Geochemistry of Mudstones from Mesozoic Jiyuan Basin,West Henan: Implications for Provenance Analysis
-
摘要: 秦岭造山带印支期造山作用控制着济源盆地的形成与演化,对盆地中沉积物物源进行研究,有利于恢复造山带造山-隆升的细节.通过对济源盆地中生代泥岩地球化学的系统分析,发现样品的CIA(化学风化指数)校正值在早-中三叠世、晚三叠世、早-中侏罗世和中侏罗世后期的平均值分别为68.5、76.4、86.0和73.7,这一演化特征可能反映其经历了古气候控制的化学风化过程.但是三叠纪样品CIA值明显过低,可能与源区活动的构造背景相关;ICV(成分变异指数)值显示沉积物具有初次沉积的特征,反映了源区早期发生过弧-陆碰撞或具备陆缘弧特征的克拉通基底隆升.而早-中侏罗世样品表现为高的CIA值,ICV值显示沉积物具有再循环特征,其初次沉积可能发生在弧后盆地中,后随造山带的隆升,被剥露再搬运而沉积下来.泥岩物源区构造环境判别结果显示,沉积物主要来自活动大陆边缘和被动大陆边缘,且含有较多大陆岛弧(陆缘弧)的信息.由此说明,中生代济源盆地盆缘构造活动经历了由克拉通基底隆升到造山带剥露的过程,这一过程与秦岭造山带印支期的造山作用密切相关.Abstract: The sedimentary development of the Jiyuan basin was controlled by the Qinling orogenic belt during the Early Mesozoic. Therefore, mountain building and uplift of the Qinling orogenic belt can be evidenced by the sediments from the Jiyuan basin. The Mesozoic mudstones geochemistry has been investigated to determine the provenance of the Jiyuan basin. The average values of corrected CIA (chemical weathering index) from the Early-Middle Triassic, Late Triassic and Early-Middle Jurassic samples increase from 68.5 to 76.4, then to 86 successively, but decrease to 73.7 from the late Middle Jurassic samples. The variation of CIA might correspond to the changing paleoclimate during the Mesozoic. However, the much lower values of CIA from the Triassic samples may be restricted to the active tectonic setting. The values of ICV (compositional variation index) reflect that the first cycle sediments are mainly concentrated in the Triassic samples. These sediments may come from the uplifted basement of the North China craton, which should consist of the continental marginal arc and/or arc-continent collision zone. The Early-Middle Jurassic samples showing higher CIA may be related with the recycling clastics of the uplifting orogen, whereas first deposition might occur in the back-arc basin. In the tectonic discrimination diagrams, the sediments from Jiyuan basin mainly formed under the active continental margin and the passive continental margin, but contained much more continental island arc materials. Our data support that sediments from the uplifted basement of the North China craton to the denudation of the orogen is most likely related to the Qinling orogenesis during the Indosinian.
-
Key words:
- Jiyuan basin /
- sediment /
- provenance analysis /
- Mesozoic /
- mudstone /
- geochemistry /
- Qinling orogenic belt
-
图 1 华北克拉通及邻区构造纲要图及济源盆地位置(a),济源地区地质简图(b)
图a据Liu et al.(2013)略修改
Fig. 1. Tectonic sketch of the North China Craton and its adjacent regions(a),geological sketch of the Jiyuan basin(b)
图 4 济源盆地中生代泥岩A-CN-K图解(a)和济源盆地中生代泥岩Th/Sc-Zr/Sc图解(b)
华北南缘上地壳数据来自Gao et al.(1998)
Fig. 4. A-CN-K diagram(a)of the Mesozoic sediments from Jiyuan basin,and Th/Sc-Zr/Sc diagram(b)of the Mesozoic sediments from Jiyuan basin
表 1 济源盆地中生代泥岩主量元素分析结果(%)
Table 1. The major elements (%) of the Mesozoic sediments from the Jiyuan basin
样品编号 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI CIA CIAcorr ICV Tl-h2 62.93 0.59 10.38 3.35 0.08 2.92 7.73 1.76 1.36 0.12 9.13 58.8 59.8 1.71 Th-h4 53.17 0.71 13.66 6.24 0.10 2.96 8.75 1.12 2.96 0.17 10.45 66.4 72.9 1.67 Th-h3 54.64 0.62 11.23 4.80 0.10 2.41 11.02 1.33 2.30 0.12 11.71 62.0 66.8 2.01 Th-h2 53.42 0.62 11.23 4.80 0.08 2.33 11.81 1.14 2.30 0.13 12.49 64.3 69.5 2.06 Th-h1 56.25 0.64 10.96 4.62 0.10 2.47 10.49 1.48 2.15 0.13 10.97 60.3 64.3 2.00 Te-h4 53.50 0.74 16.19 7.70 0.06 3.79 4.57 1.31 4.13 0.22 8.10 64.8 73.1 1.38 Te-h3 56.40 0.88 17.13 8.67 0.05 3.89 1.52 1.98 4.30 0.26 5.14 63.0 70.4 1.24 Te-h2 58.62 0.73 15.22 6.74 0.07 3.22 3.83 2.70 3.48 0.23 5.45 54.6 58.8 1.36 Te-h1 56.39 0.77 15.72 7.53 0.08 3.55 3.92 2.21 4.00 0.21 5.88 57.5 63.6 1.40 Ty-h4 53.19 0.76 17.27 7.33 0.05 3.58 4.17 1.02 3.36 0.20 9.42 71.2 77.3 1.17 Ty-h3 56.40 0.77 16.27 6.96 0.04 3.38 3.60 1.60 3.28 0.21 7.73 64.8 70.0 1.21 Ty-h2 58.74 0.73 16.11 7.20 0.05 3.10 2.81 