• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东海陆架盆地西湖凹陷超压成因机制

    段谟东 叶加仁 吴景富 单超 雷闯

    段谟东, 叶加仁, 吴景富, 单超, 雷闯, 2017. 东海陆架盆地西湖凹陷超压成因机制. 地球科学, 42(1): 119-129. doi: 10.3799/dqkx.2017.009
    引用本文: 段谟东, 叶加仁, 吴景富, 单超, 雷闯, 2017. 东海陆架盆地西湖凹陷超压成因机制. 地球科学, 42(1): 119-129. doi: 10.3799/dqkx.2017.009
    Duan Modong, Ye Jiaren, Wu Jingfu, Shan Chao, Lei Chuang, 2017. Overpressure Formation Mechanism in Xihu Depression of the East China Sea Shelf Basin. Earth Science, 42(1): 119-129. doi: 10.3799/dqkx.2017.009
    Citation: Duan Modong, Ye Jiaren, Wu Jingfu, Shan Chao, Lei Chuang, 2017. Overpressure Formation Mechanism in Xihu Depression of the East China Sea Shelf Basin. Earth Science, 42(1): 119-129. doi: 10.3799/dqkx.2017.009

    东海陆架盆地西湖凹陷超压成因机制

    doi: 10.3799/dqkx.2017.009
    基金项目: 

    国家“十二五”重大油气专项 No.2011ZX05023-004-010

    详细信息
      作者简介:

      段谟东(1990-),男,博士研究生,主要从事油气成藏压力预测、岩土工程的研究工作.ORCID:0000-0002-8575-1318.E-mail: 376830199@qq.com

      通讯作者:

      叶加仁,ORCID:0000-0001-5699-8074.E-mail: jrye@cug.edu.cn

    • 中图分类号: P618.13

    Overpressure Formation Mechanism in Xihu Depression of the East China Sea Shelf Basin

    • 摘要: 西湖凹陷超压普遍发育,成因机制复杂,目前研究未见深入.从产生超压的主要因素入手,采用定性分析与定量计算相结合的方法,基于超压层段的测井响应特征、速度与垂直有效应力、沉积速率与孔隙度演化史、压力演化史与生烃强度史耦合的初步判断,再通过定量的计算综合分析了西湖凹陷超压的成因机制.研究表明:不均衡压实作用和生烃作用是西湖凹陷超压形成的主要机制,但在不同的区带有一定的差异.其中保俶斜坡带以不均衡压实作用为主,经过估算生烃作用贡献率为23%~57%,平均达到41%;而在中央背斜带超压形成机制有两种模式,大部分是以生烃作用为主的增压模式,贡献率为51%~78%;个别井位研究显示以不均衡压实作用为主的增压模式.在三潭深凹超压的形成中,不均衡压实作用与生烃作用相当,生烃作用增压稍强于不均衡压实作用增压,生烃作用的平均贡献率为60%左右.

       

    • 图  1  西湖凹陷位置及构造单元划分

      a.东海陆架盆地;b.西湖横剖面;c.本文工区图

      Fig.  1.  The division of tectonic units in Xihu depression

      图  2  西湖凹陷代表性单井泥岩电性与超压分布

      a.超压成因机制识别模式;b.保俶斜坡带T井;c.三潭深凹W井;d.中央背斜带J井

      Fig.  2.  The mudstone electrical and overpressure distribution of representative well in Xihu depression

      图  3  垂直有效应力与声波速度交会

      Fig.  3.  Profiles of the vertical effective stress versus sonic velocity

      图  4  保俶斜坡带、中央背斜带代表性单井和三潭深凹J井的沉积速率史(a1、b1和c1)及其与花港组、平湖组孔隙度演化史(a2、b2和c2)

      a1和a2.保俶斜坡带H井;b1和b2.中央背斜带P井;c1和c2.三潭深凹J井

      Fig.  4.  The history of deposition rate(a1,b1 and c1)and porosity evolution history(a2,b2 and c2)of Huagang and Pinghu Formation in Baochu slope belt,Central anticlinal belt and Santan sag

      图  5  西湖凹陷Line 1测线二维压力演化史

      a.44.0Ma;b.37.0Ma;c.29.1Ma;d.23.3Ma;e.16.2Ma;f.7.0Ma;g.5.2Ma;h.现今

      Fig.  5.  Profiles of the history of 2D excess pressure evolution at Line 1 in Xihu depression

