• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例

    洪汉烈 方谦 王朝文 宫旎娜 赵璐璐

    洪汉烈, 方谦, 王朝文, 宫旎娜, 赵璐璐, 2017. 岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例. 地球科学, 42(2): 161-172. doi: 10.3799/dqkx.2017.013
    引用本文: 洪汉烈, 方谦, 王朝文, 宫旎娜, 赵璐璐, 2017. 岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例. 地球科学, 42(2): 161-172. doi: 10.3799/dqkx.2017.013
    Hong Hanlie, Fang Qian, Wang Chaowen, Gong Nina, Zhao Lulu, 2017. Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province. Earth Science, 42(2): 161-172. doi: 10.3799/dqkx.2017.013
    Citation: Hong Hanlie, Fang Qian, Wang Chaowen, Gong Nina, Zhao Lulu, 2017. Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province. Earth Science, 42(2): 161-172. doi: 10.3799/dqkx.2017.013

    岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例

    doi: 10.3799/dqkx.2017.013
    基金项目: 

    国家自然科学基金项目 41272053

    国家自然科学基金项目 41472041

    详细信息
      作者简介:

      洪汉烈(1964-),男,教授,博士生导师,主要从事粘土矿物学研究.ORCID:0000-0003-3569-448X.E-mail:honghl8311@aliyun.com

    • 中图分类号: P575

    Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province

    • 摘要: 目前对于粘土层中伊蒙混层矿物的堆垛结构、单元层含量与岩浆母质及环境条件关系的了解等,仍然十分匮乏.一定沉积环境下火山灰层中粘土矿物组合、以及伊蒙混层堆垛方式精细结构特征,可能记录了沉积(包括成岩作用) 环境对火山物质蚀变产物的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、元素地球化学分析、氧同位素分析方法等方法,对贵州新民深海相二叠系-三叠系(P-T) 界线附近蚀变火山灰层的地球化学特征、粘土矿物精细结构特征等进行了深入研究.结果表明,4个火山灰粘土层均含有2种具有R3结构、不同混层比的伊蒙混层矿物相,且均出现粘土矿物集合体取代原先的火山碎屑颗粒或在颗粒表面生长的现象,粘土矿物形成于沉积-成岩阶段因而其泥质结构被保留;样品XM-5-1和XM-5-2的Fe3+原子数分别为0.16和0.17个且具有明显Eu负异常和较低的K2O含量,而XM-5-3和XM-5-4的Fe3+原子数均为0.14个,说明相对于前2个粘土层,后2个的岩浆母质更加偏向酸性而表现为成岩蚀变程度更强.粘土矿物的氧同位素组成为17.3‰~18.1‰,与常温下蒙脱石与海水的平衡数值相近,表明粘土矿物化学组成与海底成岩蚀变环境有关,而不同火山灰层的粘土矿物学特征则主要取决于岩浆岩母质以及成岩蚀变强度.

       

    • 图  1  研究区地质构造简图

      图a据中国地图,中国地图出版社,2013

      Fig.  1.  Schematic geological map of study area

      图  2  新民剖面地层及采样位置描述

      Fig.  2.  Stratigraphic descriptions and sampling horizons of Xinmin section

      图  3  新民剖面火山灰粘土层X射线衍射图

      Fig.  3.  XRD patterns of volcanic ash beds from Xinmin section

      图  4  新民剖面<2 μm颗粒大小的粘土矿物混层相XRD拟合图

      Fig.  4.  Experimental and calculated XRD patterns of < 2 μm clay fractions from Xinmin ashes

      图  5  新民火山灰层粘土矿物代表性(样品XM-5-2) 扫描电镜照片

      Fig.  5.  Representative SEM photographs of clay minerals from Xinmin volcanic ashes (XM-5-2)

      图  6  新民剖面火山灰粘土层化学组成的K2O/Al2O3-Na2O/Al2O3关系

      Fig.  6.  The K2O/Al2O3-Na2O/Al2O3 relations of Xinmin volcanic ash beds

      图  7  新民剖面火山灰粘土层微量元素蛛网图

      Fig.  7.  Primitive mantle and UCC normalized trace element spider diagrams of Xinmin ashes

      图  8  新民剖面火山灰粘土层稀土元素蛛网图

      Fig.  8.  Chondrite-normalized REE distribution pattern of Xinmin volcanic ashes

      表  1  新民剖面火山灰粘土矿物化学组成(%) 及晶体化学式

      Table  1.   Chemical compositions (%) of Xinmin clay minerals and their structural formulae

