Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses
-
摘要: 以我国大陆范围内典型的岩浆热源型水热系统——云南腾冲热海为研究区,在国内首次对热泉中硫代砷化物含量及其地球化学成因进行了分析.研究采用的在野外对富硫化物水样进行快速冷冻处理、而后在实验室进行砷的形态分离和测试的方法明显优于当前通用的水样砷含量及其形态分析的预处理和测试方法.主要原因为后者在采样现场对水样的酸化处理可使样品中三硫代砷酸盐以非定形态硫砷化合物的形式沉淀,且用常规阴离子交换柱在野外无法实现硫代砷酸盐的完全回收及其与砷酸盐的分离.受岩浆流体输入和热储内高温条件下强烈流体-岩石相互作用的控制,热海水热系统排泄的中性-偏碱性热泉中富集硫化物和砷,为热泉中硫代砷化物的形成提供了必要条件.热海热泉中检出的硫代砷化物包括一硫代砷酸盐、二硫代砷酸盐和三硫代砷酸盐,在总砷中所占比例最高分别可达26.7%、43.3%和33.7%.热海地热田的2个子区(硫磺塘和澡塘河) 的热泉沿不同断裂带出露,地热水升流过程中经历的冷却方式也不同,使硫磺塘热泉具有相对较高的总硫化物含量和总砷含量,并导致其中各类硫代砷酸盐具有更高的含量范围.Abstract: Rehai, located in the Tengchong volcanic region of Yunnan Province, is a typical magma-heated hydrothermal system in mainland China. Taking Rehai as the study area, the thioarsenic species in hot springs were quantitatively determined for the first time and their geochemical geneses were identified. The sulfide-rich geothermal water samples were collected and immediately treated via rapid freezing technique in-situ and then detertnine the arsenic species in the lab, which is superior to the traditional methods of pretreatment and measurement of aqueous arsenic. The traditional acidification treatment of arsenic-bearing, sulfide-rich water sample inevitably results in the precipitation of tri-thioarsenate as the form of amorphous S-As compounds. Furthermore, the common use of anion-exchange column is not capable of fully collecting thioarsenic species and separating them from arsenate in-situ. Under the control of magmatic fluid input and intense fluid-rock interactions at high reservoir temperatures, the neutral to slightly alkaline hot springs discharged from the Rehai hydrothermal system are rich in sulfide and arsenic, facilitating the formation of thioarsenic species. Mono-thioarsenate, di-thioarsenate and tri-thioarsenate were detected in the Rehai hot springs with ratios to total arsenic up to 26.7%, 43.3% and 33.7%, respectively. In two sub-hydrothermal areas of Rehai, i.e. the Liuhuangtang area and the Zaotanghe area, the hot springs are distributed along the main N-S stretching faults and the secondary E-W stretching faults, respectively, and therefore the geothermal waters went through different cooling processes (adiabatic cooling and mixing with shallow cold groundwaters, respectively) prior to their discharge to the surface. Thus the hot springs from Liuhuangtang have relatively higher concentrations of sulfide and arsenic as well as various thioarsenic species.
