: 10.1029/JZ068i024p06493
      [21] Qiu, X., 2014.Microbial Organics and Water Hydrochemical Conditions Intergrately Affect the Formation of Mg-CaCO3(Dissertation).China University of Geosciences, Wuhan, 45-50 (in Chinese with English abstract).
      [22] Roberts, J.A., Kenward, P.A., Fowle, D.A., et al., 2013.Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature.Proceedings of the National Academy of Sciences, 110(36):14540-14545. doi: 10.1073/pnas.1305403110
      [23] Sánchez-Román, M., McKenzie, J.A., Wagener, A.L.R., et al., 2009.Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation.Earth and Planetary Science Letters, 285(1-2):131-139.doi: 10.1016/j.epsl.2009.06.003
      [24] Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008.Aerobic Microbial Dolomite at the Nanometer Scale:Implications for the Geologic Record.Geology, 36(11):879-882.doi: 10.1130/G25013A.1
      [25] VanLith, Y., Warthmann, R.J., Vasconcelos, C., et al., 2003.Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation.Geobiology, 1(1):71-79.doi: 10.1046/j.1472-4669.2003.00003.x
      [26] Vasconcelos, C., McKenzie, J.A., 1997.Microbial Mediation of Modern Dolomite Precipitation and Diagenesis Under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67(3):378-390.
      [27] Vasconcelos, C., McKenzia, J.A., Bernasconi, S., et al., 1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 377(6546):220-222.doi: 10.1038/377220a0
      [28] Voegerl, R.S., 2014.Quantifying the Carboxyl Group Density of Microbial Cell Surfaces as a Function of Salinity:Insights into Microbial Precipitation of Low-Temperature Dolomite (Dissertation).University of Kansas, Kansas, 8-12.
      [29] Wang, D., Wallace, A.F., de Yoreo, J.J., et al., 2009.Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates During Calcification.Proceedings of the National Academy of Sciences, 106(51):21511-21516. doi: 10.1073/pnas.0906741106
      [30] Wang, H.M., Liu, S., Liu, D., 2015.Comparison between Reductive Dissolution of Jarosite by Sulfate Reducing Bacteria and Dissimilatory Iron Reducing Bacteria.Earth Science, 40(2):305-316.doi: 10.3799/dqkx.2015.023(in Chinese with English abstract)
      [31] Yu, B.S., Dong, H.L., Jiang, H.C., et al., 2007.Discovery of Spheric Dolomite Aggregations in Sediments from the Bottom of Qinghai Lake and Its Significance for Dolomite Problem.Geoscience, 21(1):66-70(in Chinese with English abstract).
      [32] Zhang, F., Xu, H., Shelobolina, E.S., et al., 2015.The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation:Implications for the "Dolomite Problem".American Mineralogist, 100(2-3):483-494. doi: 10.2138/am-2015-4999
      [33] Zhang, Z.Q., Liu, Y., Wang, S., et al., 2012.Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to that of Plasmid PHH205.Virology, 434(2):233-241.doi: 10.1016/j.virol.2012.05.036
      [34] 姜文英, 吴海斌, 储国强, 等, 2010.内蒙古巴彦查干湖白云石的成因及其环境意义.第四纪研究, 30(6):1116-1120. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006006.htm
      [35] 刘树根, 黄文明, 张长俊, 等, 2008.四川盆地白云岩成因的研究现状及存在问题.岩性油气藏, 20(2):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200802003.htm
      [36] 梅冥相, 2012.从3个科学理念简论沉积学中的"白云岩问题".古地理学报, 14(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201003.htm
      [37] 南君祥, 杨奕华, 2001.长庆气田白云岩储层的成岩作用与成岩圈闭.中国石油勘探, 6(4):44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200104006.htm
      [38] 邱轩, 2014. 微生物有机质与水化学条件协同影响碳酸钙镁矿物沉淀 (博士学位论文). 武汉: 中国地质大学, 45-50.
      [39] 王红梅, 刘烁, 刘邓, 2015.硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比.地球科学, 40(2):305-316. http://www.earth-science.net/WebPage/Article.aspx?id=3180
      [40] 于炳松, 董海良, 蒋宏忱, 等, 2007.青海湖底沉积物中球状白云石集合体的发现及其地质意义.现代地质, 21(1):66-70. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200701006.htm
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  5558
    • HTML全文浏览量:  1739
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-01
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回