• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    漠河盆地二十二站组砂岩形成时代及物源区构造环境判别

    李良 孙丰月 李碧乐 许庆林 张雅静 兰理实

    李良, 孙丰月, 李碧乐, 许庆林, 张雅静, 兰理实, 2017. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别. 地球科学, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    引用本文: 李良, 孙丰月, 李碧乐, 许庆林, 张雅静, 兰理实, 2017. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别. 地球科学, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    Li Liang, Sun Fengyue, Li Bile, Xu Qinglin, Zhang Yajing, Lan Lishi, 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    Citation: Li Liang, Sun Fengyue, Li Bile, Xu Qinglin, Zhang Yajing, Lan Lishi, 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1): 35-52. doi: 10.3799/dqkx.2017.003

    漠河盆地二十二站组砂岩形成时代及物源区构造环境判别

    doi: 10.3799/dqkx.2017.003
    基金项目: 

    中国地质调查局项目 1212011085485

    国家自然科学基金项目 41272093

    详细信息
      作者简介:

      李良(1986-),男,博士研究生,主要从事矿床成矿理论与预测方面的研究.OCRID: 0000-0002-0898-306X.E-mail: liliangjlu2011@163.com

      通讯作者:

      孙丰月,OCRID: 0000-0001-9408-7298.E-mail: sunfeng0669@sina.com

    • 中图分类号: P581;P597.3

    Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance

    • 摘要: 大兴安岭北部的漠河盆地广泛发育中生界二十二站组砂岩,其形成时代一直备受争议.首次利用碎屑锆石LA-ICP-MS U-Pb法测年对其形成时代作出较为精确的限定,并结合地球化学特征对其物源区及大地构造背景进行了探讨.研究结果表明,二十二站组砂岩碎屑物磨圆度较低、分选差,表现出源区相对不稳定,快速剥蚀、搬运及沉积的特征.锆石颗粒粗大,具有清晰的震荡环带,Th/U值为0.35~1.07,为典型的岩浆锆石.测年结果显示,90个测点年龄主要分布在3个群落:152~170Ma,峰值年龄约为158Ma,这一年龄区间揭示了二十二站组沉积成岩的下限为晚侏罗世;179~193Ma,峰值年龄约为190Ma;205~214Ma,峰值年龄约为210Ma.3个年龄峰值为蒙古-鄂霍茨克洋演化过程中一系列岩浆活动的地质记录,其中210Ma与190Ma峰值年龄与盆地南缘额尔古纳地块晚三叠世、早侏罗世的岩浆事件相吻合,而158Ma峰值年龄则对应于盆地北缘晚侏罗世的岩浆事件.主、微量元素构造判别图解揭示其物源区具有活动大陆边缘的特征,同时锆石定年数据显示其没有任何前中生代的碎屑物,暗示了该3期岩浆岩均形成于额尔古纳地块北缘的中生代活动大陆边缘环境,并为二十二站组的形成提供了主要碎屑物质.由此说明,二十二站组砂岩形成于晚侏罗世蒙古-鄂霍茨克洋闭合后的造山过程中,漠河盆地南北两侧物源区快速剥蚀、快速搬运与快速沉积的环境.

       

    • 图  1  漠河盆地区域构造分区(a)、漠河盆地及邻区上阿穆尔盆地区域地质图(b)和砂宝斯金矿区地质图(c)

      图a据和钟铧等(2008a)修改;图b据和政军等(2003)修改;图c据齐金忠等(2000)

      Fig.  1.  Regional tectonic subdivisions of the Mohe basin(a),regional geological sketch of the Mohe basin and Amur basin(b)and Shabaosi gold deposit(c)

      图  2  二十二站组砂岩显微镜下照片(正交偏光)

      Q.石英;Pl.斜长石;Pth.条纹长石;Mic.微斜长石;Lv.火成岩岩屑;Bt.黑云母;Cal.方解石;Mus.白云母

      Fig.  2.  Micrographs of the Ershi'erzhan Formation sandstone

      图  3  二十二站组砂岩碎屑锆石阴极发光照片

      Fig.  3.  CL images of detrital zircons from the Ershi'erzhan Formation sandstone

