Comparison of Hydraulic Tomography and Kriging for Estimating Hydraulic Conductivity of a Heterogeneous Aquifer
-
摘要: 含水层非均质性空间分布特征的识别,是准确模拟地下水流和污染物运移的前提.基于室内非均质含水层砂箱实验,分别利用水力层析法和克立金插值法刻画了非均质含水层渗透系数场.研究结果表明:(1) 水力层析法与克立金法相比,不仅可以更好地刻画非均质含水层渗透系数场,还可以更高精度地预测地下水流过程;(2) 水力层析抽水实验中,通过增加抽水实验组数可以有效地提高水力层析参数反演的精度,但是抽水实验组数增加到一定程度以后,再增加抽水组数不会显著提升参数反演的效果.后续需要进一步研究水力层析抽水实验合适的组数,进一步对抽水井进行优化布设.Abstract: Characterization of the spatial distributions of aquifer heterogeneity is the premise of accurately simulating groundwater flow and contaminant migration. Based on the laboratory sandbox test of a synthetic heterogeneous aquifer, hydraulic tomography and kriging are used to characterize hydraulic conductivity (K) of the heterogeneous aquifer in this study. The results show that:(1) Compared with kriging, hydraulic tomography can get higher precision to characterize the K field and predict groundwater flow process of the heterogeneous aquifer; (2) in the pumping tests of hydraulic tomography, increasing the number of pumping tests can effectively improve accuracy of inversion of hydraulic tomography, however, after reaching a certain degree, increasing the number of pumping test can not significantly improve the effect of the parameter inversion. Subsequently, it is necessary to further research the appropriate number of pumping tests of hydraulic tomography for further optimizing pumping wells.
-
Key words:
- hydraulic tomography /
- kriging /
- heterogeneity /
- hydraulic conductivity /
- hydrogeology
-
表 1 非稳定流达西实验渗透系数计算结果
Table 1. Results of hydraulic conductivity by Darcy experiments of transient flow
非均质含水层 1 2、11 3、9 4 5、8 6、10 7、12 砂粒粒径(mm) 0.40~0.60 <0.17 0.60~0.90 0.15~0.25 <0.15 0.20~0.30 0.30~0.45 K(cm/s) 0.101 0.013 0.351 0.021 0.001 0.041 0.082 表 2 水力层析法和克立金插值法评价结果
Table 2. Evaluation results of hydraulic tomography and kriging
方法 L1 L2 R2 HT-4组抽水实验反演 0.095 0.029 0.980 HT-8组抽水实验反演 0.085 0.023 0.983 克立金插值 0.247 0.153 0.876 -
[1] Berg, S.J., Illman, W.A., 2015.Comparison of Hydraulic Tomography with Traditional Methods at a Highly Heterogeneous Site.Ground Water, 53(1):71-89.doi: 10.1111/gwat.12159 [2] Bohling, G.C., Zhan, X.Y., Butler Jr., J.J., et al., 2002.Steady Shape Analysis of Tomographic Pumping Tests for Characterization of Aquifer Heterogeneities.Water Resources Research, 38(12):60-1-60-15.doi: 10.1029/2001WR001176 [3] Brauchler, R., Hu, R., Hu, L., et al., 2013.Rapid Field Application of Hydraulic Tomography for Resolving Aquifer Heterogeneity in Unconsolidated Sediments.Water Resources Research, 49(4):2013-2024.doi: 10.1002/wrcr.20181 [4] Bruggeman, G.A., 1972.The Reciprocity Principle in Flow through Heterogeneous Porous Media.Developments in Soil Science, 2(2):136-149.doi.org/10.1016/S0166-2481(08)70535-X https://www.researchgate.net/publication/284098599_The_Reciprocity_Principle_in_Flow_Through_Heterogeneous_Porous_Media [5] Cardiff, M., ,Barrash, W., 2011.3-D Transient Hydraulic Tomography in Unconfined Aquifers with Fast Drainage Response.Water Resources Research, 47(12):4154-4158.doi: 10.1029/2010WR010367 [6] Chen, C.X., Lin, M., 1999.Groundwater Dynamics.China University of Geosciences