• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年

    唐傲 李光来 苏晔 郭国林 韦星林 刘朕语 陈光旭

    唐傲, 李光来, 苏晔, 郭国林, 韦星林, 刘朕语, 陈光旭, 2017. 赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年. 地球科学, 42(3): 378-388. doi: 10.3799/dqkx.2017.028
    引用本文: 唐傲, 李光来, 苏晔, 郭国林, 韦星林, 刘朕语, 陈光旭, 2017. 赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年. 地球科学, 42(3): 378-388. doi: 10.3799/dqkx.2017.028
    Tang Ao, Li Guanglai, Su Ye, Guo Guolin, Wei Xinglin, Liu Zhenyu, Chen Guangxu, 2017. EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science, 42(3): 378-388. doi: 10.3799/dqkx.2017.028
    Citation: Tang Ao, Li Guanglai, Su Ye, Guo Guolin, Wei Xinglin, Liu Zhenyu, Chen Guangxu, 2017. EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science, 42(3): 378-388. doi: 10.3799/dqkx.2017.028

    赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年

    doi: 10.3799/dqkx.2017.028
    基金项目: 

    东华理工大学博士启动资金 DHBK201120

    国家自然科学基金项目 41302053

    详细信息
      作者简介:

      唐傲 (1989-),男,硕士研究生,主要从事矿床学方面研究工作.ORCID:0000-0002-7316-0983.E-mail:847057264@qq.com

      通讯作者:

      李光来,ORCID:0000-0001-5437-6853.E-mail:liguanglai@ecit.cn

    • 中图分类号: P58

    EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province

    • 摘要: 紫云山岩体是赣中地区与钨铀成矿关系极为密切的过铝质花岗岩体,但目前该岩体的成岩时代尚不明确.通过偏光显微镜、扫描电镜、电子探针等手段,首次开展了紫云山花岗岩中赋存晶质铀矿的精细矿物学研究.结果表明:晶质铀矿主要赋存于黑云母之中,少数被黄铁矿包裹,部分晶质铀矿被不同程度溶蚀和交代,表明晶质铀矿是本区花岗岩型铀矿的主要铀源矿物之一.利用电子探针U-Th-Pb化学定年法测得蕉坑单元 (J3J)5颗晶质铀矿年龄为154.5~168.9 Ma,加权平均年龄为161.8±2.4 Ma (MSWD=0.26,n=26),庙前单元 (J3M) 三颗晶质铀矿年龄为152.8~164.7 Ma,加权平均年龄为159.7±3.2 Ma (MSWD=0.2,n=15).获得的年龄与南岭地区主要含钨花岗岩的侵入时间高度一致,对应华南中生代大规模岩浆活动的第二阶段.晶质铀矿年龄与华南含钨花岗岩锆石U-Pb年龄非常一致,验证了过铝质富铀花岗岩中晶质铀矿电子探针定年方法的可行性.

       

    • 图  1  紫云山岩体地质简图

      1.第四系;2.白垩系;3.三叠系;4.震旦系;5.万源岩组;6.蕉坑单元花岗岩;7.庙前单元花岗岩;8.瑶里单元花岗岩;9.断层;10.构造边界;11.水库.图a据Yan et al.(2003)修改

      Fig.  1.  Geological sketch of the Ziyunshan pluton

      图  2  紫云山花岗岩手标本及主要造岩矿物镜下照片

      a、d分别为蕉坑单元花岗岩手标本、显微镜照片;b、e分别为瑶里单元花岗岩手标本、显微镜照片;c、f分别为庙前单元花岗岩手标本、显微镜照片;Bio.黑云母;Kfs.钾长石;Ms.白云母;Pl.斜长石;Qtz.石英;Mc.云母

      Fig.  2.  Hand specimen, microscope photographs of the Ziyunshan granite

      图  3  紫云山花岗岩中含铀矿物放射晕圈照片

      Bio.黑云母;Kfs.钾长石;Ms.白云母;Pl.斜长石;Qtz.石英

      Fig.  3.  Radioactive halo photos of uranium bearing minerals from the Ziyunshan granite

      图  4  紫云山花岗岩晶质铀矿背散射图像及测点位置

      Py.黄铁矿;Zr.锆石;Ur.晶质铀矿

      Fig.  4.  BSE images of uraninites from the Ziyunshan granite and EMPA analysis locations