-
Key words:
- hot spring /
- thioarsenic species /
- geochemistry /
- Rehai /
- Tengchong
-
图 1 热海地热田地质简图及采样位置
据廖志杰和赵平(1999)修改
Fig. 1. Simplified geological map of the Rehai geothermal field and sampling locations
表 1 热泉采集情况及现场测试指标
Table 1. Sampling information of the hot springs and their in-situ parameters
样品编号 子区 采样位置 采样温度(℃) pH EC(μs/cm) TDS(mg/L) Eh(Mv) TQL 硫磺塘 听泉楼 81.3 7.96 3 413 1 680 -292 YJQ-L 硫磺塘 眼镜泉-左 91.0 8.88 3 485 1 708 -390 GMQ 硫磺塘 鼓鸣泉 91.5 8.12 3 331 1 632 -371 HTJ-L 硫磺塘 怀胎井-左 91.2 7.40 3 181 1 559 -364 HTJ-R 硫磺塘 怀胎井-右 82.5 6.88 2 450 1 201 -311 DGG 硫磺塘 大滚锅 96.0 7.45 4 042 1 981 -267 XKT-L 澡塘河 霞客亭-左 75.0 7.46 2 050 1 005 -165 XKT-R 澡塘河 霞客亭-右 95.0 7.53 2 137 1 048 -363 ZTH 澡塘河 澡塘河热泉 85.0 7.13 2 239 1 098 -256 HMZP-R 澡塘河 蛤蟆嘴坡-右 91.0 9.96 2 493 1 222 -326 表 2 热泉水化学组成(mg/L)
Table 2. Hydrochemical compositions of the hot springs (mg/L)
样品编号 碱度 SO4 Cl F Na K Ca Mg Li Rb Cs Al Fe B Si 总硫化物 TQL 830 31.1 597.1 14.6 699.0 113.1 0.99 0.07 6.56 1.68 1.02 0.06 0.01 9.08 99.6 2.60 YJQ-L 960 33.1 594.0 15.3 771.0 133.8 1.20 0.10 7.50 1.62 0.83 0.08 0.01 9.73 124.1 5.90 GMQ 848 32.2 593.9 14.5 716.2 127.9 1.28 0.09 6.84 1.95 1.03 0.05 0.02 9.18 113.9 5.20 HTJ-L 795 33.3 560.7 13.8 692.6 124.5 1.02 0.08 6.90 1.50 0.78 0.03 0.02 8.89 102.6 4.20 HTJ-R 640 44.5 464.6 11.5 547.6 100.1 1.42 0.10 5.78 1.27 0.63 0.13 0.02 7.23 99.5 2.10 DGG 1 030 40.3 715.9 19.2 893.4 153.6 0.95 0.13 8.50 1.79 0.90 0.20 0.04 11.3 156.3 0.24 XKT-L 520 64.3 311.2 7.6 430.3 78.3 4.46 0.32 4.40 0.98 0.50 0.11 0.01 5.09 63.4 0.17 XKT-R 600 37.3 335.6 8.0 456.1 81.4 2.19 0.07 4.64 0.98 0.51 0.08 0.02 5.34 66.5 0.71 ZTH 580 43.9 337.6 8.0 449.7 81.9 2.31 0.18 4.61 1.00 0.52 0.11 0.06 5.33 66.3 0.60 HMZP-R 580 52.5 339.5 9.1 469.0 81.0 5.11 0.40 4.67 1.00 0.52 0.10 0.13 5.44 67.0 0.43 表 3 热泉中砷及其不同形态的测试结果(μg/L)
Table 3. Arsenic and its speciation in the hot springs (μg/L)
样品编号 用ICP-MS测定 计算值 用IC-ICP-MS测定 总砷 三价砷 五价砷 各形态砷的总和 亚砷酸盐 砷酸盐 一硫代砷酸盐 二硫代砷酸盐 三硫代砷酸盐 TQL 751 78.8 398.8 1 139.9 81.8 401.3 304.8 169.6 182.5 YJQ-L 897 31.6 574.8 1 348.3 74.6 309.9 247.8 324.1 391.9 GMQ 837 50.7 346.9 842.7 57.4 172.7 151.6 214.3 246.6 HTJ-L 802 127.9 461.4 807.8 91.6 88.8 117.6 349.4 160.5 HTJ-R 593 403.6 151.3 791.8 416.0 44.0 15.9 148.3 167.7 DGG 1 059 940.6 104.6 1 288.6 755.3 84.7 54.0 229.5 165.2 XKT-L 305 21.3 262.0 272.1 31.2 239.8 1.1 0.0 0.0 XKT-R 257 79.4 146.7 272.4 26.9 38.5 17.8 97.3 91.9 ZTH 255 123.2 124.7 283.0 142.7 71.7 24.5 24.6 19.5 HMZP-R 264 153.0 102.1 295.4 155.9 74.9 15.4 27.6 21.6 表 4 热泉中砷及其不同形态的测试结果的相对标准偏差(R.S.D.)