      样品 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI
      XM-5-1 51.95 0.50 25.06 3.10 0.04 3.39 0.56 0.45 6.24 0.19 8.93
      XM-5-2 52.35 0.56 24.87 3.36 0.03 3.34 0.42 0.39 6.40 0.10 8.54
      XM-5-3 52.50 0.44 25.30 2.81 0.01 3.36 0.26 0.11 6.82 0.09 8.75
      XM-5-4 52.38 1.36 24.86 2.80 0.09 3.44 0.08 0.00 6.59 0.03 8.74
      UCC* 65.89 0.50 15.17 4.49 0.07 2.20 4.19 3.89 3.39 0.20
      PAAS* 62.80 1.00 18.90 6.50 0.11 2.20 1.30 1.20 3.70 0.16
      样品 晶体化学式
      XM-5-1 (K0.54Na0.06Ca0.04Mg0.03)(Al1.50Fe0.16Mg0.31Ti0.03)2(Si3.51Al0.49)4O10(OH)2
      XM-5-2 (K0.55Na0.05Ca0.03Mg0.05)(Al1.50Fe0.17Mg0.29Ti0.04)2(Si3.53Al0.47)4O10(OH)2
      XM-5-3 (K0.58Na0.01Ca0.02Mg0.04)(Al1.53Fe0.14Mg0.30Ti0.03)2(Si3.53Al0.47)4O10(OH)2
      XM-5-4 (K0.55Ca0.01Mg0.06)(Al1.55Fe0.14Mg0.29Ti0.02)2(Si3.56Al0.44)4O10(OH)2
      注:UCC*和PAAS*Taylor and McLennan (1985).
      下载: 导出CSV

      表  2  新民剖面火山灰层微量元素和稀土元素含量(10-6)

      Table  2.   Trace element and rare earth element compositions of Xinmin volcanic ashes (10-6)

      样品 XM-5-1 XM-5-2 XM-5-3 XM-5-4 UCC* PAAS*
      Li 15.4 11.4 9.6 11.5 20.0 75.0
      Be 5.02 3.83 3.64 4.08 3.00
      Sc 14.9 18.4 19.1 35.2 13.6 16.0
      V 44.8 19.3 16.3 107.0 107.0 150.0
      Cr 6.86 44.30 2.18 6.01 85.00 110.00
      Co 13.80 2.09 4.47 23.10 17.00 23.00
      Ni 50.4 22.8 11.8 15.6 44.0 55.0
      Cu 36.0 14.0 14.3 23.7 25.0 50.0
      Zn 103.0 77.6 48.8 42.3 71.0 85.0
      Ga 29.2 31.7 30.0 28.8 17.0 20.0
      Rb 264 294 293 278 112 160
      Sr 49.5 40.1 25.9 29.0 350.0 200.0
      Zr 406 483 567 713 190 27
      Nb 21.0 30.8 19.0 29.8 12.0 210.0
      Cs 7.84 9.49 9.49 11.50 4.60 19.00
      Ba 256 240 230 284 550 15
      Hf 14.2 14.7 16.4 19.7 5.8 210.0
      Ta 2.96 2.66 2.61 2.57 1.00
      Pb 48.9 31.0 19.6 18.9 17.0 20.0
      Th 63.7 61.2 52.6 49.2 10.7 14.6
      U 12.40 11.80 8.25 3.83 2.80 3.10
      La 57.3 105.0 62.8 68.0 30.0 38.2
      Ce 113 214 157 211 64 80
      Pr 15.0 28.5 20.8 25.6 7.1 8.8
      Nd 55.6 103.0 73.9 89.9 26.0 33.9
      Sm 10.8 18.7 13.0 14.1 4.50 5.55
      Eu 1.59 2.25 1.93 2.25 0.88 1.08
      Gd 9.92 13.40 9.61 9.08 3.80 4.66
      Tb 1.75 2.09 1.63 1.54 0.64 0.77
      Dy 10.8 12.6 11.0 11.2 3.50 4.68
      Ho 2.08 2.46 2.42 2.60 0.80 0.99
      Er 6.10 7.19 7.76 8.43 2.30 2.85
      Tm 0.88 1.07 1.18 1.35 0.33 0.41
      Yb 5.65 6.78 7.46 9.06 2.20 2.82
      Lu 0.84 0.95 1.10 1.36 0.32 0.43
      Y 63.8 63.5 67.9 74.7 22.0 27.0
      ΣREE 291.52 518.52 371.54 455.64
      ΣLREE 253.49 471.92 329.34 411.09
      ΣHREE 38.03 46.59 42.20 44.55
      ΣLREE/ΣHREE 6.67 10.13 7.80 9.23
      注:UCC*和PAAS*Taylor and McLennan (1985).
      下载: 导出CSV