      图  6  B井(a)、T井(b)、O井(c)和J井(d)的剩余压力演化史与生烃强度关系

      Fig.  6.  The relationship between the evolution history of excess pressure and hydrocarbon generation rate on B well(a),T well(b),O well(c)and J well(d)

      表  1  西湖凹陷钻井泥岩超压成因分析统计

      Table  1.   Statistics of the drilling mudstone overpressure formation in Xihu depression

      构造单元井号超压带顶(m)层位推测成因
      保俶斜坡带I井3200平上段不均衡压实+生烃作用
      G井3000花上段不均衡压实+生烃作用
      A井3300平上段不均衡压实+生烃作用
      D井3800平中段不均衡压实
      三潭深凹M井3750花下段不均衡压实+生烃作用
      中央背斜带T井3450平上段生烃作用
      S井3100花下段生烃作用
      R井3100平下段不均衡压实+生烃作用
      P井2850花下段生烃作用+不均衡压实
      Q井3100花下段不均衡压实+生烃作用
      N井2950花下段不均衡压实+生烃作用
      下载: 导出CSV

      表  2  西湖凹陷代表井增压机制估算结果

      Table  2.   The estimation of overpressure mechanisms of typical wells in Xihu depression

      井号测点深度(m)地层压力(MPa)压力系数剩余压力(MPa)垂直有效应力(MPa)声波速度(km/s)有效应力减小量(MPa)泥岩剩余压力(MPa)生烃作用贡献率(%)增压之和与实测剩余压力间的误差(MPa)
      保俶斜坡带A井4280.5073.531.7230.7222.153.8812.6019.7041.011.58
      A井4148.5073.821.7832.3418.913.8215.9719.4049.383.03
      B井3620.7555.581.5319.3725.403.685.8413.9030.140.37
      B井3575.7552.61.4716.8427.053.234.0412.7023.99-0.10
      C井3855.2351.731.3413.1834.923.774.249.1732.170.23
      C井4184.0057.821.3815.9836.213.684.759.5029.72-1.73
      E井3804.0053.381.4015.3430.173.023.6211.4023.59-0.32
      H井3802.8945.721.207.6738.433.294.403.9957.360.72
      中央背斜带O井4182.0051.441.239.6242.824.484.912.3351.03-2.37
      O井4287.7952.551.229.6744.104.317.542.4877.970.35
      O井4390.0053.751.229.8545.204.785.112.9651.87-1.78
      P井3359.7049.491.4715.8927.453.643.2512.1020.44-0.54
      J井3971.7058.2714.7018.5527.074.4510.564.4756.92-3.52
      三潭L井4619.5072.671.5726.4836.912.2315.5810.5058.83-0.40
      K井4144.7662.541.5121.0933.742.5214.798.8565.122.55
      下载: 导出CSV
    • [1] Bowers,G.L.,1995.Pore Pressure Estimation from Velocity Data:Accounting for Overpressure Mechanisms beside Underpaction.SPE Reprint Series,10(2):78-84.doi: 10.2118/27488-PA
      [2] Burrs,J.,1998.Overpressure Model for Plastic Rocks,Their Relation to Hydrocarbon Expulsion:A Critical Re-Evaluation.In:Law,B.E.,Ulmishek,G.D.,Slavin,V.I.,eds.,Abnormal Pressures in Hydrocarbon Environments.AAPG Memoir,70:35-63.
      [3] Chen,M.L.,Pan,R.F.,Pan,J.,2014.On Overpressure Generation Mechanisms and Distribution Rules at Mid-Depth Formation in Huanghekou Region.Journal of Oil and Gas Technology,36(7):8-12 (in Chinese with English abstract).
      [4] Deng,J.H.,Wu,Q.,Wei,G.,et al.,2009.Forming Mechanism of Abnormally Overpressure in the Partial Jinzhou 27 Structure Area,Liaodong Bay.Natural Gas Geoscience,20(6):930-934 (in Chinese with English abstract).
      [5] Fan,C.Y.,Wang,Z.L.,Wang,A.G.,et al.,2016.Identification and Calculation of Transfer Overpressure in the Northern Qaidam Basin,Northwest China.AAPG Bulletin,100(1):23-39.doi: 10.1306/08031514030
      [6] Guo,X.W.,He,S.,Song,G.Q.,et al.,2011.Evidences of Overpressure Caused by Oil Generation in Dongying Depression.Earth Science,36(6):1085-1094 (in Chinese with English abstract).
      [7] Hao,F.,Zou,H.Y.,Ni,J.H.,et al.,2002.Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation.Earth Science,27(5):610-615 (in Chinese with English abstract).
