Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China
-
摘要: SN4井获高产天然气流揭示塔里木盆地深层-超深层具有巨大油气勘探潜力,然而目的层段埋藏深、勘探程度低,其储层发育机理和分布规律仍备受争议.从宏观和微观上着手,运用三维地震精细解释技术分析了顺南地区断裂构造发育以及碳酸盐岩储层空间展布特征,并结合岩相岩石学和流体包裹体分析技术判定了碳酸盐岩成岩作用类型,从而总结出顺南地区中-下奥陶统断控型深成岩溶储层形成机制.研究结果表明,顺南地区主要经历4期构造运动:加里东早期、加里东中期、加里东晚期-海西早期和海西晚期;NE向走滑断裂的形成和改造主要与加里东中期和加里东晚期-海西早期两期构造活动有关.深成岩溶作用在顺南地区大规模发育,并与 NE向走滑断裂具有很好的耦合关系:平面上,深成岩溶主要沿SN4断裂带发育,具有明显的分段性;剖面上,深部流体在垂向上的运移主要受张性走滑断裂的控制,其在横向上的运移则主要受先存渗流带的控制.深成岩溶主要顺着张性走滑断裂发育,侧向上受鹰山组上段砂屑灰岩相带的约束.Abstract: The discovery of high yielding SN4 well of natural gas reveals great potential for oil and gas exploration of the deep-super deep reservoirs in Tarim basin, where the mechanism and distribution of reservoirs remain controversial due to the great burial-depth and low exploration maturity. This paper presents a study from both the macro and micro perspective on this issue. A 3-D seismic fine interpretation is employed to analyze the development of fault structures and the spatial distribution of carbonate reservoirs in Shunnan area of Tarim basin. Combined with the analysis of lithofacies and fluid inclusion, it is concluded that Shunnan area in Tarim basin experienced four major tectonic movements, which happened during early Caledonian, middle Caledonian, late Caledonian-early Hercynian and late Hercynian. The formation and transformation of the NE strike-slip faults were controlled by the tectonic movement of middle Caledonian and Caledonian-early Hercynian. The hypogenic karstification developed in Shunnan area on a large scale, which has a coupling relationship with the NE strike-slip faults. In the plane, the hypogenic karst mainly developed along the SN4 strike-slip faults zones with distinct segmentation. In the section, the hypogenic karstification is developed along the extensional strike-slip faults, and the migration in the transverse direction was mainly controlled by the pre-existing permeable zones which mostly comprised upper Yingshan calcarenite layer.
-
图 4 SN4断裂带分段剖面形态特征
剖面位置见图 1
Fig. 4. Seismic section at different parts along the SN4 strike-slip fault
图 6 顺南地区SN4井中下奥陶统岩芯及扫描电镜照片
a.SN4井,O1-2y,6669.47m,岩心照片,深成岩溶作用形成的厘米级蜂窝状残余孔隙;b.SN4井,O1-2y,6670.44m,岩心照片,沿裂缝发育的硅质胶结物以及半充填的残余孔隙;c.SN4井,O1-2y,6670.57m,岩心照片,半充填残余裂缝以及毫米级蜂窝状残余孔隙;d.SN4井,O1-2y,6672.25m,岩心照片,冰洲石;e.SN4井,O2yj,6670.48m,扫描电镜照片,热液石英;f.SN4井,O1-2y,6672.98m,扫描电镜照片,板条状石膏
Fig. 6. Typical pictures of core samples and scanning electron micrograph of SN4 well in Shunnan area
图 8 串珠状剖面上分布特征及其在SN4井中与测录井数据对应关系
剖面位置见图 5
Fig. 8. Profile distribution of the bead-like seismic reflection and the relation between hypogenic karst and in SN4 well
-
[1] Chen,H.L.,Yang,S.F.,Li,Z.L.,et al.,2009.Spatial and Temporal Characteristics of Permian Large Igneous Province in Tarim Basin.Xinjiang Petroleum Geology,30(2):179-182 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=f71ce2e0997c06a114f2b8890daed448&encoded=0&v=paper_preview&mkt=zh-cn [2] Davies,G.R.,Smith,L.B.,2006.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview.AAPG Bulletin,90(11):1641-1690.doi: 10.1306/05220605164 [3] Gong,Z.S.,Cai,D.S.,Zhang,G.C.,2007.Dominating Action of Tanlu Fault on Hydrocarbon Accumulation in Eastern Bohai Sea Area.Acta Petrolei Sinica,28(4):1-10 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=aae9f30b0f040818031562630201aa77&encoded=0&v=paper_preview&mkt=zh-cn [4] Huang,T.Z.,2014.Structural Interpretation and Petroleum Exploration Targets in Northern Slope of Middle Tarim Basin.Petroleum Geology & Development,36(3):257-267 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7cf26256efeb69192bfca0f1cfad197b&encoded=0&v=paper_preview&mkt=zh-cn [5] Klimchouk,A.B.,2007.Hypogene Speleogenesis:Hydrogeological