      图  5  紫云山花岗岩晶质铀矿电子探针加权平均年龄

      a.焦坑单元晶质铀矿电子探针加权平均年龄;b.庙前单元晶质铀矿电子探针加权平均年龄

      Fig.  5.  Weighted average ages of uraninites from the Ziyunshan granite

      表  1  紫云山花岗岩晶质铀矿电子探针数据 (%) 及年龄值

      Table  1.   EPMA analyses results (%) and chemical ages of uraninites from Ziyunshan granite

      序号 测点号 Y2O3 ThO2 UO2 La2O3 PbO P2O5 CaO Total 年龄 (Ma) 2σ(Ma)
      焦坑单元 (J3J)
      1 13ZY-6-9 0.69 8.76 86.9 0 1.93 0 0 98.2 160.1 6.3
      2 13ZY-6-11 0.97 8.15 82.6 0 1.87 0 0 93.6 163.2 6.4
      3 14ZYS-3-2 0.70 7.16 88.4 0 1.91 0.02 0.14 98.3 156.9 6.2
      4 14ZYS-3-3 0.72 6.67 88.2 0.04 1.93 0.06 0 97.6 159.2 6.3
      5 14ZYS-3-4 0.65 8.05 86.5 0.02 1.95 0 0 97.2 163.2 6.4
      6 14ZYS-3-5 0.67 7.73 88.2 0 2.05 0.06 0 98.7 168.5 6.6
      7 14ZYS-3-6 0.65 8.05 87.1 0.08 1.93 0.06 0 97.9 160.5 6.3
      8 13ZY-7-1 0.64 8.69 85.2 0 1.94 0 0 96.5 164.3 6.5
      9 13ZY-7-2 0.65 8.36 85.3 0 1.88 0 0 96.2 159.4 6.3
      10 13ZY-7-3 0.69 8.62 85.5 0 1.95 0.03 0 96.8 164.1 6.5
      11 13ZY-7-4 0.69 8.20 85.6 0 1.88 0 0 96.4 158.3 6.2
      12 13ZY-7-5 0.66 8.55 85.7 0 1.96 0.01 0 96.9 165.1 6.5
      13 13ZY-7-6 0.68 8.49 85.7 0 1.94 0 0 96.8 163.6 6.4
      14 13ZY-7-7 0.68 8.08 85.3 0 1.93 0 0 96.0 163.7 6.4
      15 13ZY-7-8 0.75 7.98 86.0 0 1.93 0.03 0 96.7 162.3 6.4
      16 13ZY-7-11 0.74 9.59 85.5 0.04 2.01 0.04 0 97.9 168.9 6.6
      17 13ZY-7-12 0.60 9.69 84.7 0 1.89 0 0 96.9 160.5 6.3
      18 13ZY-7-13 0.70 9.33 84.6 0 1.94 0.03 0 96.6 164.6 6.5
      19 13ZY-7-14 0.68 9.79 84.8 0.01 1.88 0 0 97.2 158.9 6.3
      20 13ZY-7-15 0.66 9.88 83.6 0.03 1.80 0 0 96.0 154.5 6.1
      21 13ZY-7-16 0.85 9.9 83.5 0 1.85 0 0 96.1 159.0 6.3
      22 13ZY-7-17 0.97 9.94 82.6 0 1.88 0 0 95.4 163.2 6.4
      23 13ZY-7-18 0.75 9.09 86.0 0 1.95 0 0 97.8 162.9 6.4
      24 13ZY-7-19 0.85 9.74 83.2 0 1.89 0 0 95.7 163.4 6.4
      25 13ZY-7-20 0.83 9.79 83.2 0 1.87 0 0 95.7 161.1 6.3
      26 13ZY-7-21 0.68 9.01 79.5 0.03 1.79 0 0.07 91.1 161.5 6.4
      庙前单元 (J3M)
      27 13ZY-9-1 0.10 3.65 90.2 0.03 1.96 0.02 0 95.9 159.4 6.3
      28 13ZY-9-2 0.11 4.03 88.8 0.02 1.92 0 0 94.8 158.9 6.3
      29 13ZY-9-3 0.22 3.52 91.2 0 1.99 0.01 0 97.0 160.8 6.3
      30 13ZY-9-4 0.07 2.55 89.9 0 2.01 0 0 94.5 164.7 6.5
      31 13ZY-9-5 0.07 2.99 91.3 0 1.99 0 0 96.3 160.5 6.3
      32 13ZY-9-6 0.04 2.44 93.5 0 2.06 0.01 0 98.1 162.5 6.4
      33 13ZY-9-7 0.07 2.17 87.7 0 1.87 0 0 91.8 157.7 6.2
      34 13ZY-9-11 0.21 6.38 88.4 0 1.94 0.07 0 97.0 159.8 6.3
      35 13ZY-9-12 0.19 6.50 88.0 0 1.85 0.06 0 96.6 152.8 6
      36 13ZY-9-13 0.52 7.84 87.2 0.06 1.93 0.02 0 97.6 160.3 6.3
      37 13ZY-9-14 0.42 5.52 91.5 0 1.97 0.07 0 99.5 157.3 6.2
      38 13ZY-9-15 0.41 6.31 89.8 0 1.96 0 0 98.5 158.7 6.2
      39 13ZY-9-16 0.54 7.34 87.5 0 1.94 0 0 97.4 161.0 6.3
      40 13ZY-9-17 0.38 6.69 88.1 0 1.93 0 0 97.1 159.1 6.3
      41 13ZY-9-18 0.60 7.47 88.4 0 2.00 0 0 98.5 163.6 6.4
      下载: 导出CSV
    • [1] Bowles, J.F.W., 1990.Age Dating of Individual Grains of Uraninite in Rocks from Electron Microprobe Analyses.Chemical Geology, 83(S1-2):47-53.doi: 10.1016/0009-2541(90)90139-X
      [2] Butera, K.M., Williams, I.S., Blevin, P.L., et al., 2001.Zircon U-Pb Dating of Early Palaeozoic Monzonitic Intrusives from the Goonumbla Area, New South Wales.Australian.Journal of Earth Science, 48(3):457-464.doi: 10.1046/j.1440-0952.2001.00870.x