1.79 3.80 0.24 5.68 61.7 67.9 1.21 Ty-h1 60.06 0.75 16.33 6.69 0.04 2.90 1.63 1.64 3.01 0.25 7.01 66.2 70.7 1.02 Tc-h2 18.20 0.23 5.27 3.35 1.51 0.76 37.08 0.31 1.20 0.11 32.26 69.4 77.4 8.43 Tc-h3 57.50 0.84 17.65 6.83 0.03 2.86 1.71 1.24 3.90 0.23 7.45 68.0 75.1 0.99 Tc-h1 52.30 0.60 13.27 4.75 0.12 2.26 10.35 0.68 2.76 0.13 13.04 71.7 79.0 1.62 Tc-h5 44.05 0.69 12.72 5.06 0.04 1.80 16.14 0.05 2.60 0.13 17.00 81.0 90.6 2.07 Tt-h1 47.06 0.59 5.32 2.13 0.06 3.68 19.38 0.32 1.12 0.10 20.31 70.1 77.1 5.13 Tt-1 47.25 0.66 11.58 4.33 0.07 3.56 13.32 0.30 2.46 0.16 16.08 75.9 84.7 2.13 Tt-2 50.81 0.67 13.65 5.83 0.09 3.63 8.65 0.78 2.65 0.17 12.83 71.4 77.7 1.63 Tt-3 42.89 0.81 12.78 6.23 0.06 5.04 11.96 0.35 3.00 0.16 16.37 74.4 84.6 2.15 Ja-h2 55.18 0.62 7.08 3.43 0.05 3.74 13.02 0.64 1.44 0.11 14.97 65.9 71.4 3.24 Ja-h9 48.44 0.76 14.36 6.27 0.03 2.00 11.47 0.18 3.09 0.14 13.60 78.4 88.3 1.66 Ja-h10 52.50 0.79 17.73 6.89 0.04 2.34 5.80 0.15 3.89 0.15 10.01 79.0 89.4 1.12 Ja-h14 59.11 1.01 20.27 5.67 0.01 1.77 0.71 0.10 4.13 0.14 7.39 80.8 90.3 0.66 Ja-1 52.08 1.02 19.24 7.64 0.03 2.79 3.98 0.19 4.40 0.16 8.09 78.1 89.0 1.04 Ja-2 60.14 1.05 18.69 6.81 0.03 2.01 0.98 0.21 3.38 0.17 6.30 81.1 88.6 0.77 Jy-h1 52.43 0.96 22.40 7.36 0.03 1.94 1.14 0.47 4.08 0.23 9.30 78.9 86.1 0.71 Jy-h2 54.87 1.21 20.81 7.02 0.02 1.81 1.22 0.69 3.80 0.26 8.53 76.5 83.1 0.76 Jy-1 64.14 0.80 16.88 6.24 0.04 1.28 1.10 1.43 2.52 0.23 5.12 72.1 75.5 0.79 Jm-1 38.87 0.51 10.68 4.89 0.14 2.45 19.70 0.37 3.07 0.41 18.72 70.1 82.7 2.91 Jm-2 67.42 0.71 13.52 3.55 0.03 1.79 2.76 1.05 3.33 0.11 5.54 65.7 73.7 0.98 表 2 济源盆地中生代泥岩微量元素分析结果(10-6)
Table 2. The trace elements (10-6) of the Mesozoic sediments from the Jiyuan basin
样品编号 Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba Hf Ta Pb Th U T1-h2 8.4 56.1 38.8 20.9 19.0 12.8 54.7 13.6 68.1 105.0 24.9 236.0 13.0 4.4 166.0 6.4 1.0 12.4 14.9 2.9 Th-h1 11.3 76.5 58.0 17.6 28.0 28.8 53.8 13.3 89.7 133.0 24.9 192.0 13.3 4.7 495.0 5.1 1.0 19.3 11.6 2.7 Th-h2 11.1 74.4 54.3 15.8 28.0 29.2 56.0 14.3 99.5 128.0 25.3 170.0 12.9 5.5 227.0 4.6 0.9 18.6 11.6 2.8 Th-h3 11.4 68.6 60.5 16.6 29.3 28.8 56.8 14.0 97.5 134.0 24.4 172.0 13.2 5.4 768.0 4.6 0.9 19.5 10.8 2.4 Th-h4 14.5 95.6 78.6 20.6 39.0 32.1 68.5 17.1 121.0 118.0 28.4 178.0 14.3 6.6 475.0 4.8 1.0 22.7 12.7 2.8 Te-h1 15.1 110.0 88.2 24.1 45.9 44.5 104.0 21.7 156.0 223.0 21.6 125.0 13.5 7.7 537.0 3.4 0.9 32.8 11.7 2.3 Te-h2 13.0 81.7 85.8 21.7 40.0 37.0 88.7 20.9 125.0 276.0 20.1 180.0 13.0 5.2 565.0 4.8 0.8 26.2 10.0 1.9 Te-h3 17.0 111.0 103.0 23.0 51.0 47.1 112.0 24.7 170.0 204.0 21.0 165.0 16.1 8.5 559.0 4.3 1.0 34.8 13.6 2.3 Te-h4 15.2 106.0 80.4 19.0 41.8 42.5 106.0 22.7 171.0 153.0 26.8 130.0 15.0 9.7 396.0 3.5 1.0 33.7 14.0 2.8 Ty-h1 13.2 93.8 79.4 19.2 38.1 47.4 95.0 22.4 109.0 172.0 18.9 208.0 13.9 5.4 744.0 5.3 0.9 28.4 11.5 1.8 Ty-h2 13.3 95.7 73.8 20.7 35.6 37.4 92.8 22.1 150.0 185.0 25.4 155.0 15.0 8.2 666.0 4.2 1.0 30.5 12.7 2.8 Ty-h3 14.1 93.2 71.1 15.5 34.3 45.7 100.0 22.3 126.0 194.0 25.6 150.0 15.7 5.7 576.0 4.0 1.1 29.3 15.4 2.8 Ty-h4 15.2 100.0 73.4 15.2 37.7 51.4 108.0 23.6 130.0 120.0 25.4 121.0 15.8 6.7 522.0 3.3 1.1 27.3 16.4 3.1 Tc-h1 11.5 79.3 52.0 14.4 25.4 27.9 67.8 17.9 112.0 203.0 21.0 166.0 12.7 6.2 451.0 4.4 0.9 16.6 11.9 2.2 Tc-h2 4.9 29.3 23.9 11.6 15.5 12.3 26.3 7.6 53.7 229.0 34.5 50.6 5.1 2.4 179.0 1.4 0.4 6.7 5.2 1.2 Tc-h3 15.5 104.0 88.3 16.7 40.7 50.0 104.0 26.3 161.0 157.0 26.0 195.0 16.5 7.4 796.0 5.2 1.1 25.0 15.3 2.6 Tc-h5 12.7 96.3 65.0 16.0 30.9 30.0 60.8 16.7 105.0 90.1 26.1 144.0 14.3 6.1 369.0 3.8 1.0 15.3 11.8 2.4 Tt-h1 6.2 40.2 24.9 18.5 13.1 6.18 32.3 6.9 43.6 256.0 20.1 287.0 10.4 1.6 164.0 7.3 0.8 10.6 10.1 2.0 Tt-1 9.1 42.9 38.4 14.5 29.0 29.0 63.0 14.6 110.0 193.0 20.4 163.0 14.6 8.4 276.0 4.2 3.0 27.2 14.9 2.0 Tt-2 8.6 50.1 49.2 15.4 29.0 34.8 70.7 15.8 98.6 160.0 19.9 148.0 13.4 7.5 347.0 3.9 1.1 29.6 12.3 2.7 Tt-3 