      图  4  二十二站组砂岩碎屑锆石的U-Pb年龄谐和图(a)和年龄概率分布(b)

      Fig.  4.  Diagrams of U-Pb concordia ages of zircons for the Ershi'erzhan Formation sandstone(a),and probability density distribution(b)

      图  5  二十二站组砂岩岩石地球化学分类图解

      Fig.  5.  Geochemical classification diagrams of the Ershi'erzhan Formation sandstone

      图  6  二十二站组砂岩球粒陨石(a)、全球平均大陆上地壳(b)标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(c)

      Fig.  6.  Chondrite-normalized(a),UCC-normalized(b)rare earth element patterns and primitive mantle-normalized trace element spider diagram(c)of the Ershi'erzhan Formation sandstone

      图  7  二十二站组砂岩源区母岩性质判别图解

      Fig.  7.  Discrimination diagrams of mother rock for the Ershi'erzhan Formation sandstone

      图  8  二十二站组碎屑锆石年龄与额尔古纳地块岩浆锆石年龄对比

      额尔古纳地块中生代花岗岩锆石年龄数据引自Wu et al.(2011)

      Fig.  8.  Probability curves of ages for detrital zircons from the Ershi'erzhan Formation sandstone and magmatic zircons from the Erguna massif

      图  9  二十二站组砂岩物源区主量元素(a,b)和微量元素(c,d,e)构造环境判别图解

      Fig.  9.  Tectonic setting discrimination diagrams of the major elements(a,b)and trace elements(c,d,e)for the provenance from the Ershi'erzhan Formation sandstone

      图  10  二十二站组砂岩形成构造背景示意

      Fig.  10.  Sketch showing the forming tectonic setting of the Ershi'erzhan Formation

      表  1  二十二站组砂岩碎屑锆石LA-ICP-MS U-Pb测年分析结果

      Table  1.   Detrital zircon LA-ICP-MS U-Pb analytical results of the Ershi'erzhan Formation sandstones