and Morphogenetic Perspective.Special Paper No.1,National Cave and Karst Research Institute,Carlsbad. [6] Lan,X.D.,Lü,X.X.,Zhu,Y.M.,et al.,2014.Hydrocarbon Accumulation Pattern Jointly Controlled by Strike-Slip Faults and Cap Rocks:A Case from Yingshan Formation in ZG-51 Wellblock of Eastern Tazhong Area,Tarim Basin.Oil & Gas Geology,35(1):107-115 (in Chinese with English abstract). [7] Li,F.Y.,Wei,J.X.,Di,B.R.,et al.,2012.Formation Mechanism Research for Bead-Like Seismic Reflection of Carbonate Caves.Oil Geophysical Prospecting,47(3):385-391 (in Chinese with English abstract). [8] Li,H.L.,Liu,S.L.,Yang,S.B.,et al.,2014.Tectonic-Sedimentary Evolution of Tazhong-Bachu-Maigaiti Area and Its Control on the Ordovician Reservoir.Oil & Gas Geology,35(6):883-892 (in Chinese with English abstract). [9] Li,H.L.,Qiu,N.S.,Jin,Z.J.,et al.,2005.Geothermal History of Tarim Basin.Oil & Gas Geology,26(5):613-617 (in Chinese with English abstract). [10] Li,M.J.,Hu,S.H.,Wang,Q.G.,et al.,2006.Discovery of Strike-Slip Fault System in Tazhong Area and Geologic Meaning.Oil Geophysical Prospecting,41(1):116-121 (in Chinese with English abstract). [11] Li,Y.J.,Sun,L.D.,Yang,H.J.,et al.,2014.New Discovery of Late Silurian-Carboniferous Extensional Structure in Tarim Basin and Its Geological Significance.Chinese Journal of Geology,49(1):30-48 (in Chinese with English abstract). [12] Lu,Z.Y.,Chen,H.H.,Feng,Y.,et al.,2015.Evidences of Multi-Epsiodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchengxu Uplift,Tarim Basin.Earth Science,40(9):1529-1537 (in Chinese with English abstract). [13] Luo,C.S.,Yang,H.J.,Li,J.H.,et al.,2011.Characteristics of High Quality Ordovician Reservoirs and Controlling Effects of Faults in the Tazhong Area,Tarim Basin.Petroleum Exploration and Development,38(6):716-724 (in Chinese with English abstract). [14] Naylor,M.A.,Mandl,G.,Supesteijn,C.H.K.,1986.Fault Geometries in Basement-Induced Wrench Faulting under Different Initial Stress States.Journal of Structural Geology,8(7):737-752.doi: 10.1016/0191-8141(86)90022-2 [15] Palmer,A.N.,1995.Geochemical Models for the Origin of Macroscopic Solution Porosity in Carbonate Rocks.AAPG Memoir,63:77-101. http://cn.bing.com/academic/profile?id=614ab73e283680cb09b46417d23140bd&encoded=0&v=paper_preview&mkt=zh-cn [16] Stafford,K.W.,Land,L.,Klimchouk,A.,2008.Hypogenic Speleogenesis within Seven Rivers Evaporites:Coffee Cave,Eddy County,New Mexico.Journal of Cave and Karst Studies,70(1):47-61. http://cn.bing.com/academic/profile?id=c56a752230141d94730d6d332924d35c&encoded=0&v=paper_preview&mkt=zh-cn [17] Tang,L.J.,Qi,L.X.,Qiu,H.J.,et al.,2012.Poly-Phase Differential Fault Movement and Hydrocarbon Accumulation of the Tarim Basin,NW China.Acta Petrologica Sinica,28(8):2569-2583 (in Chinese with English abstract). [18] Wang,B.C.,Liu,J.,Ma,L.M.,et al.,2014.Forward Modeling for Seismic Response Characteristics of the Fracture-Cavity Ordovician Reservoir in Shunnan Area of Central Tarim Basin.Geophysical Prospecting for Petroleum,53(3):344-350 (in Chinese with English abstract). [19] Wu,G.H.,Cheng,L.F.,Liu.Y.K.,et al.,2011.Strike-Slip Fault System of the Cambrian-Ordovician and Its Oil-Controlling Effect in Tarim Basin.Xinjiang Petroleum Geology,28(3):239-243 (in Chinese with English abstract). [20] Wu,J.F.,Yao,Y.,Sa,L.M.,2007.Analysis on Seismic Response of Special Cavernous Structure of Carbonate.Oil Geophysical Prospecting,42(2):180-185 (in Chinese with English abstract). [21] Wu,M.B.,Wang,Y.,Zheng,M.L.,et al.,2007.Hydrothermal Fluid Karst and Influences to Reservoir in Ordovician Carbonate Rocks of Tazhong Area.Science in China (Seri.D),37(Suppl.1):83-92 (in Chinese). [22] Yang,S.B.,Liu,J.,Li,H.L.,et