Overpressure Formation Mechanism in Xihu Depression of the East China Sea Shelf Basin
-
摘要: 西湖凹陷超压普遍发育,成因机制复杂,目前研究未见深入.从产生超压的主要因素入手,采用定性分析与定量计算相结合的方法,基于超压层段的测井响应特征、速度与垂直有效应力、沉积速率与孔隙度演化史、压力演化史与生烃强度史耦合的初步判断,再通过定量的计算综合分析了西湖凹陷超压的成因机制.研究表明:不均衡压实作用和生烃作用是西湖凹陷超压形成的主要机制,但在不同的区带有一定的差异.其中保俶斜坡带以不均衡压实作用为主,经过估算生烃作用贡献率为23%~57%,平均达到41%;而在中央背斜带超压形成机制有两种模式,大部分是以生烃作用为主的增压模式,贡献率为51%~78%;个别井位研究显示以不均衡压实作用为主的增压模式.在三潭深凹超压的形成中,不均衡压实作用与生烃作用相当,生烃作用增压稍强于不均衡压实作用增压,生烃作用的平均贡献率为60%左右.Abstract: Overpressure is widely developed in Xihu depression, which has complicated formation mechanism. However, there is no in-depth study on this topic at present. In this paper, starting from the main factors that produce overpressure, we use both the micro analysis and macro evidence to comprehensively analyze the mudstone overpressure formation mechanism in the Xihu depression of the East China sea shelf basin, based on the logging response characteristics of overpressure formation, as well as the relationship between speed and vertical effective stress, the relationship between the evolution history of deposition and porosity, the coupling of pressure evolution history and that of hydrocarbon-generated rate. It is concluded that overpressure formation in Baochu slope belt is mainly attributed to under-compaction, and its hydrocarbon generation contribution rate is estimated at 23%-57% with an average of 41%. In the central anticlinal belt, overpressure formation mainly has the following two models: one is the model of hydrocarbon generation with a contribution rate of 51%-78%, and the other is the model of under-compaction interaction. Both the hydrocarbon generation and under-compaction have played an important role in the overpressure formation in Santan sag and the average contribution rate of hydrocarbon generation is about 60%.
-
Key words:
- formation mechanism /
- mudstone overpressure /
- Xihu depression /
- petroleum geology.
-
表 1 西湖凹陷钻井泥岩超压成因分析统计
Table 1. Statistics of the drilling mudstone overpressure formation in Xihu depression
构造单元 井号 超压带顶(m) 层位 推测成因 保俶斜坡带 I井 3200 平上段 不均衡压实+生烃作用 G井 3000 花上段 不均衡压实+生烃作用 A井 3300 平上段 不均衡压实+生烃作用 D井 3800 平中段 不均衡压实 三潭深凹 M井 3750 花下段 不均衡压实+生烃作用 中央背斜带 T井 3450 平上段 生烃作用 S井 3100 花下段 生烃作用 R井 3100 平下段 不均衡压实+生烃作用 P井 2850 花下段 生烃作用+不均衡压实 Q井 3100 花下段 不均衡压实+生烃作用 N井 2950 花下段 不均衡压实+生烃作用 表 2 西湖凹陷代表井增压机制估算结果
Table 2. The estimation of overpressure mechanisms of typical wells in Xihu depression
井号 测点深度(m) 地层压力(MPa) 压力系数 剩余压力(MPa) 垂直有效应力(MPa) 声波速度(km/s) 有效应力减小量(MPa) 泥岩剩余压力(MPa) 生烃作用贡献率(%) 增压之和与实测剩余压力间的误差(MPa) 保俶斜坡带 A井 4280.50 73.53 1.72 30.72 22.15 3.88 12.60 19.70 41.01 1.58 A井 4148.50 73.82 1.78 32.34 18.91 3.82 15.97 19.40 49.38 3.03 B井 3620.75 55.58 1.53 19.37 25.40 3.68 5.84 13.90 30.14 0.37 B井 3575.75 52.6 1.47 16.84 27.05 3.23 4.04 12.70 23.99 -0.10 C井 3855.23 51.73 1.34 13.18 34.92 3.77 4.24 9.17 32.17 0.23 C井 4184.00 