Table 4. Relative standard deviations (R.S.D.) of the analytical results of total arsenic and its species in the hot springs
样品编号 总砷 三价砷 五价砷 亚砷酸盐 砷酸盐 一硫代砷酸盐 二硫代砷酸盐 三硫代砷酸盐 TQL 2.0% 9.9% 3.1% 2.8% 2.1% 1.7% 5.8% 0.3% YJQ-L 2.5% 7.3% 0.8% 3.8% 1.4% 3.8% 2.5% 2.7% GMQ 1.5% 10.2% 4.1% 9.6% 1.3% 4.9% 2.0% 1.7% HTJ-L 0.5% 9.4% 1.0% 2.3% 1.8% 6.4% 1.6% 5.8% HTJ-R 1.5% 2.1% 6.0% 1.1% 5.5% 5.3% 4.2% 3.7% DGG 2.1% 2.5% 7.0% 0.3% 7.3% 2.4% 2.2% 1.5% XKT-L 1.5% 10.0% 2.9% 3.2% 4.5% 12.9% 0.0% 0.0% XKT-R 4.2% 4.4% 6.2% 11.6% 1.5% 5.6% 0.9% 4.0% ZTH 1.9% 5.3% 1.2% 4.8% 4.3% 17.3% 2.9% 6.5% HMZP-R 2.5% 2.9% 7.2% 3.9% 4.5% 2.8% 4.1% 2.0% 表 5 热储温度计算结果(℃)
Table 5. Calculated reservoir temperatures (℃)
样品编号 样品所在子区 采样温度 Na-K温度 K-Mg温度 石英温度 TQL 硫磺塘 81.3 274 230 185 YJQ-L 硫磺塘 91.0 281 231 201 GMQ 硫磺塘 91.5 283 233 195 HTJ-L 硫磺塘 91.2 284 232 187 HTJ-R 硫磺塘 82.5 286 218 185 DGG 硫磺塘 96.0 280 231 219 XKT-L 澡塘河 75.0 285 181 155 XKT-R 澡塘河 95.0 283 216 158 ZTH 澡塘河 85.0 285 195 158 HMZP-R 澡塘河 91.0 280 178 158 注:硫磺塘样品的Na-K温度平均值为281 ℃,K-Mg温度平均值为229 ℃,石英温度平均值为195 ℃;澡塘河样品的Na-K温度平均值为283 ℃,K-Mg温度平均值为192 ℃,石英温度平均值为157 ℃.计算Na-K温度和K-Mg温度的地热温标引自Giggenbach (1988),计算石英温度的地热温标引自Verma and Santoyo (1997). -
[1] Bai, D.H., Liao, Z.J., Zhao, G.Z., et al., 1994.The Inference of Magmatic Heat Source beneath the Rehai (Hot Sea) Field of Tengchong from the Results of Magnetotelluric Sounding.Chinese Science Bulletin, 39(4):344-347 (in Chinese). http://www.oalib.com/paper/1665473 [2] Bostick, B.C., Fendorf, S., Brown, G.E., 2005.In Situ Analysis of Thioarsenite Complexes in Neutral to Alkaline Arsenic Sulphide Solutions.Mineralogical Magazine, 69(5):781-795.doi: 10.1180/0026461056950288 [3] Burton, E.D., Bush, R.T., Sullivan, L.A., et al., 2008.Mobility of Arsenic and Selected Metals during Re-Flooding of Iron-and Organic-Rich Acid-Sulfate Soil.Chemical Geology, 253(1-2):64-73.doi: 10.1016/j.chemgeo.2008.04.006 [4] Couture, R.M., Gobeil, C., Tessier, A., 2010.Arsenic, Iron and Sulfur Co-Diagenesis in Lake Sediments.Geochimica et Cosmochimica Acta, 74(4):1238-1255.doi: 10.1016/j.gca.2009.11.028 [5] Du, J.G., Liu, C.Q., Fu, B.H., et al., 2005.Variations of Geothermometry and Chemical-Isotopic Compositions of Hot Spring Fluids in the Rehai Geothermal Field, Southwestern China.Journal of Volcanology and Geothermal Research, 142(3-4):243-261.doi: 10.1016/j.jvolgeores.2004.11.009 [6] Einaudi, M.T., Hedenquist, J.W., Inan, E.E., 2003.Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems:Transitions from Porphyry to Epithermal Environments.In:Simmons, S.F., Graham, I., eds., Volcanic, Geothermal, and Ore-Forming Fluids:Rulers and Witnesses of Processes within the Earth.Society of Economic Geology Special Publication, 10:285-313. [7] Giggenbach, W.F., 1988.Geothermal Solute Equilibria-Derivation of Na-K-Mg-Ca Geoindicators.Geochimica et Cosmochimica Acta, 52(12):2749-2765.doi: 10.1016/0016-7037(88)90143-3 [8] Guo, H.M., Liu, C., Lu, H., et al., 2013.Pathways of Coupled Arsenic and Iron Cycling in High Arsenic Groundwater of the Hetao Basin, Inner Mongolia, China:An Iron Isotope Approach.Geochimica et Cosmochimica Acta, 112:130-145.doi: 10.1016/j.gca.2013.02.031 [9] Holland, H.D., 1965.Some Applications of Thermochemical Data to Problems of Ore Deposits.