      编号Pb(10-6)Th(10-6)U(10-6)Th/U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄(Ma)
      207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ208Pb/232Th1σ
      SBS-N1-016.11041890.550.050210.003470.164860.011040.023820.000412051581551015231512
      SBS-N1-029.92243290.680.052280.002650.173200.007340.024030.0004029866162615331503
      SBS-N1-034.8831530.540.046270.002750.155680.008890.024400.0004012130147815531574
      SBS-N1-048.81582580.610.047420.003350.159350.010890.024370.00043701571501015531563
      SBS-N1-058.82062810.730.051270.002530.171930.006940.024320.0003825364161615521573
      SBS-N1-067.11272330.550.052240.002370.175770.006340.024400.0003829654164515521693
      SBS-N1-0724.67787940.980.057350.002050.192460.004450.024340.0003550527179415521042
      SBS-N1-084.61291300.990.049260.003080.166850.009240.024560.0004316094157815631664
      SBS-N1-0910.01993070.650.049890.002470.168730.006920.024530.0004019065158615631433
      SBS-N1-108.71972780.710.049730.002110.168020.005450.024500.0003718248158515621533
      SBS-N1-116.71342220.610.050070.002390.169450.006580.024540.0003919861159615621523
      SBS-N1-128.31642690.610.052480.002310.178680.006050.024690.0003730650167515721543
      SBS-N1-137.81442420.590.052310.002580.178100.007240.024690.0004029963166615731674
      SBS-N1-147.41512350.640.048830.002170.166400.005820.024710.0003814053156515721703
      SBS-N1-156.81352100.640.051950.002840.176540.008280.024640.0004228376165715731524
      SBS-N1-169.61792980.600.051030.002660.173990.007640.024730.0004124270163715731544
      SBS-N1-1711.52803570.780.050160.002040.172040.005180.024880.0003720243161415821502
      SBS-N1-1811.12073530.590.049660.002120.170420.005540.024880.0003717948160515821613
      SBS-N1-195.71001750.570.052270.003100.178380.009270.024750.0004429786167815831645
      SBS-N1-2011.32593170.820.050700.002700.173010.007790.024750.0004122773162715831564
      SBS-N1-217.61932180.880.047520.002640.162900.007810.024860.000427575153715831513
      SBS-N1-227.81402420.580.047970.002670.163720.007900.024750.000419878154715831484
      SBS-N1-2311.52603580.730.048600.001980.166080.005020.024780.0003712943156415821522
      SBS-N1-247.21312270.580.049080.002660.167580.007770.024770.0004115277157715831474
      SBS-N1-259.11592740.580.049360.002730.168930.008000.024820.0004216579158715831614
      SBS-N1-268.11392560.540.053820.002380.183780.006330.024760.0003836450171515821874
      SBS-N1-2711.32203260.680.049040.002770.168820.008230.024960.0004315081158715931604
      SBS-N1-289.11892720.700.050890.002450.174970.006870.024940.0004023661164615931523
      SBS-N1-2914.02914280.680.049550.002020.170580.005140.024960.0003717443160415921613
      SBS-N1-309.52342880.810.047100.002230.161950.006240.024940.000395456152515921443
      SBS-N1-3111.82543630.700.047620.002000.163920.005240.024960.000378048154515921593
      SBS-N1-3210.41833170.580.052030.002630.178690.007490.024910.0004128766167615931734
      SBS-N1-3310.71883290.570.051010.002250.175810.006020.024990.0003824151164515921793
      SBS-N1-3411.02253490.650.050990.002100.175240.005340.024920.0003724043164515921543
      SBS-N1-3518.24365200.840.048410.002040.166910.005280.025000.0003711947157515921603
      SBS-N1-366.91561920.810.045750.003060.157570.009500.024980.000451595149815931544
      SBS-N1-3710.42103290.640.048770.002090.167840.005490.024960.0003713749158515921573
      SBS-N1-3812.92084210.490.048400.001900.167190.004690.025050.0003611939157415921613
      SBS-N1-398.71932500.770.047880.002760.164600.008300.024930.000439381155715931564
      SBS-N1-407.41462220.660.050000.003160.173030.010560.025100.00041195145162916031602
      SBS-N1-4112.22773770.740.051380.002100.177790.005330.025090.0003725842166516021563
      SBS-N1-4211.23093081.000.048780.003580.168630.012030.025070.000431371661581016031602
      SBS-N1-4310.51873130.600.049260.002670.170550.007870.025110.0004216076160716031734
      SBS-N1-449.11172950.400.053220.002410.186790.006620.025450.0003933853174616221944