      表  3  新民火山灰粘土层氧同位素组成

      Table  3.   O isotope compositions of Xinmin ashes

      样品 矿物名称 δ18OV-SMOW(‰) 沉积相
      XM-5-1 <2 μm伊蒙混层粘土矿物 17.8 深海相
      XM-5-2 <2 μm伊蒙混层粘土矿物 17.3 深海相
      XM-5-3 <2 μm伊蒙混层粘土矿物 17.5 深海相
      XM-5-4 <2 μm伊蒙混层粘土矿物 18.1 深海相
      下载: 导出CSV
    • [1] Agha, M.A., Ferrell, R.E., Hart, G.F., et al., 2013.Mineralogy of Egyptian Bentonitic Clays Ⅱ:Geologic Origin.Clays and Clay Minerals, 61(6):551-565.doi: 10.1346/ccmn.2013.0610608
      [2] Cadrin, A.A.J., Kyser, T.K., Caldwell, W.G.E., et al., 1996.Isotopic and Chemical Compositions of Bentonites as Paleoenvironmental Indicators of the Cretaceous Western Interior Seaway.Palaeogeography, Palaeoclimatology, Palaeoecology, 119(3-4):301-320.doi: 10.1016/0031-0182(95)00015-1
      [3] Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5(6):375-383.doi: 10.1038/ngeo1475
      [4] Christidis, G.E., 1998.Comparative Study of the Mobility of Major and Trace Elements during Alteration of an Andesite and a Rhyolite to Bentonite, in the Islands of Milos and Kimolos, Aegean, Greece.Clays and Clay Minerals, 46(4):379-399.doi: 10.1346/ccmn.1998.0460403
      [5] Christidis, G.E., Huff, W.D., 2009.Geological Aspects and Genesis of Bentonites.Elements, 5(2):93-98.doi: 10.2113/gselements.5.2.93
      [6] Deconinck, J.F., Crasquin, S., Bruneau, L., et al., 2014.Diagenesis of Clay Minerals and K-Bentonites in Late Permian/Early Triassic Sediments of the Sichuan Basin (Chaotian Section, Central China).Journal of Asian Earth Sciences, 81:28-37.doi: 10.1016/j.jseaes.2013.11.018
      [7] Eberl, D.D., Blum, A.E., Serravezza, M., 2011.Anatomy of a Metabentonite:Nucleation and Growth of Illite Crystals and their Coalescence into Mixed-Layer Illite/smectite.American Mineralogist, 96(4):586-593.doi: 10.2138/am.2011.3682
      [8] Fang, Q., Hong, H.L., Chen, Z.Q., et al., 2016.Microbial Proliferation Coinciding with Volcanism during the Permian-Triassic Transition:New, Direct Evidence from Volcanic Ashes, South China.Palaeogeography, Palaeoclimatology, Palaeoecology.doi:10.1016/j.palaeo.2016.06.026
      [9] Ferrage, E., Vidal, O., Mosser-Ruck, R., et al., 2010.A Reinvestigation of Smectite Illitization in Experimental Hydrothermal Conditions:Results from X-Ray Diffraction and Transmission Electron Microscopy.American Mineralogist, 96(1):207-223.doi: 10.2138/am.2011.3587
      [10] Gao, Q.L., Chen, Z.Q., Zhang, N., et al., 2015.Ages, Trace Elements and Hf-Isotopic Compositions of Zircons from Claystones around the Permian-Triassic Boundary in the Zunyi Section, South China:Implications for Nature and Tectonic Setting of the Volcanism.Journal of Earth Science, 26(6):872-882.doi: 10.1007/s12583-015-0589-9
      [11] Gao, W.P., Hong, H.L., Yin, K., et al., 2013.Fine Structure and Their Genetic Significance of Clay Minerals from the Permian-Triassic Boundary, Huaxi Area, Guizhou Province.Earth Science, 38(6):37-46 (in Chinese with English abstract). https://www.researchgate.net/publication/287549463_Fine_structure_and_their_genetic_significance_of_clay_minerals_from_the_Permian-Triassic_boundary_Huaxi_Area_Guizhou_Province
      [12] Grim, R.E., Güven, N., 1978.Bentonites:Geology, Mineralogy, Properties and Uses.Elsevier, Amsterdam, 256.
      [13] Hong, H.L., Churchman, G.J., Yin, K., et al., 2014.Randomly Interstratified Illite-Vermiculite from Weathering of Illite in Red Earth Sediments in Xuancheng, Southeastern China.Geoderma, 214-215:42-49.doi:10.1016/j.geoderma.2013.10.004