Ⅱ.Mineral Assemblages and the Composition of Ore-Forming Fluids.Economic Geology, 60(1):1101-1166.doi: 10.2113/gsecongeo.60.6.1101 [10] Guo, Q.H., Liu, M.L., Li, J.X., et al., 2014.Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China):Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10):1-12.doi: 10.1007/s00445-014-0868-9 [11] Guo, Q.H., Wang, Y.X., 2012.Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China.Journal of Volcanology and Geothermal Research, 215-216:61-73.doi: 10.1016/j.jvolgeores.2011.12.003 [12] Helz, G.R., Tossell, J.A., 2008.Thermodynamic Model for Arsenic Speciation in Sulfidic Waters:A Novel Use of ab Initio Computations.Geochimica et Cosmochimica Acta, 72(18):4457-4468.doi: 10.1016/j.gca.2008.06.018 [13] Keller, N.S., Stefánsson, A., Sigfússon, B., 2014.Arsenic Speciation in Natural Sulfidic Geothermal Waters.Geochimica et Cosmochimica Acta, 142:15-26.doi: 10.1016/j.gca.2014.08.007 [14] la Force, M.J., Hansel, C.M., Fendorf, S., 2000.Arsenic Speciation, Seasonal Transformations, and Co-Distribution with Iron in a Mine Waste-Influenced Palustrine Emergent Wetland.Environmental Science & Technology, 34(18):3937-3943.doi: 10.1021/es0010150 [15] Li, J.X., Guo, Q.H., Wang, Y.X., 2015.Evaluation of Temperature of Parent Geothermal Fluid and its Cooling Processes during Ascent to Surface:A Case Study in Rehai Geothermal Field, Tengchong.Earth Science, 40(9):1576-1584(in Chinese with English abstract). https://www.researchgate.net/publication/283872996_Evaluation_of_temperature_of_parent_geothermal_fluid_and_its_cooling_processes_during_ascent_to_surface_A_case_study_in_Rehai_geothermal_field_Tengchong [16] Liao, Z.J., Shen, M.Z., Guo, G.Y., 1991.Characteristics of the Geothermal Reservoir in the Rehai (Hot Sea) Field in Tengchong County, Yunnan Province.Acta Geological Sinica, 65(1):73-85(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199101006.htm [17] Liao, Z.J., Ying, Z.W., Jia, X.Y., et al., 1997.Conceptual Model of the Rehai (Hot Sea) Geothermal Field in Tengchong, Yunnan Province, China.Geological Journal of China Universities, 3(2):212-221 (in Chinese with English abstract). [18] Liao, Z.J., Zhao, P., 1999.Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories.Science Press, Beijing (in Chinese with English abstract). [19] Lin, N.F., 1991.Environmental Geochemistry of Medicine.Jilin Science and Technology Press, Changchun (in Chinese with English abstract). [20] Liu, M.L., Guo, Q.H., Zhang, X.B., et al., 2015.Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China.Journal of Earth Science, 26(1):140-148.doi: 10.1007/s12583-015-0600-5 [21] Lou, H., Wang, C.Y., Huang, F.G., et al., 2002.Three-Demensional Seismic Velocity Tomography of the Upper Crust in Tengchong Volcanic Area, Yunnan Province.Acta Seismologica Sinica, 24(3):243-251 (in Chinese with English abstract). https://www.researchgate.net/publication/225513233_Three-dimensional_seismic_velocity_tomography_of_the_upper_crust_in_Tengchong_volcanic_area_Yunnan_Province [22] Planer-Friedrich, B., Franke, D., Merkel, B., et al., 2008.Acute Toxicity of Thioarsenates to Vibrio Fischeri.Environmental Toxicology and Chemistry, 27(10):2027-2035.doi: 10.1897/07-633.1 [23] Planer-Friedrich, B., London, J., McCleskey, R.B., et al., 2007.Thioarsenates in Geothermal Waters of Yellowstone National Park:Determination, Preservation, and Geochemical Importance.Environmental Science & Technology, 41(15):5245-5251.doi: 10.1021/es070273v [24] Planer-Friedrich, B., Wallschläger, D., 2009.A Critical Investigation of Hydride Generation-Based Arsenic Speciation in Sulfidic Waters.Environmental Science & Technology, 43(13):5007-5013.doi: 10.1021/es900111z [25] Rader, K.J., Dombrowski, P.M., Farley, K.J., et al., 2004.Effect of Thioarsenite Formation on Arsenic (Ⅲ) Toxicity.Environmental Toxicology and Chemistry, 23(7):1649-1654.doi: 10.1897/03-443 [26] Root, R.A., Vlassopoulos, D., Rivera, N.A., et al., 2009.Speciation and Natural Attenuation of Arsenic and Iron in a Tidally Influenced Shallow Aquifer.Geochimica et Cosmochimica Acta, 73(19):5528-5553.doi: 10.1016/j.gca.2009.06.025 [27] Shangguan, Z.G., 2000.Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong.Acta Petrologica Sinica, 16(1):83-90 (in Chinese with English abstract). https://www.researchgate.net/publication/279888338_Structure_of_geothermal_reservoirs_and_the_temperature_of_mantle-derived_magma_hot_source_in_the_Rehai_area_Tengchong [28] Shangguan, Z.G., Bai, C.H., Sun, M.L., 2000.Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China.Science in China (Series D), 30(4):407-414 (in Chinese). doi: 10.1007%2FBF02878142.pdf [29] Shangguan, Z.G., Huo, W.G., 2001.The δD of Releasing H2 from Rehai Geothermal Field, Tengchong County, Yunnan Province, China.Chinese Science Bulletin, 46(15):1316-1320(in Chinese). [30] Tong, W., Liao, Z.J., Liu, S.B., et al., 2000.Thermal Springs in Tibet.Science Press, Beijing (in Chinese). [31] Tong, W., Zhang, M.T., 1989.Geothermics in Tengchong.Science Press, Beijing (in Chinese). [32] Tong, W., Zhang, M.T., 1994.Thermal Springs in Hengduan Mountains areas.Science Press, Beijing (in Chinese). [33] Verma, S.P., Santoyo, E., 1997.New Improved Equations for, and SiO2 Geothermometers by Outlier Detection and Rejection.Journal of Volcanology and Geothermal Research, 79(1-2):9-23.doi: 10.1016/s0377-0273(97)00024-3 [34] Webster, J.G., Nordstrom, D.K., 2003.Geothermal Arsenic.In:Welch, A.H., Stollenwerk, K.G., eds., Arsenic in Ground Water, Springer-Velag, Berlin.doi: 10.1007/0-306-47956-7_4 [35] Zhang, G.P., Liu, C.Q., Liu, H., et al., 2008.Geochemistry of the Rehai and Ruidian Geothermal Waters, Yunnan Province, China.Geothermics, 37(1):73-83.doi: 10.1016/j.geothermics.2007.09.002 [36] Zhao, C.P., 2008.Mantle-Derived Helium Release Characteristics and Deep Magma Charmber Activities of Present-Day in the Tengchong Volcanic Area (Dissertation).Institute of Geology, China Earthquake Administration, Beijing (in Chinese). [37] Zhao, C.P., Ran, H., Chen, K.H., 2006.Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient.Acta Petrologica Sinica, 22(6):1517-1528 (in Chinese with English abstract). https://www.researchgate.net/publication/279712320_Present-day_magma_chambers_in_Tengchong_volcano_area_inferred_relative_geothermal_gradient [38] Zhao, P., Liao, Z.J., Guo, G.Y., et al., 1995.Quantitative Analysis of the Gaseous Component from Rehai Geothermal Field in Tengchong and the Significance.Chinese Science Bulletin, 40(24):2257-2260 (in Chinese). [39] Zhu, M., 1992.Evidence of Ancient Hydrothermal Activity and the Relation of Gold Mineralization in the Rehai Geothermal System, Yunnan, China.7th International Symposium on Water-Rock Interaction, Park City. [40] Zhu, M.X., 1985.The Clay Minerals among the Hydrothermal Alteration Rocks from Rehai Geothermal Field, Tengchong County, Yunnan Province.Science in China (Series B), (12):1130-1137 (in Chinese). [41] 白登海, 廖志杰, 赵国泽, 等, 1994.从MT探测结果推论腾冲热海热田的岩浆热源.科学通报, 39(4): 344-347. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm [42] 李洁祥, 郭清海, 王焰新, 2015.高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例.地球科学, 40(9): 1576-1584. http://www.earth-science.net/WebPage/Article.aspx?id=3161 [43] 廖志杰, 沈敏子, 过帼颖, 1991.云南腾冲热海热田的热储特性.地质学报, 65(1): 73-85. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199101006.htm [44] 廖志杰, 尹正武, 贾希义, 等, 1997.腾冲热海地热田的概念模型.高校地质学报, 3(2): 212-221. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX702.008.htm [45] 廖志杰, 赵平, 1999.滇藏地热带:地热资源和典型地热系统.北京:科学出版社. [46] 林年丰, 1991.医学环境地球化学.长春:吉林科技出版社. [47] 楼海, 王椿镛, 皇甫岗, 等, 2002.云南腾冲火山区上部地壳三维地震速度层析成像.地震学报, 24(3): 243-251. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200110001235.htm [48] 上官志冠, 2000.腾冲热海地热田热储结构与岩浆热源的温度.岩石学报, 16(1): 83-90. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001008.htm [49] 上官志冠, 霍卫国, 2001.腾冲热海地热区逸出H2的δD值及其成因.科学通报, 46(15): 1316-1320. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200115020.htm [50] 上官志冠, 白春华, 孙明良, 2000.腾冲热海地区现代幔源岩浆气体释放特征.中国科学(D辑), 30(4): 407-414. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm [51] 佟伟, 廖志杰, 刘时彬, 等, 2000.西藏温泉志.北京:科学出版社. [52] 佟伟, 章铭陶, 1989.腾冲地热.北京:科学出版社. [53] 佟伟, 章铭陶, 1994.横断山区温泉志.北京:科学出版社. [54] 赵慈平, 2008.腾冲火山区现代幔源氦释放特征及深部岩浆活动研究(博士学位论文).北京:中国地震局地质研究所. http://cn.bing.com/academic/profile?id=34d8284643b8f30021f10be1165da757&encoded=0&v=paper_preview&mkt=zh-cn [55] 赵慈平, 冉华, 陈坤华, 2006.由相对地热梯度推断的腾冲火山区现存岩浆囊.岩石学报, 22(6): 1517-1528. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606010.htm [56] 赵平, 廖志杰, 过帼颖, 等, 1995.腾冲热海地热田气相组分的定量分析及其意义.科学通报, 40(24): 2257-2260. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199524013.htm [57] 朱梅湘, 1985.云南省腾冲县热海热田水热蚀变岩石中的粘土矿物.中国科学(B辑), (12): 1130-1137. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198512008.htm