      [3] Cameron-Schimann, M., 1962.Electron Microprobe Study of Uranium Minerals and It's Application to Some Canadian Deposits [Microform].Journal of Electroanalytical Chemistry, 4(1):51-58. doi: 10.1016/0022-0728(62)80027-8
      [4] Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., et al., 1987.Alpha-Decay-Induced Fracturing in Zircon:The Transition from the Crystalline to the Metamict State.Science, 236(4808):1556-1559.doi: 10.1126/science.236.4808.1556
      [5] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007.EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen:Records of Multi-Tectonometamorphic Events.Chinese Science Bulletin, 52(16):2252-2263(in Chinese). doi: 10.1007/s11434-007-0299-5
      [6] Chen, P.R., Hua, R.M., Zhang, B.T.et al., 2002.Early Yanshanian Post-Orogenic Granitoids in the Nanling Region-Petrological Constraints and Geodynamic Settings.Science in China (Series D), 32(4):279-287 (in Chinese).
      [7] Cocherie, A., Albarede, F., 2001.An Improved U-Th-Pb Age Calculation for Electron Microprobe Dating of Monazite.Geochimica et Cosmochimica Acta, 65(65):4509-4522.doi: 10.1016/S0016-7037(01)00753-0
      [8] Cocherie, A., Be., M.E., Legendre, O., et al., 2005.Electron Microprobe Dating as a Tool for Determining the Closure of Th-U-Pb Systems in Migmatitic Monazites.American Mineralogist, 90(4):607-618. doi: 10.2138/am.2005.1303
      [9] Cocherie, A., Legender, O., 2007.Potential Minerals for Determining U-Th-Pb Chemical Age Using Electron Microprobe.Lithos, 93(93):288-309.doi: 10.1016/j.lithos.2006.03.069
      [10] Cross, A., Jaireth, S., Rapp, R., 2011.Reconnaissance-Style EPMA Chemical U-Th-Pb Dating of Uraninite.Australian Journal of Earth Sciences, 58(6):675-683.doi: 10.1080/08120099.2011.598190
      [11] Deer, W.A., Howie, R.A., Zussman, J., 1992.An Introduction to the Rock-Forming Minerals.Longman Scientific and Technical, Essex, 696.
      [12] Ewing, R.C., 1994.The Metamict State:1993—The Centennial.Nuclear Instruments & Methods in Physics Research, 91(1-4):22-29.doi:10.1016/0168-583X (94)96186-7
      [13] Fayek, M., Janeczek, J., Ewing, R.C., 1997.Mineral Chemistry and Oxygen Isotopic Aanalyses of Uraninite, Pitchblende and Uranium Alteration Minerals from the Cigar Lake Deposit, Saskatchewan, Canada.Applied Geochemistry, 12(5):549-565.doi:10.1016/S0883-2927 (97)00032-2
      [14] Förster, H.J., Rhede, D., Stein, H.J., et al., 2012.Paired Uraninite and Molybdenite Dating of the Königshain Granite:Implications for the Onset of Late-Variscan Magmatism in the Lausitz Block.International Journal of Earth Sciences, 101(1):57-67.doi: 10.1007/s00531-010-0631-1
      [15] Gao, Y.Y., Li, X.H., Griffin, W.L., et al., 2014.Screening Criteria for Reliable U-Pb Geochronology and Oxygen Isotope Analysis in Uranium-Rich Zircons:A Case Study from the Suzhou A-Type Granites, SE China.Lithos, 192(4):180-191. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501003009.htm
      [16] Ge, X.K., Qin, M.K., Fan, G., 2011.Review on the Application of Electron Microprobe Chemical Dating Method in the Age Research of Uraninite/Pitchblende.World Nuclear Geoscience, 28(1):55-62 (in Chinese with English abstract).
      [17] Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007.Precise Zircon SHRIMP U-Pb and Quartz Vein Rb-Sr Dating of Mesozoic Taoxikeng Tungsten Polymetal Lic Deposit in Southern Jiangxi.Mineral Deposits, 26(4):432-442 (in Chinese with English abstract).