      [14] Hong, H.L., Xie, S.C., Lai, X.L., 2011.Volcanism in Association with the Prelude to Mass Extinction and Environment Change across the Permian-Triassic Boundary (PTB), Southern China.Clays and Clay Minerals, 59(5):478-489.doi: 10.1346/ccmn.2011.0590505
      [15] Hu, Z.W., Huang, S.J., Gao, X.Y., et al., 2008.Clay Minerals in the Clay beds near the Permian/Triassic Boundary at Huaying Mountain, Eastern Sichuan, China:Their Types and Origin.Geological Bulletin of China, 27(3):374-379(in Chinese with English abstract). https://www.researchgate.net/publication/286878321_Clay_minerals_in_the_clay_beds_near_the_PermianTriassic_boundary_at_Huaying_Mountain_eastern_Sichuan_China_their_types_and_origin
      [16] Huff, W.D., 2016.K-Bentonites:A Review.American Mineralogist, 101(1):43-70.doi: 10.2138/am-2016-5339
      [17] Kamo, S.L., Czamanske, G.K., Amelin, Y., et al., 2003.Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian-Triassic Boundary and Mass Extinction at 251 Ma.Earth and Planetary Science Letters, 214(1-2):75-91.doi: 10.1016/s0012-821x(03)00347-9
      [18] Korte, C., Kozur, H.W., 2010.Carbon-Isotope Stratigraphy across the Permian-Triassic Boundary:A Review.Journal of Asian Earth Sciences, 39(4):215-235.doi: 10.1016/j.jseaes.2010.01.005
      [19] Lanson, B., Sakharov, B.A., Claret, F., et al., 2009.Diagenetic Smectite-To-Illite Transition in Clay-Rich Sediments:A Reappraisal of X-Ray Diffraction Results Using the Multi-Specimen Method.American Journal of Science, 309(6):476-516.doi: 10.2475/06.2009.03
      [20] Liao, Z.W., Hu, W.X., Wang, X.L., et al., 2016.Volcanic Origin of Clay Stone near the Permian-Triassic Boundary in the Deep Water Environment of the Lower Yangtze Region and Its Implications for LPME.Acta Geologica Sinica, 90(4):785-800(in Chinese with English abstract).
      [21] Libbey, R.B., Longstaffe, F.J., Flemming, R.L., 2013.Clay Mineralogy, Oxygen Isotope Geochemistry, and Water/Rock Ratio Estimates, Te Mihi Area, Wairakei Geothermal Field, New Zealand.Clays and Clay Minerals, 61(3):204-217.doi: 10.1346/ccmn.2013.0610304
      [22] Lu, Q., Lei, X.R., Liu, H.F., 1991.Genetic Types and Crystallochemical Classification of Irregular Illite/Smectite Interstratified Clay Minerals.Acta Mineralogica Sinica, 11(2):97-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199102000.htm
      [23] MacRae, N.D., Nesbitt, H.W., Kronberg, B.I., 1992.Development of a Positive Eu Anomaly during Diagenesis.Earth and Planetary Science Letters, 109(3-4):585-591.doi: 10.1016/0012-821x(92)90116-d
      [24] McCarty, D.K., Sakharov, B.A., Drits, V.A., 2009.New Insights into Smectite Illitization:A Zoned K-Bentonite Revisited.American Mineralogist, 94(11-12):1653-1671.doi: 10.2138/am.2009.3260
      [25] Middleton, A.W., Uysal, I.T., Golding, S.D., 2015.Chemical and Mineralogical Characterization of Illite-Smectite:Implications for Episodic Tectonism and Associated Fluid Flow, Central Australia.Geochimica et Cosmochimica Acta, 148:284-303.doi: 10.1016/j.gca.2014.09.035
      [26] Reynolds, Jr.R.C., Hower, J., 1970.The Nature of Interlayering in Mixed-Layer Illite-Montmorillonites.Clays and Clay Minerals, 18(1):25-36.doi: 10.1346/ccmn.1970.0180104
      [27] Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334(60-61):1367-1372.doi: 10.1126/science.1213454
      [28] Sheppard, S.M.F., Gilg, H.A., 1996.Stable Isotope Geochemistry of Clay Minerals.Clay Minerals, 31(1):1-24.doi: 10.1180/claymin.1996.031.1.01
      [29] Taylor, S.R., McLennan, S.C., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, Oxford, 312.