10.1 56.3 47.7 17.0 32.6 36.2 69.2 14.6 111.0 150.0 25.4 177.0 15.6 6.7 315.0 4.6 1.2 25.7 11.6 1.8 Ja-h2 7.8 53.8 34.5 21.7 17.6 9.34 42.2 9.0 55.4 146.0 22.0 277.0 10.9 2.3 199.0 7.0 0.8 11.7 9.7 1.9 Ja-h9 15.1 110.0 65.6 18.5 32.6 33.8 80.8 19.4 140.0 159.0 26.9 159.0 15.4 7.7 420.0 4.3 1.1 19.9 14.2 2.7 Ja-h10 16.6 127.0 77.5 16.0 32.5 32.4 76.1 23.1 172.0 96.7 25.7 153.0 16.0 9.3 524.0 4.2 1.2 15.7 15.6 2.8 Ja-h14 20.6 121.0 105.0 22.4 61.8 31.7 90.6 28.8 182.0 55.3 45.8 236.0 21.3 19.4 696.0 6.3 1.4 9.1 20.3 3.3 Ta-1 12.9 85.0 70.6 17.0 40.1 51.4 89.5 22.2 168.0 112.0 34.9 190.0 19.2 11.2 432.0 4.6 1.5 19.7 16.0 2.8 Ta-2 12.9 70.0 84.6 18.1 52.2 51.9 84.6 20.9 126.0 74.2 37.3 219.0 19.6 11.8 532.0 5.6 1.1 20.8 14.3 3.2 Jy-h2 20.9 147.0 112.0 14.2 33.0 17.6 76.4 30.3 148.0 139.0 42.1 269.0 20.4 9.2 438.0 7.6 1.5 19.1 18.8 5.2 Jy-h1 21.5 158.0 95.2 11.9 34.1 25.7 80.0 32.6 160.0 139.0 42.9 238.0 17.0 9.9 481.0 6.9 1.2 19.5 16.3 4.3 Jy-1 8.2 50.9 40.2 9.7 28.5 29.4 65.2 15.9 75.6 121.0 30.2 202.0 14.0 5.0 364.0 4.8 0.9 21.0 8.8 2.4 Jm-1 6.8 46.1 46.0 16.1 42.8 34.0 64.2 13.2 84.1 312.0 12.5 95.6 11.2 9.7 441.0 2.5 0.7 26.3 9.6 2.8 Jm-2 6.6 55.1 41.6 11.3 30.8 26.4 53.2 14.2 116.6 85.8 18.5 200.0 13.7 11.1 321.0 5.0 0.8 13.5 9.2 1.8 表 3 济源盆地中生代泥岩稀土元素分析结果(10-6)
Table 3. The rare earth elements (10-6) of the Mesozoic sediments from the Jiyuan basin
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE/HREE La /Yb (La /Yb)N δEu T1-h2 38.3 73.2 8.5 32.1 5.9 1.0 5.5 0.8 4.6 0.9 2.5 0.3 2.2 0.3 176.1 9.3 17.3 11.7 0.5 Th-h1 33.5 69.7 8.0 30.6 6.1 1.2 5.5 0.8 4.6 0.9 2.4 0.3 2.3 0.4 166.3 8.7 14.6 9.8 0.6 Th-h2 31.5 64.4 7.6 28.8 5.7 1.1 5.2 0.8 4.7 0.9 2.6 0.4 2.3 0.3 156.2 8.1 13.5 9.1 0.6 Th-h3 30.6 65.4 7.5 29.2 5.7 1.3 5.2 0.8 4.5 0.9 2.4 0.3 2.3 0.3 156.3 8.4 13.5 9.1 0.7 Th-h4 40.7 76.8 8.8 33.8 6.6 1.3 6.1 0.9 5.3 1.0 2.8 0.4 2.7 0.4 187.5 8.6 15.4 10.4 0.6 Te-h1 42.2 79.5 9.0 34.0 6.0 1.3 5.3 0.7 4.0 0.8 2.2 0.3 2.1 0.3 187.7 11.0 19.9 13.4 0.7 Te-h2 43.4 79.8 9.3 34.6 5.9 1.3 5.0 0.7 3.8 0.7 2.1 0.3 2.1 0.3 189.3 11.6 20.9 14.1 0.7 Te-h3 43.6 85.4 9.7 35.7 6.3 1.4 5.1 0.8 4.1 0.8 2.3 0.4 2.4 0.4 198.1 11.3 17.9 12.1 0.7 Te-h4 47.1 86.3 10.2 38.3 7.0 1.4 6.0 0.9 4.8 0.9 2.7 0.4 2.4 0.4 208.7 10.3 19.4 13.1 0.6 Ty-h1 41.9 77.7 10.0 37.9 6.6 1.4 5.0 0.7 3.4 0.7 2.1 0.3 2.1 0.3 190.1 12.0 19.9 13.4 0.7 Ty-h2 46.6 86.4 10.0 38.7 7.1 1.5 6.0 0.9 4.7 0.9 2.5 0.4 2.3 0.4 208.2 10.6 20.4 13.7 0.7 Ty-h3 41.9 68.6 9.1 34.4 6.4 1.4 5.7 0.9 4.7 0.9 2.6 0.4 2.4 0.4 179.7 9.1 17.8 12.0 0.7 Ty-h4 44.8 68.8 9.6 36.0 6.6 1.4 5.7 0.9 4.7 0.9 2.6 0.4 2.4 0.4 185.0 9.4 18.9 12.7 0.7 Tc-h1 31.0 62.1 7.1 26.5 4.9 1.0 4.4 0.7 3.5 0.8 2.1 0.3 2.1 0.3 146.8 9.4 15.0 10.1 0.7 Tc-h2 72.9 46.9 11.1 38.7 6.1 1.0 5.5 0.8 4.7 0.9 2.4 0.3 1.8 0.3 193.5 10.5 39.6 26.7 0.5 Tc-h3 33.2 60.7 8.7 33.6 6.4 1.4 5.5 0.8 4.5 0.9 2.7 0.4 2.8 0.4 162.0 8.0 12.0 8.1 0.7 Tc-h5 33.6 68.0 7.9 29.7 5.6 1.1 5.3 0.8 4.6 0.9 2.6 0.4 2.5 0.4 163.4 8.3 13.3 9.0 0.6 Tt-h1 32.7 65.0 7.6 27.9 5.1 0.8 4.5 0.7 3.5 0.7 1.9 0.3 1.8 0.3 152.6 10.3 18.1 12.2 0.5 Tt-1 35.7 75.4 8.9 36.0 5.9 1.1 5.8 0.8 4.7 0.8 2.4 0.3 2.3 0.4 180.5 9.3 15.8 10.7 0.6 Tt-2 34.2 74.8 8.9 35.7 6.1 1.2 5.6 0.8 4.7 0.8 2.6 0.4 2.5 0.4 178.7 9.0 13.6 9.2 0.6 Tt-3 38.2 83.2 9.8 40.3 6.8 1.4 6.9 0.9 5.9 1.1 3.2 0.5 3.1 0.5 201.7 8.2 12.4 8.4 0.6 Ja-h2 31.1 63.9 7.4 28.1 5.3 0.9 4.7 0.7 3.9 0.8 2.2 0.3 2.0 0.3 151.7 9.2 15.5 10.4 0.6 Ja-h9 33.2 66.8 7.9 29.5 5.7 1.1 5.2 0.8 4.8 1.0 2.8 0.4 2.8 0.4 162.4 7.9 12.0 8.1 0.6 Ja-h10 39.4 72.3 8.2 30.5 5.6 1.1 5.1 0.8 4.6 0.9 2.8 0.4 2.8 0.4 174.9 8.8 14.0 9.4 0.6 Ja-h14 57.0 99.5 11.6 42.8 7.6 1.5 7.0 1.1 6.9 1.4 4.2 0.6 4.1 0.6 246.0 8.5 13.9 9.4 0.6 Ja-1 50.4 110.0 12.7 51.4 8.5 1.8 8.5 1.2 8.0 1.5 4.6 0.7 4.4 0.8 264.4 7.9 11.5 7.7 0.6 Ja-2 51.8 119.0 13.8 56.9 10.1 2.2 9.8 1.4 8.5 1.6 4.6 0.7 4.2 0.6 285.0 8.1 12.2 8.2 0.7 Jy-h2 71.6 125.0 13.0 44.7 6.9 1.3 6.5 1.0 6.0 1.3 4.3 0.7 4.6 0.7 287.6 10.4 15.5 10.4 0.6 Jy-h1 59.5 105.0 11.6 42.1 6.9 1.4 6.5 1.0 6.4 1.4 4.2 0.7 4.4 0.7 251.8 9.0 13.5 9.1 0.6 Jy-1 39.5 93.6 11.2 47.1 8.2 1.8 7.8 1.1 7.0 1.3 3.8 0.5 3.5 0.7 227.0 7.9 11.4 7.7 0.7 Jm-1 24.3 49.5 6.0 23.5 3.8 0.8 3.7 0.5 2.8 0.5 1.5 0.2 1.5 0.3 118.8 9.8 16.6 11.2 0.7 Jm-2 30.8 70.6 8.4 34.4 6.0 1.2 5.5 0.8 4.7 0.9 2.5 0.4 2.4 0.4 168.9 8.7 12.8 8.7 0.6 表 4 4阶段样品与不同构造环境杂砂岩稀土元素特征参数的对比