57.82 1.38 15.98 36.21 3.68 4.75 9.50 29.72 -1.73 E井 3804.00 53.38 1.40 15.34 30.17 3.02 3.62 11.40 23.59 -0.32 H井 3802.89 45.72 1.20 7.67 38.43 3.29 4.40 3.99 57.36 0.72 中央背斜带 O井 4182.00 51.44 1.23 9.62 42.82 4.48 4.91 2.33 51.03 -2.37 O井 4287.79 52.55 1.22 9.67 44.10 4.31 7.54 2.48 77.97 0.35 O井 4390.00 53.75 1.22 9.85 45.20 4.78 5.11 2.96 51.87 -1.78 P井 3359.70 49.49 1.47 15.89 27.45 3.64 3.25 12.10 20.44 -0.54 J井 3971.70 58.27 14.70 18.55 27.07 4.45 10.56 4.47 56.92 -3.52 三潭 L井 4619.50 72.67 1.57 26.48 36.91 2.23 15.58 10.50 58.83 -0.40 K井 4144.76 62.54 1.51 21.09 33.74 2.52 14.79 8.85 65.12 2.55 -
[1] Bowers,G.L.,1995.Pore Pressure Estimation from Velocity Data:Accounting for Overpressure Mechanisms beside Underpaction.SPE Reprint Series,10(2):78-84.doi: 10.2118/27488-PA [2] Burrs,J.,1998.Overpressure Model for Plastic Rocks,Their Relation to Hydrocarbon Expulsion:A Critical Re-Evaluation.In:Law,B.E.,Ulmishek,G.D.,Slavin,V.I.,eds.,Abnormal Pressures in Hydrocarbon Environments.AAPG Memoir,70:35-63. [3] Chen,M.L.,Pan,R.F.,Pan,J.,2014.On Overpressure Generation Mechanisms and Distribution Rules at Mid-Depth Formation in Huanghekou Region.Journal of Oil and Gas Technology,36(7):8-12 (in Chinese with English abstract). [4] Deng,J.H.,Wu,Q.,Wei,G.,et al.,2009.Forming Mechanism of Abnormally Overpressure in the Partial Jinzhou 27 Structure Area,Liaodong Bay.Natural Gas Geoscience,20(6):930-934 (in Chinese with English abstract). [5] Fan,C.Y.,Wang,Z.L.,Wang,A.G.,et al.,2016.Identification and Calculation of Transfer Overpressure in the Northern Qaidam Basin,Northwest China.AAPG Bulletin,100(1):23-39.doi: 10.1306/08031514030 [6] Guo,X.W.,He,S.,Song,G.Q.,et al.,2011.Evidences of Overpressure Caused by Oil Generation in Dongying Depression.Earth Science,36(6):1085-1094 (in Chinese with English abstract). [7] Hao,F.,Zou,H.Y.,Ni,J.H.,et al.,2002.Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation.Earth Science,27(5):610-615 (in Chinese with English abstract). [8] He,S.,Song,G.Q.,Wang,Y.S.,et al.,2012.Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression.Earth Science,37(5):1029-1042 (in Chinese with English abstract). [9] Hermanrud,C.,Wensaas,L.,Teige,G.M.,et al.,1998.Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show No Influence of Overpressuring.In:Law,B.E.,Ulmishek,G.F.,Slavin,V.I.,eds.,Abnormal Pressures in Hydrocarbon Environments.AAPG Memoir,70:35-63. [10] Li,X.Q.,Zhang,Y.C.,2012.Overpressure Genesis in the Liutun Salt-Lake Sag,Dongpu Depression,Bohai Bay Basin.Oil & Gas Geology,18(5):686-694 (in Chinese with English abstract). [11] Liu,J.S.,2015.Characteristics of Formation Pressure and Their Relationship with Hydrocarbon Distribution in Pinghu Tectonic Belt of Xihu Sag,East China Sea.Journal of Chengdu University of Technology (Science & Technology Edition),42(1):60-69 (in Chinese with