      [18] Guo, G.L., Zhang, Z.S., Liu, X.D., et al., 2012.EPMA Chemical U-Th-Pb Dating of Uraninite in Guangshigou Uranium Deposit.Journal of East China Institute of Technology, 35(4):309-314 (in Chinese with English abstract).
      [19] Horn, I., Rudnick, R.L, McDonough, W.F., 2000.Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS:Application to U-Pb Geochronology.Chemical.Geology, 167(3):281-301.doi:10.1016/S0009-2541(99) 00168-0
      [20] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005.Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nan Ling Range.Geological Journal of China Universities, 11(3):291-304 (in Chinese with English abstract).
      [21] Kempe, U., 2003.Precise Electron Microprobe Age Determination in Altered Uraninite:Consequences on the Intrusion Age and the Metallogenic Significance of the Kirchberg Granite (Erzgebirge, Germany).Contributions to Mineralogy and Petrology, 145(1):107-118.doi: 10.1007/s00410-002-0439-5
      [22] Kotzer, T.G., Kyser, T.K., 1993.O, U, and Pb Isotopic and Chemical Variations in Uraninite:Implications for Setermining the Temporal and Fluid History of Ancient Terrains.American Mineralogist, 78:1262-1274. https://www.researchgate.net/publication/235999500_O_U_and_Pb_Isotopic_and_Chemical_Variations_in_Uraninite_-_Implications_for_Determining_the_Temporal_and_Fluid_History_of_Ancient_Terrains
      [23] Li, G.L., Hua, R.M., Wei, X.L., et al., 2014.Re-Os Isotopic Ages of Two Types of Molybdenite from Zhangdongkeng Tungsten Deposit in Southern Jiangxi Province and Their Geologic Implications.Earth Science, 39(2):165-173 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402005.htm
      [24] Li, G.L., Hua, R.M., Wei, X.L., et al., 2011.Rb-Sr Isochron Age of Single-Grain Muscovite in the Xu Shan W-Cu Deposit, Central Jiang Xi, and Its Geological Signficence.Earth Science, 36(2):382-388 (in Chinese with English abstract).
      [25] Li, H.Q., Lu, Y.F., Wan, G., Deng, H., et al., 2006.Dating of the Rock-Forming and Ore Forming Ages and Their Geological Significances in the Furong Ore-Field, Qitian Mountain, Hunan.Geological Review, 52(1):113-121 (in Chinese with English abstract).
      [26] Li, J.D., Bai, D.Y., Wu, G.Y., et al., 2005.Zircon SHRIMP Dating of the Qitianling Granite, Chenzhou, Southern, Hunan, and Its Geological Significance.Geological Billetin of China, 24(5):411-414 (in Chinese with English abstract).
      [27] Li, Q.L., Li, X.H., Lan, Z.W., et al., 2013.Monazite and Xenotime U-Th-Pb Geochronology by Ionmicroprobe:Dating Highly Fractionated Granites at Xihuashan Tungsten Mine, SE China.Contributions to Mineralogy and Petrology, 166(1):65-80.doi: 10.1007/s00410-013-0865-6
      [28] Li, X.H., Liu, X.M., Liu, Y.S., et al., 2015., Accuracy of LA-ICPMS Zircon U-Pb Age Determination:An Inter-Laboratory Comparison.Science in China (Series D), 45(9):1294-1303 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201510004.htm
      [29] Li, X.J., Guo, T., Wang, Q.F., 2003.Electron Microprobe Chemical Dating Technique.Earth Science Frontiers, 10(2):411-414 (in Chinese with English abstract).
      [30] Liu, J., Mao, J.W., Ye, H.S., et al., 2008.Zircon LA-ICPMS U-Pb Dating of Hukeng Granite in Wugongshan Area, Jiangxi Province and Its Geochemical Characteristics.Acta Perologica Sinica, 24(8):1813-1822 (in Chinese with English abstract). https://www.researchgate.net/publication/283778992_Zircon_LA-ICPMS_U-Pb_dating_of_Hukeng_granite_in_Wugongshan_area_Jiangxi_Province_and_its_geoehemical_characteristics