      [8] He,S.,Song,G.Q.,Wang,Y.S.,et al.,2012.Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression.Earth Science,37(5):1029-1042 (in Chinese with English abstract).
      [9] Hermanrud,C.,Wensaas,L.,Teige,G.M.,et al.,1998.Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show No Influence of Overpressuring.In:Law,B.E.,Ulmishek,G.F.,Slavin,V.I.,eds.,Abnormal Pressures in Hydrocarbon Environments.AAPG Memoir,70:35-63.
      [10] Li,X.Q.,Zhang,Y.C.,2012.Overpressure Genesis in the Liutun Salt-Lake Sag,Dongpu Depression,Bohai Bay Basin.Oil & Gas Geology,18(5):686-694 (in Chinese with English abstract).
      [11] Liu,J.S.,2015.Characteristics of Formation Pressure and Their Relationship with Hydrocarbon Distribution in Pinghu Tectonic Belt of Xihu Sag,East China Sea.Journal of Chengdu University of Technology (Science & Technology Edition),42(1):60-69 (in Chinese with English abstract).
      [12] Luo,X.R.,Wang,Z.M.,Zhang,L.Q.,et al.,2007.Overpressure Generation and Evolution in a Compressional Tectonic Setting,the Southern Margin of Junggar Basin,Northwestern China.AAPG Bulletin,91(8):1123-1139.doi: 10.1306/02260706035
      [13] Su,A.,Chen,H.H.,2015.Geochemical Characteristics of Oil and Source Rock,Origin and Genesis of Oil in Xihu Depression,East China Sea Basin.Earth Science,40(6):1072-1082 (in Chinese with English abstract).
      [14] Su,A.,Chen,H.H.,Wang,C.W.,et al.,2013.Genesis and Maturity Identification of Oil and Gas in the Xihu Sag,East China Sea Basin.Petroleum Exploration Development,40(5):558-565.doi: 10.1016/S1876-3804(13)60073-7
      [15] Su,L.,Zheng,J.J.,Wang,Q.,et al.,2012.Formation Mechanism and Research Progress on Overpressure in the Qiongdongnan Basin.Natural Gas Geosinence,23(4):662-672 (in Chinese with English abstract).
      [16] Tingay,M.R.P.,Hillis,R.R.,Swarbrick,R.E.,et al.,1997.Origin of Overpressure and Pore-Pressure Prediction in the Baram Province,Brunei.AAPG Bulletin,93(1):51-74.doi: 10.1306/08080808016
      [17] Wang,B.J.,He,S.,Song,G.Q.,et al.,2012.Effective Stress Characteristics of Different Overpressured Origins in Dongying Depression of Bohai Bay Basin,China.Geological Science and Technology Information,31(2):72-79 (in Chinese with English abstract).
      [18] Wang,Z.L.,Li,Y.H.,Zhang,J.,2007.Analysis on Main Formation Mechanisms of Abnormal Fluid Pressure in the Upper Triassic,West Sichuan Area.Oil & Gas Geology,28(1):43-50 (in Chinese with English abstract).
      [19] Wu,J.,Ye,J.R.,Shi,H.S.,et al.,2013.Overpressure Forming and Its Effect on Petroleum Accumulation in Central Faulted Structural Belt of Enping Depression,China.Journal of Central South University (Science and Technology),44(7):2801-2811 (in Chinese with English abstract).
      [20] Yang,B.L.,Ye,J.R.,Wang,Z.S.,et al.,2014.Hydrocarbon Accumulation Models and Main Controlling Factors in Liaodong Bay Depression.Earth Science,39(10):1507-1520 (in Chinese with English abstract).
      [21] Yang,C.H.,Sun,P.,Tian,C.,et al.,2013.Distribution and Formation Mechanism of Overpressure in Pinghu Formation,Xihu Sag,East China Sea.Offshore Oil,33(3):8-12 (in Chinese with English abstract).
      [22] Ye,J.R.,Gu,H.R.,Jia,J.Y.,2005.Research on the Hydrocarbon Accumulation Dynamics of Xihu Sag,East China Sea Shelf Basin.Natural Gas Industry,25(12):5-8 (in Chinese with English abstract).