Table 4. Compared the REE values of four stages with the data from different tectonic settings
构造背景 La Ce ∑REE LREE/HREE La/Yb (La/Yb)N Eu/Eu* 大洋岛弧 8±1.7 19±3.7 58±10 3.8±0.9 4.2±1.3 2.8±0.9 1.04±0.11 大陆岛弧 27±4.5 59±8.2 146±20 7.7±1.7 11±3.6 7.5±2.5 0.79±0.13 活动大陆边缘 37 78 186 9.1 12.5 8.5 0.60 被动大陆边缘 39 85 210 8.5 15.9 10.8 0.56 T1+2 41 34* 76 63* 184 153* 9.88 17.64 11.89 0.67 T3 39 33* 67 56* 172 143* 9.13 17.48 9.65 0.61 J1-2 48 40* 95 79* 228 190* 8.63 13.26 8.94 0.62 J2 28 23* 60 50* 144 120* 9.26 14.74 9.94 0.66 注:大洋、大陆岛弧以及活动、被动大陆边缘数据据Bhatia(1985);其他为本文值,其中*为校正值. -
[1] Bhatia,M.R.,1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology,45(1-2):97-113.doi: 10.1016/0037-0738(85)90025-9 [2] Bhatia,M.R.,Crook,K.A.W.,1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology,92(2):181-193.doi: 10.1007/BF00375292 [3] Bouchez,J.,Gaillardet,J.,France-Lanord,C.,et al.,2011.Grain Size Control of River Suspended Sediment Geochemistry:Clues from Amazon River Depth Profiles.Geochemistry,Geophysics,Geosystems,12(3):428-452.doi: 10.1029/2010GC003380 [4] Buatois,L.A.,Mngano,M.G.,Wu,X.T.,et al.,1996.Trace Fossils from Jurassic Lacustrine Turbidites of the Anyao Formation (Central China) and Their Environmental and Evolutionary Significance.Ichnos,5(4):287-303.doi: 10.1080/10420949609380137 [5] Chen,Y.L.,Li,D.P.,Wang,Z.,et al.,2012.History of Formation and Evolution on the Crust around the Ordos Basin:Evidences from U-Pb Dating and Hf Isotopic Composition of Zircons.Earth Science Frontiers,19(3):147-166 (in Chinese with English abstract). [6] Colombi,C.E.,Parrish,J.T.,2008.Late Triassic Environmental Evolution in Southwestern Pangea:Plant Taphonomy of the Ischigualasto Formation.Palaios,23(12):778-795.doi: 10.2110/palo.2007.p07-101r [7] Condie,K.C.,1991.Another Look at Rare Earth Elements in Shales.Geochimica et Cosmochimica Acta,55(9):2527-2531.doi: 10.1016/0016-7037(91)90370-K [8] Cox,R.,Lowe,D.R.,Cullers,R.L.,1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta,59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9 [9] Dera,G.,Brigaud,B.,Monna,F.,et al.,2011.Climatic Ups and Downs in a Disturbed Jurassic World.Geology,39(3):215-218.doi: 10.1130/G31579.1 [10] Dong,Y.P.,Santosh,M.,2016.Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt,Central China.Gondwana Research,29(1):1-40.doi: 10.1016/j.gr.2015.06.009 [11] Dong,Y.P.,Zhang,G.W.,Neubauer,F.,et al.,2011.Tectonic Evolution of the Qinling Orogen,China:Review and Synthesis.Journal of Asian Earth Sciences,41(3):213-237.doi: 10.1016/j.jseaes.2011.03.002 [12] Dong,Y.P.,Zhang,X.N.,Liu,X.M.,et al.,2015.Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen.Journal of Asian Earth Sciences,104:84-98.doi: 10.1016/j.jseaes.2014.10.007 [13] Dromart,G.,Garcia,J.P.,Picard,S.,et al.,2003.Ice Age at the Middle-Late Jurassic Transition?Earth and Planetary Science Letters,213(3-4):205-220.doi: 10.1016/s0012-821x(03)00287-5 [14] Fang,G.Q.,Liu,D.L.,2000.Chemical Compositions of Flych Graywackes and Plate Tectonics.Sedimentary Geology and Tethyan Geology,20 (3):105-112 (in Chinese with English abstract). [15] Fedo,C.M.,Nesbitt,H.W.,Young,G.M.,1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols,with Implications for Paleoweathering Conditions and Provenance.Geology,23(10):921-924.doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 [16] Gao,S.,Luo,T.C.,Zhang,B.R.,et al.,1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta,62(11):1959-1975.doi: 10.1016/S0016-7037(98)00121-5 [17] Hao,Y.W.,Luo,M.S.,Xu,Z.L.,et al.,2014.Division of Sedimentary Basins and Its Tectonic Evolution in North China from Newproterozoic to Mesozoic.Earth Science,39(8):1230-1242 (in Chinese with English abstract). http://www.docin.com/p-982522877.html [18] Hu,B.,Yang,W.T.,Song,H.B.,et al.,2009.Trace Fossils and Ichnofabrics in the Heshanggou Formation of Lacustrine Deposits,Jiyuan Area,Henan Province.Acta Sedimentologica Sinica,27(4):573-582 (in Chinese with English abstract). [19] Li,H.Y.,He,B.,Xu,Y.G.,et al.,2010.U-Pb and Hf Isotope Analyses of Detrital Zircons from Late Paleozoic Sediments:Insights into Interactions of the North China Craton with Surrounding Plates.Journal of Asian Earth Sciences,39(5):335-346.doi: 10.1016/j.jseaes.2010.05.002 [20] Li,H.Y.,Huang,X.L.,2013.Constraints on the Paleogeographic Evolution of the North China Craton during the Late Triassic-Jurassic.Journal of Asian Earth Sciences,70-71:308-320.doi: 10.1016/j.jseaes.2013.03.028 [21] Li,L.,Yao,G.Q.,Liu,Y.H.,et al.,2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area,Eastern China.Earth Science,40(9):1480-1496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201509003.htm [22] Li,M.L.,Zheng,D.S.,Dai,G.Z.,et al.,2014.Geochemical Characteristics of the Jurassic Argillaceous Rocks of the Jiyuan Basin,West Henan and the Implications for Environments and Provenances.Acta Geologica Sinica,88(2):228-238 (in Chinese with English abstract). http://www.docin.com/p-1094348758.html [23] Li,S.Y.,Li,R.W.,Yue,S.C.,et al.,2004.Geochemistry of Mesozoic Detrital Rocks and Its Constraints on Provenance in Feixi Area,Anhui Province.Acta Petrologica Sinica,20(3):667-676 (in Chinese with English abstract). http://www.oalib.com/paper/1471683 [24] Li,S.Y.,Yang,D.D.,Wang,S.,et al.,2014.Characteristics of Petrology,Geochemistry,Heavy Minerals and Isotope Chronology of Upper Carboniferous Detrital Rocks in the Middle Segment of South Tianshan and Constraints to the Provenance and Tectonic Evolution.Acta Geologica Sinica,88(2):167-184 (in Chinese with English abstract). https://www.researchgate.net/publication/306173326_Geological_characteristics_and_tectonic_evolution_of_the_middle_segment_of_Mohe_thrust_Nappe [25] Liu,S.F.,Zhang,G.W.,2005.Fundamental Ideas,Contents and Methods in Study of Basin and Mountain Relationships.Earth Science Frontiers,12(3):101-111 (in Chinese with English abstract). [26] Liu,S.F.,Zhang,G.W.,2008.Evolution and Geodynamics of Basin-Mountain System in East Qinling-Dabieshan and Its Adjacent Regions,China.Geological Bulletin of China,27(12):1943-1960 (in Chinese with English abstract). https://www.researchgate.net/publication/281322972_Evolution_and_geodynamics_of_basinmountain_systems_in_East_Qinling-Dabieshan_and_its_adjacent_regions_China?_sg=l96zIuViax0hVoCl-mIZbFDk2x2q62CHdaDDEYDGetxjK2WzJKOPW2UEqu6jYtpaq0DoTMAM2gZpM9Q1AaJXbA [27] Liu,S.F.,Su,S.,Zhang,G.W.,2013.Early Mesozoic Basin Development in North China:Indications of Cratonic Deformation.Journal of Asian Earth Sciences,62:221-236.doi: 10.1016/j.jseaes.2012.09.011 [28] Ma,S.X.,Meng,Q.R.,Qu,Y.Q.,2011.A Study of Detrital Zircons of Late Carboniferous-Middle Triassic Strata in the Northern Margin of North China Block and Its Geological Implication.Geological Bulletin of China,30(10):1485-1500 (in Chinese with English abstract). https://www.researchgate.net/publication/35870939_Paleomagnetism_of_Carboniferous_and_Triassic_strata_from_Cratonic_North_America [29] Ma,S.X.,Meng,Q.R.,Wu,G.L.,et al.,2014.Late Paleozoic Exhumation of the Inner Mongolia Paleo-Uplift:Evidences from Sedimentary Records.Acta Geologica Sinica,88(10):1771-1789 (in Chinese with English abstract). https://www.researchgate.net/profile/Shouxian_Ma/citations?sorting=citationCount&page=1 [30] McLennan,S.M.,1993.Weathering and Global Denudation.The Journal of Geology,101(2):295-303.doi: 10.1086/648222 [31] McLennan,S.M.,Hemming,S.,McDaniel,D.K.,et al.,1993.Geochemical Approaches to Sedimentation,Provenance,and Tectonics.GSA Special Papers,284:21-40.doi: 10.1130/SPE284-p21 [32] McLennan,S.M.,Taylor,S.R.,McCulloch,M.T.,et al.,1990.Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites:Crustal Evolution and Plate Tectonic Associations.Geochimica et Cosmochimica Acta,54(7):2015-2050.doi: 10.1016/0016-7037(90)90269-Q [33] Nesbitt,H.W.,Fedo,C.M.,Young,G.M.,1997.Quartz and Feldspar Stability,Steady and Non-Steady-State Weathering,and Petrogenesis of Siliclastic Sands and Muds.Journal of Geology,105(2):173-192.doi: 10.1086/515908 [34] Nesbitt,H.W.,Young,G.M.,1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature,299(5885):715-717.doi: 10.1038/299715a0 [35] Panahi,A.,Young,G.M.,Rainbird,R.H.,2000.Behavior of Major and Trace Elements (Including REE) during Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie,Québec,Canada.Geochimica et Cosmochimica Acta,64(13):2199-2220.doi: 10.1016/S0016-7037(99)00420-2 [36] Preto,N.,Kustatscher,E.,Wignall,P.B.,2010.Triassic Climates-State of the Art and Perspectives.Palaeogeography,Palaeoclimatology,Palaeoecology,290(1-4):1-10.doi: 10.1016/j.palaeo.2010.03.015 [37] Qi,Y.A.,Hu,B.,Zhang,G.C.,et al.,2007.Ichnofabrics and Their Environmental Interpretation from Middle Triassic Youfangzhuang Formation,Jiyuan Region,Western Henan Province.Acta Sedimentologica Sinica,25(3):372-379 (in Chinese with English abstract). [38] Retallack,G.J.,Veevers,J.J.,Morante,R.,1996.Global Coal Gap between Permian-Triassic Extinction and Middle Triassic Recovery of Peat-Forming Plants.GSA Bulletin,108:195-207.doi: 10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2 [39] Retallack,G.J.,1999.Postapocalyptic Greenhouse Paleoclimate Revealed by Earliest Triassic Paleosols in the Sydney Basin,Australia.GSA Bulletin,111(1):52-70.doi: 10.1130/0016-7606(1999)111<0052:PGPRBE>2.3.CO;2 [40] Roser,B.P.,Korsch,R.J.,1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology,94(5):635-650.doi: 10.1086/629071 [41] Royer,D.L.,Berner,R.A.,Montaez,I.P.,et al.,2004.CO2 as a Primary Driver of Phanerozoic Climate.GSA Today,14(3):4-10.doi: 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 [42] Shao,J.Q.,Yang,S.Y.,2012.Does Chemical Index of Alteration (CIA) Reflect Silicate Weathering and Monsoonal Climate in the Changjiang River Basin?Chinese Science Bulletin,57(11):933-942 (in Chinese). [43] Simms,M.J.,Ruffell,A.H.,1989.Synchroneity of Climatic Change and Extinctions in the Late Triassic.Geology,17(3):265.doi: 10.1130/0091-7613(1989)017<0265:soccae>2.3.co;2 [44] Tian,Y.,Zhao,X.M.,Wang,L.Z.,et al.,2015.Geochemistry of Clastic Rocks from the Triassic Xujiahe Formation,Lichuan Area,Southwestern Hubei:Implications for Weathering,Provenance and Tectonic Setting.Acta Petrologica Sinica,31(1):261-272 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150119 [45] Wang,M.,Qi,Y.A.,Li,D.,et al.,2014.Ichnofabrics and Their Environmental Interpretation from the Fluvial Deposits of the Middle Triassic Youfangzhuang Formation in Western Henan,Central China.Journal of Earth Science,25(4):648-661.doi: 10.1007/s12583-014-0454-2 [46] Wang,Q.F.,Deng,J.,Liu,X.F.,et al.,2015.Provenance of Late Carboniferous Bauxite Deposits in the North China Craton:New Constraints on Marginal Arc Construction and Accretion Processes.Gondwana Research,38:86-98.doi: 10.1016/j.gr.2015.10.015 [47] Wang,Y.,Li,H.M.,2008.Initial Formation and Mesozoic Tectonic Exhumation of an Intracontinental Tectonic Belt of the Northern Part of the Taihang Mountain Belt,Eastern Asia.Journal of Geology,116(2):155-172.doi: 10.1086/529153 [48] Wang,Z.Q.,1989.Permian Gigantic Palaeobotanical Events in North China.Acta Palaeontologica Sinica,28(3):314-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199702015.htm [49] Wu,X.T.,1985.Trace Fossils and Their Environmental Significance in Non-marine Turbidite Deposits from