      [30] Tian, L., Tong, J.N., Bottjer, D., et al., 2015.Rapid Carbonate Depositional Changes Following the Permian-Triassic Mass Extinction:Sedimentary Evidence from South China.Journal of Earth Science, 26(2):166-180.doi: 10.1007/s12583-015-0523-1
      [31] Uysal, I.T., Mutlu, H., Altunel, E., et al, 2006.Clay Mineralogical and Isotopic (K-Ar, δ18O, δD) Constraints on the Evolution of the North Anatolian Fault Zone, Turkey.Earth and Planetary Science Letters, 243(1):181-194.
      [32] Xie, S.C., Pancost, R.D., Wang, Y.B., et al., 2010.Cyanobacterial Blooms Tied to Volcanism during the 5 m.y.Permo-Triassic Biotic Crisis.Geology, 38(5):447-450.doi: 10.1130/g30769.1
      [33] Yan, C.B., Jiang, H.S., Lai, X.L., et al., 2015.The Relationship between the "Green-BeanRock" Layers and Conodont Chiosella timorensisand Implications on Defining the Early-Middle Triassic Boundary in the Nanpanjiang Basin, South China.Journal of Earth Science, 26(2):236-245.doi: 10.1007/s12583-015-0535-x
      [34] Yin, H.F., Jiang, H.S., Xia, W.C., et al., 2014.The End-Permian Regression in South China and its Implication on Mass Extinction.Earth-Science Reviews, 137:19-33.doi: 10.1016/j.earscirev.2013.06.003
      [35] Zhang, N., Jiang, H.S., Zhong, W.L., et al., 2014.Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China.Journal of Earth Science, 25(5):779-786.doi: 10.1007/s12583-014-0472-0
      [36] Zhang, S.X., Feng, Q.L, Gu, S.Z., et al., 2006.Clay Stone around Deep Water Permian-Triassic Boundary from Guizhou and Guangxi Region.Geological Science and Technology Information, 25(1):9-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200601001.htm
      [37] Zhang, S.X., Yu, J.X., Yang, P.Q., et al., 2004.Study on Clayrocks of the Neritic, Littoral and Marine-Terrigenous Facies across the Permian-Triassic Boundary in the Eastern Yunnan and Weastern Guizhou, South China.Journal of Mineralogy and Petrology, 24(4):81-86(in Chinese with English abstract). https://www.researchgate.net/publication/293253054_Study_on_clayrocks_of_the_neritic_littoral_and_marine-terrigenous_facies_across_the_Permian-Triassic_boundary_in_the_Eastern_Yunnan_and_Western_Guizhou_South_China
      [38] Zhao, T.Y., Feng, Q.L., Liu, R., et al., 2013.Volcanics Characteristics and LA-ICP-MS Zircon U-Pb Ages of Clay Rocks along Dongpan Section of Guangxi.Geological Bulletin of China, 32(9):1402-1409(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201309009.htm
      [39] 高文鹏, 洪汉烈, 殷科, 等, 2013.贵州花溪P-T界线附近粘土矿物结构及成因意义.地球科学, 38(6): 37-46. http://www.earth-science.net/WebPage/Article.aspx?id=2795
      [40] 胡作维, 黄思静, 郜晓勇, 等, 2008.川东华蓥山二叠系/三叠系界线附近粘土层中粘土矿物的类型及成因.地质通报, 27(3): 374-379. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200803011.htm
      [41] 廖志伟, 胡文瑄, 王小林, 等, 2016.下扬子PTB界线深水相区粘土岩的火山成因研究及其对LPME的指示意义.地质学报, 90(4): 785-800. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604014.htm
      [42] 陆琦, 雷新荣, 刘惠芳, 1991.不规则伊/蒙混层粘土矿物成因类型及晶体化学分类.矿物学报, 11(2): 97-104. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199102000.htm
      [43] 张素新, 冯庆来, 顾松竹, 等, 2006.黔桂地区深水相二叠系-三叠系界线附近黏土岩研究.地质科技情报, 25(1): 9-13. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200601001.htm
      [44] 张素新, 喻建新, 杨逢清, 等, 2004.黔西滇东地区浅海、滨海及海陆交互相二叠系-三叠系界线附近粘土岩研究.矿物岩石, 24(4): 81-86. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200404015.htm
      [45] 赵天宇, 冯庆来, 刘嵘, 等, 2013.广西东攀剖面粘土岩的火山岩特征及LA-ICP-MS锆石U-Pb年龄.地质通报, 32(9): 1402-1409. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201309009.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  4326
    • HTML全文浏览量:  1901
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-15
    • 刊出日期:  2017-02-15

    目录

      /

      返回文章
      返回