Press, Wuhan (in Chinese). [7] Delhomme, J.P., 1978.Kriging in Hydrosciences.Advances in Water Resources, 1(5):251-266.doi: 10.1016/0309-1708(78)90039-8 [8] Dong, Y.H., Li, G.M., Zhao, C.H., et al., 2009.Characterization of Aquifer Heterogeneity by Using Hydraulic Tomography.Geotechnical Investigation & Surveying, 39(12):58-61, 69 (in Chinese with English abstract). http://citeseerx.ist.psu.edu/viewdoc/bookmark?doi=10.1.1.463.4517&site=connotea [9] Hao, Y.H., Ye, T.Q., Han, B.P., et al., 2008.Imaging Fracture Connectivity Using Hydraulic Tomography.Hydrogeology & Engineering Geology, 35(6):6-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200806007.htm [10] Illman, W.A., 2014.Hydraulic Tomography Offers Improved Imaging of Heterogeneity in Fractured Rocks.Groundwater, 52(5):659-684.doi: 10.1111/gwat.12119 [11] Illman, W.A., Zhu, J.F., Craig, A.J., et al., 2010.Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation:A Controlled Laboratory Sandbox Study.Water Resources Research, 46(4):475-478.doi: 10.1029/2009WR007745 [12] Jiménez, S., Brauchler, R., Bayer, P., 2013.A New Sequential Procedure for Hydraulic Tomographic Inversion.Advances in Water Resources, 62:59-70.doi: 10.1016/j.advwatres.2013.10.002 [13] Liu, A.L., Wang, P.F., Ding, Y.Y., 2012.Introduction to Statistical.Science Press, Beijing (in Chinese). [14] Liu, L.L., Wu, J.F., Wu, J.C., 2009.A Comparative Study of Four Geostatistical Methods for Identifying the Hydraulic Conductivity Fields Based on Test Data.Hydrogeology & Engineering Geology, 36(5):66-71(in Chinese with English abstract). [15] Liu, Y., Shao, J.L., Chen, J.X., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Sience, 40(5):925-932(in Chinese with English abstract). https://www.researchgate.net/publication/282286922_Hydrogeological_parameter_estimations_for_slug_test_in_sloping_confined_aquifer [16] Mao, D.Q., 2013.A Study of Uniqueness Issue and High Resolution Methods in Groundwater Inverse Modeling (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [17] Shi, X.Q., Jiang, B.L., Bian, J.Y., et al., 2009.Geological Analysis for Estimating the Spatial Variability of Hydraulic Conductivity in the Third Confined Aquifer of Shanghai City.Geotechnical Investigation & Surveying, 37(1):36-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCKC200901011.htm [18] Shi, X.Q., Wu, J.C., Wu, J.F., et al., 2012.Effects of the Heterogeneity of Multiple Correlated Random Parameters on Solute Tansport.Advances in Water Science, 23(4):509-515(in Chinese with English abstract). https://www.researchgate.net/publication/286515811_Effects_of_the_heterogeneity_of_multiple_correlated_random_parameters_on_solute_transport [19] Song, G., Wan, L., Hu, F.S., et al., 2005.Indicator Kriging of Spatial Distribution of Permeability of Aquifer.Earth Science Frontiers, 12(Suppl.):146-151(in Chinese with English abstract). http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract2097.shtml [20] Sun, R.L., Yeh, T.C.J., Mao, D.Q., et al., 2013.A Temporal Sampling Strategy for Hydraulic Tomography Analysis.Water Resources Research, 49(7):3881-3896.doi: 10.1002/wrcr.20337 [21] Tang, T., Wu, J.C., Yang, Y., 