al.,2013.Characteristics of the NE-trending Strike-Slip Fault System and Its Control on Oil Accumulation in North Peri-Cline Area of the Tazhong Paleouplift.Oil & Gas Geology,34(6):797-802 (in Chinese with English abstract). [23] Yu,X.,Chen,H.L.,Yang,S.F.,et al.,2009.Geochemical Features of Permian Basalts in Tarim Basin and Compared with Emeishan LIP.Acta Petrologica Sinica,25(6):1492-1498 (in Chinese with English abstract). [24] Zhang,X.C.,Sun,Z.D.,Zhao,J.S.,et al.,2013.The Effect of Strike-Slip Faulting Throw on Hydrocarbons in Northern Slope of Tazhong Area,Tarim Basin.Xinjiang Petroleum Geology,34(5):528-530 (in Chinese with English abstract). [25] Zhu,D.Y.,Meng,Q.Q.,Hu,W.X.,et al.,2013.Differences between Fluid Activities in the Central and North Tarim Basin.Geochimica,42(1):82-94 (in Chinese with English abstract). [26] 陈汉林, 杨树锋, 厉子龙, 等. 2009.塔里木盆地二叠纪大火成岩省发育的时空特点.新疆石油地质, 30(2): 179-182. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902013.htm [27] 龚再升, 蔡东升, 张功成, 2007.郯庐断裂对渤海海域东部油气成藏的控制作用.石油学报, 28(4): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704000.htm [28] 黄太柱, 2014.塔里木盆地塔中北坡构造解析与油气勘探方向.石油实验地质, 36(3): 257-267. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403002.htm [29] 兰晓东, 吕修祥, 朱炎铭, 等, 2014.走滑断裂与盖层复合成藏模式——以塔中东部中古51井区鹰山组为例.石油与天然气地质, 35(1): 107-115. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401014.htm [30] 李凡异, 魏建新, 狄帮让, 等, 2012.碳酸盐岩溶洞的“串珠”状地震反射特征形成机理研究.石油地球物理勘探, 47(3): 385-391. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201203006.htm [31] 李慧莉, 刘士林, 杨圣彬, 等, 2014.塔中-巴麦地区构造沉积演化及其对奥陶系储层的控制.石油与天然气地质, 35(6): 883-892. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406017.htm [32] 李慧莉, 邱楠生, 金之钧, 等, 2005.塔里木盆地的热史.石油与天然气地质, 26(5): 613-617. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200505010.htm [33] 李明杰, 胡少华, 王庆果, 等, 2006.塔中地区走滑断裂体系的发现及其地质意义.石油地球物理勘探, 41(1): 116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200601025.htm [34] 李曰俊, 孙龙德, 杨海军, 等, 2014.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义.地质科学, 49(1): 30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm [35] 鲁子野, 陈红汉, 丰勇, 等, 2015.塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义.地球科学, 40(9): 1529-1537. http://www.earth-science.net/WebPage/Article.aspx?id=3156 [36] 罗春树, 杨海军, 李江海, 等, 2011.塔中奥陶系优质储集层特征及断裂控制作用.石油勘探与开发, 38(6): 716-724. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106010.htm [37] 汤良杰, 漆立新, 邱海峻, 等, 2012.塔里木盆地断裂构造分期差异活动及其变形机理.岩石学报, 28(8): 2569-2583. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208023.htm [38] 王保才, 刘军, 马灵伟, 等, 2014.塔中顺南地区奥陶系缝洞型储层地震响应特征正演模拟分析.石油物探, 53(3): 344-350. http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201403013.htm [39] 邬光辉, 成丽芳, 刘玉魁, 等, 2011.塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用.新疆石油地质, 28(3): 239-243. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm [40] 吴俊峰, 姚姚, 撒利明, 2007.碳酸盐岩特殊孔洞型构造地震响应特征分析.石油地球物理勘探, 42(2): 180-185. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200702010.htm [41] 吴茂炳, 王毅, 郑孟林, 等, 2007.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响.中国科学(D辑), 37(S1): 83-92. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1009.htm [42] 杨圣彬, 刘军, 李慧莉, 等, 2013.塔中北围斜区北东向走滑断裂特征及其控油作用.石油与天然气地质, 34(6): 797-802. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306013.htm [43] 余星, 陈汉林, 杨树锋, 等, 2009.塔里木盆地二叠纪玄武岩的地球化学特征及其与峨眉山大火成岩省的对比.岩石学报, 25(6): 1492-1498. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906020.htm [44] 张新超, 孙赞东, 赵俊省, 等, 2013.塔中北斜坡走滑断裂断距及其与油气的关系.新疆石油地质, 34(5): 528-530. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201305007.htm [45] 朱东亚, 孟庆强, 胡文瑄, 等, 2013.塔里木盆地塔北和塔中地区流体作用环境差异性分析.地球化学, 42(1): 82-94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201301009.htm