Jiyuan-Yima Basin,Western Henan.Acta Sedimentologica Sinica,3(3):23-31,137-138 (in Chinese with English abstract). [50] Xiao,W.J.,Windley,B.F.,Hao,J.,et al.,2003.Accretion Leading to Collision and the Permian Solonker Suture,Inner Mongolia,China:Termination of the Central Asian Orogenic Belt.Tectonics,22(6):8-1-8-20.doi: 10.1029/2002TC001484 [51] Xu,Z.J.,Cheng,R.H.,Wang,L.L.,et al.,2013.Mineralogical and Element Geochemical Characteristics of the Late Triassic-Middle Jurassic Sedimentary Rocks in Southwestern Fujian Province:Constraints on Changes of Basin Tectonic Settings.Acta Petrologica Sinica,29(8):2913-2924 (in Chinese with English abstract). https://www.researchgate.net/publication/287175806_Mineralogical_and_element_geochemical_characteristics_of_the_Late_Triassic-Middle_Jurassic_sedimentary_rocks_in_southwestern_Fujian_Province_Constraints_on_changes_of_basin_tectonic_settings [52] Xu,Z.Q.,Li,T.D.,Ji,S.C.,et al.,2008.Advances and Prospective of Continental Dynamics:Theory and Application.Acta Petrologica Sinica,24(7):1433-1444 (in Chinese with English abstract). [53] Yan,Z.,Fu,C.L.,Wang,Z.Q.,et al.,2016.Late Paleozoic Subduction-Accretion along the Southern Margin of the North Qinling Terrane,Central China:Evidence from Zircon U-Pb Dating and Geochemistry of the Wuguan Complex.Gondwana Research,30:97-111.doi: 10.1016/j.gr.2015.05.005 [54] Yang,J.H.,Cawood,P.A.,Du,Y.S.,et al.,2014a.Global Continental Weathering Trends across the Early Permian Glacial to Postglacial Transition:Correlating High- and Low-Paleolatitude Sedimentary Records.Geology,42(10):835-838.doi: 10.1130/G35892.1 [55] Yang,J.H.,Cawood,P.A.,Du,Y.S.,et al.,2016.Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices.GSA Bulletin,128(5-6):739-751.doi: 10.1130/B31371.1 [56] Yang,W.T.,Wang,M.,Du,Y.S.,2014.The Depositional Characteristics from Mesozoic Jiyuan Basin with Its Response to the Uplift of Qinling Orogen and Taihang Mountains.Geological Review,60(2):260-274 (in Chinese with English abstract). [57] Yang,W.T.,Yang,J.H.,Wang,X.F.,et al.,2014b.Uplift-Denudation History of the Qinling Orogen:Constrained from the Detrital-Zircon U-Pb Geochronology.Journal of Asian Earth Sciences,89:54-65.doi: 10.1016/j.jseaes.2014.03.025 [58] Yang,Z.Y.,Ma,X.H.,Huang,B.C.,et al.,1998.Apparent Polar Wander Path and Tectonic Movement of the North China Block in Phanerozoic.Science in China (Series D),48(Suppl.):44-56 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG1998S2005.htm [59] Yu,H.,Zhang,H.F.,Li,X.H.,et al.,2016.Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation:Evidence from Zircons in Metamorphic Rocks of the Qinling Group.Gondwana Research,30:65-78.doi: 10.1016/j.gr.2015.07.003 [60] Zhang,G.C.,Zeng,Y.F.,Buatois,L.A.,et al.,2005.Lacustrine Deposits and Associated Trace Fossils in the Upper Part of the Tanzhuang Formation (T2-3),Jiyuan Basin,Henan Province.Acta Sedimentologica Sinica,23(1):100-107 (in Chinese with English abstract). [61] Zhang,G.W.,Meng,Q.R.,Lai,S.C.,1995.Structure and Tectonics of the Qinling Orogenic Belt.Science in China (Series B),25(9):994-1003 (in Chinese). http://www.oalib.com/references/19053574 [62] Zhang,S.H.,Zhao,Y.,Liu,J.,et al.,2007.Emplacement Depths of the Late Paleozoic-Mesozoic Granitoid Intrusions from the Northern North China Block and Their Tectonic Implications.Acta Petrologica Sinica,23(3):625-638 (in Chinese with English abstract). http://www.oalib.com/paper/1491627 [63] Zhao,J.F.,Liu,C.Y.,Liang,J.W.,et al.,2010.Restoration of the Original Sedimentary Boundary of the Middle Jurassic Zhiluo Formation-Anding Formation in the Ordos Basin.Acta Geologica Sinica,84(4):553-569 (in Chinese with English abstract). https://www.researchgate.net/publication/291105225_Restoration_of_the_original_sedimentary_boundary_of_the_middle_jurassic_Zhiluo_Formation-Anding_Formation_in_the_ordos_basin [64] Zhou,Z.J.,Mao S.D.,Chen,Y.J.,et al.,2015.U-Pb Ages and Lu-Hf Isotopes of Detrital Zircons from the Southern Qinling Orogen:Implications for Precambrian to Phanerozoic Tectonics in Central China.Gondwana Research,35:323-337.doi: 10.1016/j.gr.2015.06.003 [65] Zhu,X.Q.,Zhu,W.B.,Ge,R.F.,et al.,2014.Late Paleozoic Provenance Shift in the South-Central North China Craton:Implications for Tectonic Evolution and Crustal Growth.Gondwana Research,25(1):383-400.doi: 10.1016/j.gr.2013.04.009 [66] 陈岳龙,李大鹏,王忠,等,2012.