English abstract). [12] Luo,X.R.,Wang,Z.M.,Zhang,L.Q.,et al.,2007.Overpressure Generation and Evolution in a Compressional Tectonic Setting,the Southern Margin of Junggar Basin,Northwestern China.AAPG Bulletin,91(8):1123-1139.doi: 10.1306/02260706035 [13] Su,A.,Chen,H.H.,2015.Geochemical Characteristics of Oil and Source Rock,Origin and Genesis of Oil in Xihu Depression,East China Sea Basin.Earth Science,40(6):1072-1082 (in Chinese with English abstract). [14] Su,A.,Chen,H.H.,Wang,C.W.,et al.,2013.Genesis and Maturity Identification of Oil and Gas in the Xihu Sag,East China Sea Basin.Petroleum Exploration Development,40(5):558-565.doi: 10.1016/S1876-3804(13)60073-7 [15] Su,L.,Zheng,J.J.,Wang,Q.,et al.,2012.Formation Mechanism and Research Progress on Overpressure in the Qiongdongnan Basin.Natural Gas Geosinence,23(4):662-672 (in Chinese with English abstract). [16] Tingay,M.R.P.,Hillis,R.R.,Swarbrick,R.E.,et al.,1997.Origin of Overpressure and Pore-Pressure Prediction in the Baram Province,Brunei.AAPG Bulletin,93(1):51-74.doi: 10.1306/08080808016 [17] Wang,B.J.,He,S.,Song,G.Q.,et al.,2012.Effective Stress Characteristics of Different Overpressured Origins in Dongying Depression of Bohai Bay Basin,China.Geological Science and Technology Information,31(2):72-79 (in Chinese with English abstract). [18] Wang,Z.L.,Li,Y.H.,Zhang,J.,2007.Analysis on Main Formation Mechanisms of Abnormal Fluid Pressure in the Upper Triassic,West Sichuan Area.Oil & Gas Geology,28(1):43-50 (in Chinese with English abstract). [19] Wu,J.,Ye,J.R.,Shi,H.S.,et al.,2013.Overpressure Forming and Its Effect on Petroleum Accumulation in Central Faulted Structural Belt of Enping Depression,China.Journal of Central South University (Science and Technology),44(7):2801-2811 (in Chinese with English abstract). [20] Yang,B.L.,Ye,J.R.,Wang,Z.S.,et al.,2014.Hydrocarbon Accumulation Models and Main Controlling Factors in Liaodong Bay Depression.Earth Science,39(10):1507-1520 (in Chinese with English abstract). [21] Yang,C.H.,Sun,P.,Tian,C.,et al.,2013.Distribution and Formation Mechanism of Overpressure in Pinghu Formation,Xihu Sag,East China Sea.Offshore Oil,33(3):8-12 (in Chinese with English abstract). [22] Ye,J.R.,Gu,H.R.,Jia,J.Y.,2005.Research on the Hydrocarbon Accumulation Dynamics of Xihu Sag,East China Sea Shelf Basin.Natural Gas Industry,25(12):5-8 (in Chinese with English abstract). [23] Ye,J.R.,Wei,B.Z.,Zhou,P.,et al.,1999.Study on Underground Fluid Dynamical Fields of Xihu Sag,East China Sea.China Offshore Oil and Gas (Geology),13(4):255-260 (in Chinese with English abstract). [24] Zhang,F.Q.,Wang,Z.L.,Zhao,X.J.,et al.,2012.Genetic Mechanism of Overpressure and Its Relationship with Hydrocarbon Accumulation in Dina-2 Gasfield,Kuqa Depression.Acta Petrolei Sinica,33(5):739-747 (in Chinese with English abstract). [25] Zhang,F.Q.,Wang,Z.L.,Zhong,H.L.,et