      [23] Ye,J.R.,Wei,B.Z.,Zhou,P.,et al.,1999.Study on Underground Fluid Dynamical Fields of Xihu Sag,East China Sea.China Offshore Oil and Gas (Geology),13(4):255-260 (in Chinese with English abstract).
      [24] Zhang,F.Q.,Wang,Z.L.,Zhao,X.J.,et al.,2012.Genetic Mechanism of Overpressure and Its Relationship with Hydrocarbon Accumulation in Dina-2 Gasfield,Kuqa Depression.Acta Petrolei Sinica,33(5):739-747 (in Chinese with English abstract).
      [25] Zhang,F.Q.,Wang,Z.L.,Zhong,H.L.,et al.,2013.Recognition Model and Contribution Evaluation of Main Overpressure Formation Mechanisms in Sedimentary Basins.Natural Gas Geoscience,24(6):1151-1158 (in Chinese with English abstract).
      [26] Zhang,G.H.,2013.Origin Mechanism of High Formation Pressure and Its Influence on Hydrocarbon Accumulation in Xihu Sag.China Offshore Oil and Gas,25(2):1-8 (in Chinese with English abstract).
      [27] Zhang,G.H.,Zhang,J.P.,2015.A Discussion on the Tectonic Inversion and Its Mechanism in the East China Sea Shelf Basin.Earth Science Frontiers,25(1):260-270 (in Chinese with English abstract).
      [28] Zhang,J.P.,Tang,X.J.,Zhang,T.,et al.,2012.Application of Balanced Cross Section Technique to the Research of Tectonic Evolution of Xihu Sag in East China Sea.Marine Geology Frontiers,28(8):31-37 (in Chinese with English abstract).
      [29] Zhang,X.P.,Chen,H.H.,Zhang,S.L.,et al.,2008.Geotemperature-Pressure Systems and Related Reservoir Formation in the Xihu Sag,East China Sea.Marine Geology & Quaternary Geology,28(2):87-91 (in Chinese with English abstract).
      [30] Zhang,X.P.,Zhang,S.L.,Chen,H.H.,et al.,2007.Abnormal Pressure and Related Reservoir Formation in the Pinghu Structural Belts of Xihu Depression,East China Sea.Marine Geology & Quaternary Geology,27(3):93-97 (in Chinese with English abstract).
      [31] Zhang,Y.G.,2010.Petroleum Geology and Hydrocarbon Distribution Pattern of Huagang Formation in the Xihu Sag of the East China Sea.Petroleum Geology & Experiment,32(3):223-226,231 (in Chinese with English abstract).
      [32] Zhang,Y.X.,Ye,J.R.,Su,K.L.,et al.,2009.The Burial History and Evolution of Xihu Depression.Geotectonica et Metallogenia,13(2):215-223 (in Chinese with English abstract).
      [33] Zhen,D.,Xu,S.H.,Shang,X.L.,2010.Characteristics and Genesis of Mudstone Compaction in Huizhou Depression,Pearl River Mouth Basin.Journal of Earth Science and Environment,32(4):372-377 (in Chinese with English abstract).
      [34] Zhu,J.J.,Zhang,X.B.,Zhang,G.C.,et al.,2011.A Study of Abnormal Pressure Distribution and Formation Mechanism in Qiongdongnan Basin.Natural Gas Geosicnence,22(2):324-330 (in Chinese with English abstract).
      [35] 陈美玲, 潘仁芳, 潘进, 2014.黄河口地区中深层超压成因机制及分布规律研究.石油天然气学报, 36(7): 8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201407002.htm
      [36] 邓津辉, 武强, 魏刚, 等, 2009.辽东湾海域锦州27构造区局部异常超压成因机制.天然气地球科学, 20(6): 930-934. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200906016.htm
      [37] 郭小文, 何生, 宋国奇, 等, 2011.东营凹陷生油增压成因证据.地球科学, 36(6): 1085-1094. http://www.earth-science.net/WebPage/Article.aspx?id=2184
      [38] 郝芳, 邹华耀, 倪建华, 等, 2002.沉积盆地超压系统演化与深层油气成藏条件.地球科学, 27(5): 610-615. http://www.earth-science.net/WebPage/Article.aspx?id=1173
      [39] 何生, 宋国奇, 王永诗, 等, 2012.东营凹陷现今大规模超压系统整体分布特征及主控因素.地球科学, 37(5): 1029-1042. http://www.earth-science.net/WebPage/Article.aspx?id=2307