      [31] Liu, Y., 2013.Geochronology and Geochemical of Ziyunshan Pluton at Yuhuashan Area in Jiangxi and Its Geological Significance (Dissertation).East China University of Technology, Nanchang, 25-32(in Chinese with English abstract).
      [32] Ludwig, K.R., 1991.ISOPLOT; A Plotting and Regression Program for Radiogenic-Isotope Data; Version 2.53.Open-File Report.U.S.Geological Survey, Denver.
      [33] Luo, J.C., Hu, R.Z., Shi, S.H., 2015.Timing of Uranium Mineralization and GeologicalImplications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China:New Constraint from Chemical U-Pb Age.Journal of Earth Science, 26(6):911-919.doi: 10.1007/s12583-015-0542-y
      [34] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). https://www.researchgate.net/publication/230474119_Mesozoic_Large-scale_Mineralization_and_Multiple_Lithospheric_Extensions_in_South_China
      [35] Matthew, V.M., Andrew, G.T., Gordon, P.W., et al., 2015.Release of Uranium from Highly Radiogenic Zircon Through Metamictization:The Source of Orogenic Uranium Ores.Geology, 44(1).doi: 10.1130/G37238.1
      [36] Montel, J.M., Foret, S., Veschambre, M., et al., 1996.Electron Microprobe Dating of Monazite.Chemical Geology, 131(1-4):37-53.doi: 10.1016/0009-2541(96)00024-1
      [37] Nemchin, A.A., Horstwood, M.S.A., Whitehouse, M.J., 2013.High-Spatial-Resolution Geochronology.Elements, 9(1):31-37.doi: 10.2113/gselements.9.1.31
      [38] Ozha, M.K., Mishra, B., Singh, G., 2015.Reaction Aureoles within Biotite and Albite Surrounding Uraninite and Possible Mobilization of Radio-Centres:An Example from Rajasthan, India.Mineral Resources in a Sustainable World, 1863-1866.
      [39] Peng, S.B., Zhu, J.P., Li, Z.C., et al., 2004.U-Th-Pb Dating by Electron Microprobe and Its Application in Structural Analysis.Rock & Mineral Analysis, 23(11):44-51(in Chinese with English abstract).
      [40] Procházka, V., Seydoux-Guillaume, A.M., Trojek, T., et al., 2011.Alteration Halos around Radioactive Minerals in Plutonic and Metamorphic Rocks of Northern Moldanubian Area, Bohemian Massif.European Journal of Mineralogy, 23(4):551-566.doi: 10.1127/0935-1221/2011/0023-2108
      [41] Suzuki, K., Adachi, M., 1991.Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrane, Northeast Japan, Revealed by the Chemical Th-U-Total Pb Isochron Ages of Monazite, Zircon and Xenotime.Geochemical Journal, 25(5):357-376.doi: 10.2343/geochemj.25.357
      [42] Suzuki, K., Adachi, M., Tanaka, T., 1991.Middle Precambrian Provenance of Jurassic Sandstone in the Mino Terrane, Central Japan:T-U-Total Pb Evidence from an Electron Microprobe Monazite Study.Sedimentary Geology, 75(S1-2):141-147.doi:10.1016/0037-0738 (91)90055-I
      [43] Tang, A., 2016.Study on Chronology, Rock Geochemistry, Uranium Bearing Mineral of Ziyunshan Peraluminous Granite, Centre JiangXi (Dissertation).East China Institute of Technology, 25-37(in Chinese with English abstract).
      [44] Tang, A., Li, G.l., Zhou, L.Q., 2015.Compositional Characteristics of Biotite in Ziyunshan Ore Bearing Granite, Central Jiangxi:Implications for Petrogenesis and Mineralization.Journal of Mineralogy and Petrology, 35(3):29-34 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/259954
      [45] Tiepolo, M., 2003.A Laser Probe Coupled with ICP-Double-Focusing Sectorfield Mass Spectrometer for in Situ Analysis of Geological Samples and U.Canadian Mineralogist, 41(5):259-272.doi: 10.2113/gscanmin.41.2.259