al.,2013.Recognition Model and Contribution Evaluation of Main Overpressure Formation Mechanisms in Sedimentary Basins.Natural Gas Geoscience,24(6):1151-1158 (in Chinese with English abstract). [26] Zhang,G.H.,2013.Origin Mechanism of High Formation Pressure and Its Influence on Hydrocarbon Accumulation in Xihu Sag.China Offshore Oil and Gas,25(2):1-8 (in Chinese with English abstract). [27] Zhang,G.H.,Zhang,J.P.,2015.A Discussion on the Tectonic Inversion and Its Mechanism in the East China Sea Shelf Basin.Earth Science Frontiers,25(1):260-270 (in Chinese with English abstract). [28] Zhang,J.P.,Tang,X.J.,Zhang,T.,et al.,2012.Application of Balanced Cross Section Technique to the Research of Tectonic Evolution of Xihu Sag in East China Sea.Marine Geology Frontiers,28(8):31-37 (in Chinese with English abstract). [29] Zhang,X.P.,Chen,H.H.,Zhang,S.L.,et al.,2008.Geotemperature-Pressure Systems and Related Reservoir Formation in the Xihu Sag,East China Sea.Marine Geology & Quaternary Geology,28(2):87-91 (in Chinese with English abstract). [30] Zhang,X.P.,Zhang,S.L.,Chen,H.H.,et al.,2007.Abnormal Pressure and Related Reservoir Formation in the Pinghu Structural Belts of Xihu Depression,East China Sea.Marine Geology & Quaternary Geology,27(3):93-97 (in Chinese with English abstract). [31] Zhang,Y.G.,2010.Petroleum Geology and Hydrocarbon Distribution Pattern of Huagang Formation in the Xihu Sag of the East China Sea.Petroleum Geology & Experiment,32(3):223-226,231 (in Chinese with English abstract). [32] Zhang,Y.X.,Ye,J.R.,Su,K.L.,et al.,2009.The Burial History and Evolution of Xihu Depression.Geotectonica et Metallogenia,13(2):215-223 (in Chinese with English abstract). [33] Zhen,D.,Xu,S.H.,Shang,X.L.,2010.Characteristics and Genesis of Mudstone Compaction in Huizhou Depression,Pearl River Mouth Basin.Journal of Earth Science and Environment,32(4):372-377 (in Chinese with English abstract). [34] Zhu,J.J.,Zhang,X.B.,Zhang,G.C.,et al.,2011.A Study of Abnormal Pressure Distribution and Formation Mechanism in Qiongdongnan Basin.Natural Gas Geosicnence,22(2):324-330 (in Chinese with English abstract). [35] 陈美玲, 潘仁芳, 潘进, 2014.黄河口地区中深层超压成因机制及分布规律研究.石油天然气学报, 36(7): 8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201407002.htm [36] 邓津辉, 武强, 魏刚, 等, 2009.辽东湾海域锦州27构造区局部异常超压成因机制.天然气地球科学, 20(6): 930-934. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200906016.htm [37] 郭小文, 何生, 宋国奇, 等, 2011.东营凹陷生油增压成因证据.地球科学, 36(6): 1085-1094. http://www.earth-science.net/WebPage/Article.aspx?id=2184 [38] 郝芳, 邹华耀, 倪建华, 等, 2002.沉积盆地超压系统演化与深层油气成藏条件.地球科学, 27(5): 610-615. http://www.earth-science.net/WebPage/Article.aspx?id=1173 [39] 何生, 宋国奇, 王永诗, 等, 2012.东营凹陷现今大规模超压系统整体分布特征及主控因素.地球科学, 37(5): 1029-1042. http://www.earth-science.net/WebPage/Article.aspx?id=2307 [40] 李小强, 赵彦超, 2012.东濮凹陷柳屯洼陷盐湖盆地超压成因.石油与天然气地质, 18(5): 686-694. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201205004.htm [41] 刘金水, 2015.西湖凹陷平湖构造带地层压力特征及与油气分布的关系.成都理工大学学报(自然科学版), 42(1): 60-69. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501008.htm [42] 苏奥, 陈红汉, 2015.东海盆地西湖凹陷油岩地球化学特征及原油成因来源.地球科学, 40(6): 1072-1082. http://www.earth-science.net/WebPage/Article.aspx?id=3230 [43] 苏龙, 郑建京, 王琪, 等, 2012.琼东南盆地超压研究进展及形成机制.天然气地球科学, 23(4): 662-672. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204008.htm [44] 王冰洁, 何生, 宋国奇, 等, 2012.东营凹陷不同超压成因的有效应力特征.地质科技情报, 31(2): 72-79. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202011.htm [45] 王震亮, 李耀华, 张健, 2007.川西地区上三叠统异常流体压力的主要形成机制.石油与天然气地质, 28(1): 43-50. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200701005.htm [46] 吴娟, 叶加仁, 施和生, 等, 2013.恩平凹陷中央断裂构造带超压发育及成藏意义.中南大学学报(自然科学版), 44(7): 2801-2811. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm [47] 杨宝林, 叶加仁, 王子嵩, 等, 2014.辽东湾断陷油气成藏模式及主控因素.地球科学, 39(10): 1507-1520. http://www.earth-science.net/WebPage/Article.aspx?id=2957 [48] 杨彩虹, 孙鹏, 田超, 等, 2013.东海盆地西湖凹陷平湖组异常高压分布及形成机制探讨.海洋石油, 33(3): 8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201303003.htm [49] 叶加仁, 顾惠荣, 贾建谊, 2005.东海陆架盆地西湖凹陷油气成藏动力学.天然气工业, 25(12): 5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200512001.htm [50] 叶加仁, 韦必则, 周平, 等, 1999.东海西湖凹陷地下流体动力场研究.中国海上油气(地质), 13(4): 255-260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199904004.htm [51] 张凤奇, 王震亮, 赵雪娇, 等, 2012.库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系.石油学报, 33(5): 739-747. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205003.htm [52] 张凤奇, 王震亮, 钟红利, 等, 2013.沉积盆地主要超压成因机制识别模式及贡献.天然气地球科学, 24(6): 1151-1158. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201306008.htm [53] 张国华, 2013.西湖凹陷高压形成机制及其对油气成藏的影响.中国海上油气, 25(2): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201302000.htm [54] 张国华, 张建培, 2015.东海陆架盆地构造反转特征及成因机制探讨.地学前缘, 25(1): 260-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501025.htm [55] 张建培, 唐贤君, 张田, 等, 2012.平衡剖面技术在东海西湖凹陷构造演化研究中的应用.海洋地质前沿, 28(8): 31-37. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201208007.htm [56] 张先平, 陈海红, 张树林, 等, 2008.东海西湖凹陷温压系统与油气成藏.海洋地质与第四纪地质, 28(2): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200802020.htm [57] 张先平, 张树林, 陈海红, 等, 2007.东海西湖凹陷平湖构造带异常压力与油气成藏.海洋地质与第四纪地质, 27(3): 93-97. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703017.htm [58] 张银国, 2010.东海西湖凹陷花港组油气地质条件与油气分布规律.石油实验地质, 32(3): 223-231. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201003006.htm [59] 张远兴, 叶加仁, 苏克露, 等, 2009.东海西湖凹陷沉降史与构造演化.大地构造与成矿学, 13(2): 215-223. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902004.htm [60] 郑丹, 徐思煌, 尚小亮, 2010.珠江口盆地惠州凹陷泥岩压实特征及其成因.地球科学与环境学报, 32(4): 372-377. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201004011.htm [61] 祝建军, 张晓宝, 张功成, 等, 2011.琼东南盆地异常压力分布与形成机理探讨.天然气地球科学, 22(2): 324-330. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201102019.htm