鄂尔多斯盆地周缘地壳形成与演化历史:来自锆石U-Pb年龄与Hf同位素组成的证据.地学前缘,19(3): 147-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203018.htm [67] 方国庆,刘德良.2000.复理石杂砂岩的化学组成与板块构造.沉积与特提斯地质,20(3): 105-112. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200003016.htm [68] 郝奕玮,骆满生,徐增连,等,2014.华北陆块新元古代-中生代沉积盆地划分及其构造演化.地球科学,39(8): 1230-1242. http://www.earth-science.net/WebPage/Article.aspx?id=2899 [69] 胡斌,杨文涛,宋慧波,等,2009.豫西济源地区早三叠世和尚沟组湖相遗迹化石及遗迹组构.沉积学报,27(4): 573-582. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200904000.htm [70] 李乐,姚光庆,刘永河,等,2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学,40(9): 1480-1496. http://www.earth-science.net/WebPage/Article.aspx?id=3152 [71] 李明龙,郑德顺,戴光忠,等,2014.豫西济源盆地侏罗系泥质岩地球化学特征及其环境和物源示踪.地质学报,88(2): 228-238. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402006.htm [72] 李双应,李任伟,岳书仓,等,2004.安徽肥西中生代碎屑岩地球化学特征及其对物源制约.岩石学报,20(3): 667-676. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403030.htm [73] 李双应,杨栋栋,王松等,2014.南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束.地质学报,88(2): 167-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402002.htm [74] 刘少峰,张国伟,2005.盆山关系研究的基本思路、内容和方法.地学前缘,12(3): 101-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503016.htm [75] 刘少峰,张国伟,2008.东秦岭-大别山及邻区盆-山系统演化与动力学.地质通报,27(12): 1943-1960. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812003.htm [76] 马收先,孟庆任,曲永强,2011.华北地块北缘上石炭统-中三叠统碎屑锆石研究及其地质意义.地质通报,30(10): 1485-1500. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110003.htm [77] 马收先,孟庆任,武国利,等,2014.内蒙古隆起晚古生代构造隆升的沉积记录.地质学报,88(10): 1771-1789. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201410001.htm [78] 齐永安,胡斌,张国成,等,2007.豫西济源地区中三叠世油房庄组遗迹组构及其环境解释.沉积学报,25(3): 372-379. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200703006.htm [79] 邵菁清,杨守业,2012.化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?科学通报,57(11): 933-942. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201211010.htm [80] 田洋,赵小明,王令占,等,2015.鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示.岩石学报,31(1): 261-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501019.htm [81] 王自强,1989.华北二叠纪大型古植物事件.古生物学报,28(3): 314-343. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198903003.htm [82] 吴贤涛,1985.豫西济源-义马盆地浊流沉积中的痕迹化石及其环境意义.沉积学报,3(3): 23-31,137-138. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198503002.htm [83] 许中杰,程日辉,王嘹亮,等,2013.闽西南地区晚三叠-中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束.岩石学报,29(8): 2913-2924. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308027.htm [84] 许志琴,李廷栋,嵇少丞,等,2008.大陆动力学的过去、现在和未来-理论与应用.岩石学报,24(7): 1433-1444. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807002.htm [85] 杨文涛,王敏,杜远生,2014.中生代济源盆地沉积充填特征及其对秦岭、太行山隆升作用的响应.地质论评,60(2): 260-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402002.htm [86] 杨振宇,马醒华,黄宝春,等,1998.华北地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑),28(S1): 44-56. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1005.htm [87] 张国成,曾玉凤,Buatois,L.A.,等,2005.济源盆地谭庄组(T2-3)上段湖相沉积及遗迹化石特征.沉积学报,23(1): 100-107. http://www.cqvip.com/Main/Detail.aspx?id=15270255 [88] 张国伟,孟庆任,赖绍聪.1995.秦岭造山带的结构构造.中国科学(B辑),25(9): 994-1003. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm [89] 张拴宏,赵越,刘健,等,2007.华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义.岩石学报,23(3): 625-638. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703012.htm [90] 赵俊峰,刘池洋,梁积伟,等,2010.鄂尔多斯盆地直罗组-安定组沉积期原始边界恢复.地质学报,84(4): 553-569. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004011.htm