2011.Analysis on Influence of Aquifer Heterogeneous Simplification to Groundwater Numerical Modeling.Geotechnical Investigation & Surveying, 39(4):34-42(in Chinese with English abstract). [22] Tsang, C.F., 2000.Modeling Groundwater Flow and Mass Transport in Heterogeneous Media:Issues and Challenges.Earth Science, 25(5):443-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005000.htm [23] Wang, K.J., Xiong, X.Y., Ren, Z., 2010.Highly Efficient Mean Filtering Algorithm.Application Research of Computer, 27(2):434-438(in Chinese with English abstract). [24] Wang, R.D., Hu, G.D., 1988.Linear Geostatistics.Geological Publishing House, Beijing (in Chinese). [25] Wu, J.C., 2006.Carry on the Study of Data Fusion for the Aquifer Heterogeneity.Geological Journal of China Universities, 12(2):216-222(in Chinese with English abstract). [26] Yeh.T.C.J., Liu, S.Y., 2000.Hydraulic Tomography:Development of a New Aquifer Test Method.Water Resources Research, 36(8):2095-2105.doi: 10.1029/2000WR900114 [27] Yue, S.M., Yang, Y., Wu, J.F., et al., 2014.The Impact of Hydraulic Conductivity Distribution Mapped by Foure Geological Techniques on the Groundwater Contaminant Movement.Ground Water, 36(4):10-14(in Chinese with English abstract). [28] Zhu, J., Yeh, T.C.J., 2005.Characterization of Aquifer Heterogeneity Using Transient Hydraulic Tomography.Water Resources Research, 41(7):W07028.doi: 10.1029/2004WR003790 [29] 陈崇希, 林敏, 1999.地下水动力学.武汉:中国地质大学出版社. [30] 董艳辉, 李国敏, 赵春虎, 等, 2009.应用水力层析法刻画含水层非均质性.工程勘察, 39 (12): 58-61+69. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200912012.htm [31] 郝永红, 叶天齐, 韩宝平, 等, 2008.运用水力层析法对含水层裂隙带成像.水文地质工程地质, 35(6): 6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200806007.htm [32] 刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5): 925-932. http://www.earth-science.net/WebPage/Article.aspx?id=3084 [33] 刘爱利, 王培法, 丁园圆, 2012.地统计学概论.北京:科学出版社. [34] 刘玲玲, 吴剑锋, 吴吉春, 2009.不同地质统计方法在确定渗透系数场中的对比研究.水文地质工程地质, 36(5): 66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200905017.htm [35] 毛德强, 2013.地下水反演模型解的唯一性和高精度反演方法研究(博士学位论文).北京:中国地质大学. [36] 施小清, 姜蓓蕾, 卞锦宇, 等, 2009.以地质统计方法推估上海第三承压含水层渗透系数的分布.工程勘察, 37(1): 36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200901011.htm [37] 施小清, 吴吉春, 吴剑锋, 等, 2012.多个相关随机参数的空间变异性对溶质运移的影响.水科学进展, 23(4): 509-515. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201204008.htm [38] 宋刚, 万力, 胡伏生, 等, 2005.含水层渗透性空间分布的指示克里格估值.地学前缘, 12(增刊): 146-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100O.htm [39] 唐甜, 吴吉春, 杨运, 2011.含水介质非均质概化对地下水数值模拟的影响分析.工程勘察, 39(4): 34-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201104010.htm [40] Tsang, C.F., 2000.非均质介质中地下水流动与溶质运移模拟:问题与挑战.地球科学, 25(5): 443-450. http://www.earth-science.net/WebPage/Article.aspx?id=967 [41] 吴吉春, 2006.开展含水层非均质性数据融合研究.高校地质学报, 12(2): 216-222. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200602007.htm [42] 王仁铎, 胡光道, 1988.线性地质统计学.北京:地质出版社. [43] 王科俊, 熊新炎, 任桢, 2010.高效均值滤波算法.计算机应用研究, 27(2): 434-438. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201002007.htm [44] 岳松梅, 杨蕴, 吴剑锋, 等, 2014.基于不同地质统计方法的渗透系数场对污染物运移的影响.地下水, 36(4): 10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201404004.htm