      [46] Votyakov, S.L., Ivanov, K.S., Khiller, V.V., 2011.Chemical Microprobe Th-U-Pb Age Dating of Monazite and Uraninite Grains from Granites of the Yamal Crystalline Basement.Doklady Earth Sciences, 439(1):994-997.doi: 10.1134/S1028334X1107018X
      [47] Weber, W.J., Ewing, R.C., 2002.Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides.MRS Proceedings, 713.dio:10.1557/PROC-713-JJ3.1
      [48] White, L.T., Ireland, T.R., 2012.High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations.Chemical Geology, 306-307(19):78-91.doi: 10.1016/j.chemgeo.2012.02.025
      [49] Williams, I.S., Hergt, J.M., 2000.U-Pb Dating of Tasmanian Dolerites:A Cautionary Tale of SHRIMP Analysis of High-U Zircons.In:Woodhead, J.D., Hergt, J.M., Noble, W.P.eds., Beyond 2000:New Frontiers in Isotope Geoscience.The University of Melbourne, Lorne, 185-188.
      [50] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System Within the Yangtze Block (South China).Tectonophysics, 361(3-4):239-254.doi: 10.1016/S0040-1951(02)00646-7
      [51] Yang, T.L., Jiang, S.Y.2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotope.Earth Science, 40(12):2002-2020 (in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_dqkx201512005.aspx
      [52] Yao, J.M., Hua, R.M., Lin, J.F., 2005.Zircon LA-ICPMS U-Pb Dating and Geological Characteristics of Huangshaping Granite in Southeast Hunan Province, China.Acta Petrologica Sinica, 21(3):688-686 (in Chinese with English abstract). https://www.researchgate.net/publication/280687801_Zircon_LA-ICPMS_U-Pb_dating_and_geochemical_characteristics_of_Huangshaping_granite_in_southeast_Hunan_province_China
      [53] Yu, G.S., Xiao, K.C., 1986.Basic Characteristics of an Ancient Ophiolite Belt and Plate Tectonics in Northeastern Jinagxi.Regional Geology of China, (4):369-362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD198604010.htm
      [54] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2009.New Dating of the Piaotang Granite and Related Tungsten Mineralization in Southern Jiangxi.Acta Petrologica Sinica, 83(5):659-670 (in Chinese with English abstract). https://www.researchgate.net/publication/279717533_New_dating_of_the_Dajishan_granite_and_related_tungsten_mineralization_in_Southern_Jiangxi
      [55] Zhang, W.L., Wang, R.C., Hua, R.M., et al., 2003.Chemical Th-U-Total Pb Isochron of Dating Accessary Minerals:Principle and Application to Zircon from the Piaotang Muscovite Granite in the Xihuashan Complex, South China.Geological Review, 49(3):263-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303005.htm
      [56] Zhao, H.B., Liu, Y.F., Yang, S., et al., 2014.The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite.Rock & Mineral Analysis, 33(1):102-109 (in Chinese with English abstract).
      [57] Zhao, K, D., Jiang, S.Y., Ling, H.F., et al., 2014.Reliability of LA-ICP-MS U-Pb Dating of Zircons with High U Concentrations:A Case Study from the U-Bearing Douzhashan Granite in South China.Chemical Geology, 389:110-121.doi:10.1016/j.chemgeo.201 4.09.018
      [58] Zhou, J.X., Chen, Z.Y., Rui, Z.Y., 2002.Th-U-TPb Chemical Dating of Monazite by Electron Probe.Rock & Mineral Analysis, 21(4):241-246 (in Chinese with English abstract).
      [59] 陈能松, 孙敏, 王勤燕, 等, 2007.东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录.科学通报, 52(11):1297-1306. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200711015.htm
      [60] 陈培荣, 华仁民, 章邦桐, 2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学 (D辑), 32(4):279-289. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm
      [61] 葛祥坤, 秦明宽, 范光, 2011.电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状.世界核地质科学, 28(1):55-62. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201101012.htm
      [62] 郭春丽, 王登红, 陈毓川, 等, 2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.矿床地质, 26(4):432-442. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200704008.htm
      [63] 郭国林, 张展适, 刘晓东, 等, 2012.光石沟铀矿床晶质铀矿电子探针化学定年研究.东华理工大学学报:自然科学版, 35(4):309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201204004.htm
      [64] 华仁民, 陈培荣, 张文兰, 等, 2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报, 11(3):291-304. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm
      [65] 李光来, 华仁民, 韦星林, 等, 2011.江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义.地球科学, 36(2):382-388. http://www.earth-science.net/WebPage/Article.aspx?id=2091
      [66] 李光来, 华仁民, 韦星林, 等, 2014.赣南樟东坑钨矿两类矿化中辉钼矿的Re-Os同位素定年及其地质意义.地球科学, 39(2):165-173. http://www.earth-science.net/WebPage/Article.aspx?id=2816
      [67] 李华芹, 路远发, 王登红, 等, 2006.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评, 52(1):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601018.htm
      [68] 李金冬, 柏道远, 伍光英, 等, 2005.湘南郴州地区骑田岭花岗岩锆石SHRIMP定年及其地质意义.地质通报, 24(5):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505003.htm
      [69] 李献华, 柳小明, 刘勇胜, 等, 2015.LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析.中国科学 (D辑), 45(9):1294-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm
      [70] 李学军, 郭涛, 王庆飞, 2003.电子探针化学测年方法.地学前缘, 10(2):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302026.htm
      [71] 刘珺, 毛景文, 叶会寿, 等, 2008.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征.岩石学报, 24(8):1813-1822. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808013.htm
      [72] 刘颖, 2013. 江西省玉华山地区紫云山岩体年代学、地球化学特征及地质意义 (硕士学位论文). 南昌: 东华理工大学, 25-32.
      [73] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm
      [74] 彭松柏, 朱家平, 李志昌, 等, 2004.国外电子探针铀-钍-铅定年方法及其在构造分析中的应用前景.岩矿测试, 23(11):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200401011.htm
      [75] 唐傲, 2016. 赣中紫云山过铝质花岗岩年代学、岩石地球化学及载铀矿物特征研究 (硕士学位论文). 南昌: 东华理工大学, 25-37.
      [76] 唐傲, 李光来, 周龙全, 等, 2015.赣中紫云山岩体含矿花岗岩黑云母成分特征及其成岩成矿意义.矿物岩石, 35(3):29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201503005.htm
      [77] 姚军明, 华仁民, 林锦富, 2005.湘东南黄沙坪花岗岩LA-ICPS锆石U-Pb定年及岩石地球化学特征.岩石学报, 21(3):688-686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503011.htm
      [78] 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://www.earth-science.net/WebPage/Article.aspx?id=3205
      [79] 于根生, 肖柯才, 1986.赣东北古蛇绿岩带及板块构造基本特征.中国区域地质, (4):369-362. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198604010.htm
      [80] 张文兰, 王汝成, 华仁民, 等, 2003.副矿物的电子探针化学定年方法原理及应用.地质论评, 49(3):263-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200303005.htm
      [81] 张文兰, 华仁民, 王汝成, 等, 2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报, 83(5):659-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200905007.htm
      [82] 赵慧博, 刘亚非, 阳珊, 等, 2014.电子探针测年方法应用于晶质铀矿的成因类型探讨.岩矿测试, 33(1):102-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201401018.htm
      [83] 周剑雄, 陈振宇, 芮宗瑶, 2002.独居石的电子探针钍-铀-铅化学测年.岩矿测试, 21(4):241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200204001.htm
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  5360
    • HTML全文浏览量:  1734
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-08-30
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回