      SBS-N1-456.81232010.610.051720.002550.189300.007670.026540.0004227364176716931814
      SBS-N1-4611.12133300.640.051300.002240.188820.006320.026690.0004025449176517031653
      SBS-N1-476.4991900.520.051050.004300.198390.015520.028180.000612431381841317941848
      SBS-N1-4810.11672980.560.052070.002650.207630.008750.028920.0004728866192718431764
      SBS-N1-496.81441970.730.049500.003030.199100.010740.029170.0005117292184918531875
      SBS-N1-5023.95696050.940.051750.002110.208960.006260.029280.0004327442193518631943
      SBS-N1-5110.81563010.520.051240.002350.207720.007590.029400.0004625255192618731994
      SBS-N1-5220.8386010.510.048980.002300.199160.007590.029490.0004714759184618731814
      SBS-N1-538.11281970.650.046340.002730.188580.010710.029510.0004615129175918731894
      SBS-N1-546.61331850.720.050430.003260.205190.011860.029510.000542151001901018731745
      SBS-N1-5517.12334530.510.051620.002170.210530.006630.029580.0004426945194618831974
      SBS-N1-568.51052290.460.050640.002270.208020.007340.029790.0004622453192618931954
      SBS-N1-5714.21803850.470.049450.002180.203000.008420.029770.00044169102188718931892
      SBS-N1-5813.52513920.640.049790.002260.203800.007360.029690.0004618555188618932165
      SBS-N1-5911.31732920.590.050890.002610.209100.010240.029800.00046236120193918931892
      SBS-N1-608.61342280.590.050630.002260.209330.007330.029980.0004622453193619031814
      SBS-N1-618.81852360.780.049830.002440.205900.008320.029960.0004818764190719031814
      SBS-N1-629.81972710.730.048740.002350.201300.007950.029960.0004813563186719031964
      SBS-N1-6311.92732900.940.067200.002870.277640.009000.029960.0004784442249719032184
      SBS-N1-6410.01912600.730.062200.002610.257100.008140.029970.0004668142232719032194
      SBS-N1-6515.12364230.560.055810.002190.230400.006470.029940.0004444537211519032094
      SBS-N1-6623.23106250.500.050060.001750.208090.004540.030140.0004219826192419131903
      SBS-N1-6724.83396710.510.051760.001780.214650.004500.030070.0004227524197419132003
      SBS-N1-6819.22855360.530.049140.001840.203660.005240.030060.0004315534188419131913
      SBS-N1-693.351850.600.052130.004610.215710.017860.030010.000672911471981519142088
      SBS-N1-7028.74347670.570.049380.001690.205050.004340.030110.0004216625189419131923
      SBS-N1-7113.91953680.530.048440.002100.200740.006760.030060.0004612151186619131854
      SBS-N1-7211.41943020.640.049760.002080.205830.006530.030000.0004518446190519131853
      SBS-N1-7312.42173380.640.051080.002160.211620.006790.030040.0004524446195619131903
      SBS-N1-7419.23055030.610.052270.001960.217320.005610.030150.0004429733200519131853
      SBS-N1-7523.43646310.580.051800.001890.214560.005160.030040.0004327730197419132003
      SBS-N1-766.71631521.070.050500.002810.211540.010130.030380.0005121880195819332004
      SBS-N1-7719.54114500.910.050790.003110.225860.013370.032250.000512321422071120532042
      SBS-N1-7820.12855190.550.051380.001960.229200.006150.032350.0004725836210520532033
      SBS-N1-7917.52114530.470.050820.002020.227730.006500.032500.0004823339208520632224
      SBS-N1-806.81371610.850.052400.003130.236540.012380.032730.00058303872161020842075
      SBS-N1-8115.22493810.660.050730.001920.230680.006070.032970.0004822935211520932143
      SBS-N1-8231.02918210.350.051620.001810.234430.005070.032930.0004626926214420932143
      SBS-N1-8321.92935500.530.053880.002440.244840.010450.032950.00050366105222920932073
      SBS-N1-8417.92614390.600.050590.001920.230300.006060.033010.0004822235210520932233
      SBS-N1-8514.71623970.410.050610.002130.231240.007310.033130.0005022345211621032255
      SBS-N1-8611.61303030.430.048640.001990.222530.006830.033180.0005013144204621031944
      SBS-N1-8720.12995170.580.051250.002050.234140.006780.033130.0004925240214621032084
      SBS-N1-8824.63905850.670.055800.002020.255010.006080.033140.0004744429231521032273
      SBS-N1-8928.34216860.610.050260.001800.231830.005290.033450.0004720728212421232183
      SBS-N1-9017.82693570.750.050600.002590.235090.010040.033690.0005522368214821432245
      下载: 导出CSV