      [40] 李小强, 赵彦超, 2012.东濮凹陷柳屯洼陷盐湖盆地超压成因.石油与天然气地质, 18(5): 686-694. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201205004.htm
      [41] 刘金水, 2015.西湖凹陷平湖构造带地层压力特征及与油气分布的关系.成都理工大学学报(自然科学版), 42(1): 60-69. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501008.htm
      [42] 苏奥, 陈红汉, 2015.东海盆地西湖凹陷油岩地球化学特征及原油成因来源.地球科学, 40(6): 1072-1082. http://www.earth-science.net/WebPage/Article.aspx?id=3230
      [43] 苏龙, 郑建京, 王琪, 等, 2012.琼东南盆地超压研究进展及形成机制.天然气地球科学, 23(4): 662-672. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204008.htm
      [44] 王冰洁, 何生, 宋国奇, 等, 2012.东营凹陷不同超压成因的有效应力特征.地质科技情报, 31(2): 72-79. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202011.htm
      [45] 王震亮, 李耀华, 张健, 2007.川西地区上三叠统异常流体压力的主要形成机制.石油与天然气地质, 28(1): 43-50. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200701005.htm
      [46] 吴娟, 叶加仁, 施和生, 等, 2013.恩平凹陷中央断裂构造带超压发育及成藏意义.中南大学学报(自然科学版), 44(7): 2801-2811. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm
      [47] 杨宝林, 叶加仁, 王子嵩, 等, 2014.辽东湾断陷油气成藏模式及主控因素.地球科学, 39(10): 1507-1520. http://www.earth-science.net/WebPage/Article.aspx?id=2957
      [48] 杨彩虹, 孙鹏, 田超, 等, 2013.东海盆地西湖凹陷平湖组异常高压分布及形成机制探讨.海洋石油, 33(3): 8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201303003.htm
      [49] 叶加仁, 顾惠荣, 贾建谊, 2005.东海陆架盆地西湖凹陷油气成藏动力学.天然气工业, 25(12): 5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200512001.htm
      [50] 叶加仁, 韦必则, 周平, 等, 1999.东海西湖凹陷地下流体动力场研究.中国海上油气(地质), 13(4): 255-260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199904004.htm
      [51] 张凤奇, 王震亮, 赵雪娇, 等, 2012.库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系.石油学报, 33(5): 739-747. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205003.htm
      [52] 张凤奇, 王震亮, 钟红利, 等, 2013.沉积盆地主要超压成因机制识别模式及贡献.天然气地球科学, 24(6): 1151-1158. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201306008.htm
      [53] 张国华, 2013.西湖凹陷高压形成机制及其对油气成藏的影响.中国海上油气, 25(2): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201302000.htm
      [54] 张国华, 张建培, 2015.东海陆架盆地构造反转特征及成因机制探讨.地学前缘, 25(1): 260-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501025.htm
      [55] 张建培, 唐贤君, 张田, 等, 2012.平衡剖面技术在东海西湖凹陷构造演化研究中的应用.海洋地质前沿, 28(8): 31-37. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201208007.htm
      [56] 张先平, 陈海红, 张树林, 等, 2008.东海西湖凹陷温压系统与油气成藏.海洋地质与第四纪地质, 28(2): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200802020.htm
      [57] 张先平, 张树林, 陈海红, 等, 2007.东海西湖凹陷平湖构造带异常压力与油气成藏.海洋地质与第四纪地质, 27(3): 93-97. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703017.htm
      [58] 张银国, 2010.东海西湖凹陷花港组油气地质条件与油气分布规律.石油实验地质, 32(3): 223-231. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201003006.htm
      [59] 张远兴, 叶加仁, 苏克露, 等, 2009.东海西湖凹陷沉降史与构造演化.大地构造与成矿学, 13(2): 215-223. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902004.htm
      [60] 郑丹, 徐思煌, 尚小亮, 2010.珠江口盆地惠州凹陷泥岩压实特征及其成因.地球科学与环境学报, 32(4): 372-377. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201004011.htm
      [61] 祝建军, 张晓宝, 张功成, 等, 2011.琼东南盆地异常压力分布与形成机理探讨.天然气地球科学, 22(2): 324-330. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201102019.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  4712
    • HTML全文浏览量:  1999
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-06-06
    • 刊出日期:  2017-01-15

    目录

      /

      返回文章
      返回