      表  2  二十二站组砂岩主量元素、微量元素及稀土元素分析结果

      Table  2.   Major, trace and rare earth elements compositions of the Ershi'erzhan Formation sandstones

      样品号SBS-N1-B1SBS-N1-B2SBS-N1-B3SBS-N1-B4SBS-N1-B5SBS-N1-B6SBS-N1-B7SBS-N1-B8SBS-N1-B9SBS-N1-B10
      SiO273.9472.0865.8570.1971.3972.0771.5067.2670.9868.28
      TiO20.190.270.400.330.180.230.250.430.240.40
      Al2O314.2213.9613.9613.9612.7313.5514.2015.1113.8813.50
      Fe2O31.911.793.733.132.061.702.473.402.262.90
      FeO0.961.362.982.821.661.441.002.751.921.95
      MnO0.070.090.130.110.120.090.090.110.090.10
      MgO0.220.410.910.410.480.510.220.970.410.64
      CaO0.280.752.590.982.631.421.321.991.332.88
      Na2O4.474.423.664.254.764.824.333.604.343.71
      K2O3.434.393.613.542.542.783.023.663.232.89
      P2O50.060.060.110.080.060.070.070.110.070.08
      LOI1.131.704.842.842.922.642.423.222.994.37
      Total100.88101.28102.77102.65101.53101.31100.89102.61101.74101.70
      Fe2O3T2.983.307.046.263.903.303.586.464.395.07
      K2O/Na2O0.770.990.990.830.530.580.701.020.740.78
      Fe2O3/K2O0.560.411.030.880.810.610.820.930.701.00
      F1-1.42-3.02-0.82-1.010.09-0.82-0.05-0.97-0.90-0.24
      F20.461.77-0.010.21-0.08-0.150.09-0.150.22-0.41
      La18.143.737.765.518.624.128.538.436.778.4
      Ce37.082.275.4123.034.946.951.975.168.8151.0
      Pr4.038.708.3012.703.795.055.688.127.2516.20
      Nd14.528.828.741.713.817.919.929.124.954.3
      Sm2.484.324.305.372.532.973.094.443.557.83
      Eu0.580.640.710.640.480.490.570.800.591.17
      Gd1.872.903.743.941.752.122.713.972.895.49
      Tb0.360.540.560.660.360.400.440.590.510.80
      Dy1.852.593.373.161.692.062.283.342.314.14
      Ho0.340.520.640.600.350.380.480.680.470.80
      Er0.811.271.681.610.941.001.191.741.261.98
      Tm0.160.250.290.280.180.190.230.340.230.38
      Yb1.001.471.901.731.061.221.352.061.462.42
      Lu0.140.210.280.280.150.170.220.290.210.36
      Eu/Eu*0.830.550.540.420.690.590.600.580.560.55
      Ce/Ce*1.061.031.051.051.021.041.001.041.031.04
      ∑REE83.2178.0168.0261.080.6105.0119.0169.0151.0325.0
      LREE/HREE11.717.312.520.311.512.912.312.015.218.9
      (La/Yb)N13.021.314.227.212.614.215.113.418.023.2
      (Eu/Eu*)UCC1.270.840.830.651.060.910.920.900.860.83
      (La/Yb)UCC1.332.181.462.781.291.451.551.371.842.38
      Li4.453.245.004.5617.94.054.6253.15.127.11
      Be2.021.832.461.981.321.371.811.921.801.80
      Sc2.963.716.355.873.053.215.136.273.766.12
      V15.517.737.729.417.816.822.737.720.634.7
      Cr15.2019.0027.5019.5023.907.508.7016.5015.8012.40
      Co2.183.895.904.223.633.372.985.553.634.49
      Ni4.916.607.485.666.424.263.956.735.145.65
      Ga15.621.022.727.913.615.317.523.021.032.4
      Rb90.5113.0106.096.870.172.582.5103.0100.091.3
      Sr176140196147178177184225143179
      Y9.0614.1017.7017.1010.4011.1013.2019.2013.1022.00
      Ba500703438515490481456625560331
      Pb17.515.814.412.016.116.716.819.316.811.3
      Th4.759.8910.8015.204.685.477.3911.109.0418.40
      U1.072.311.981.941.181.031.562.151.312.62
      Nb5.227.629.559.605.046.036.1810.506.7012.70
      Ta0.360.580.610.770.370.400.480.710.481.30
      Zr46.454.987.869.739.043.254.692.356.7121.0
      Hf1.451.872.742.341.331.371.832.861.793.81
      Rb/Sr0.510.810.540.660.390.410.450.460.700.51
      Rb/Nb17.3014.8011.1010.1013.9012.0013.309.8114.907.19
      注:主量元素单位为%,稀土、微量元素单位为10-6;F1=-1.773w(TiO2)+0.607w(Al2O3)+0.76w(Fe2O3)-1.5w(MgO)+0.616w(CaO)+0.509w(Na2O)-1.224w(K2O)-9.09;F2=-0.445w(TiO2)+0.07w(Al2O3)-0.25w(Fe2O3)-1.142w(MgO)+0.438w(CaO)+0.475w(Na2O)+1.426w(K2O)-6.861,据Roser,and Korsch(1988).
      下载: 导出CSV
    • [1] Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses That do not Report Pb.Chemical Geology,192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [2] Becker,T.P.,Thomas,W.A.,Samson,S.D.,et al.,2005.Detrital Zircon Evidence of Laurentian Crustal Dominance in the Lower Pennsylvanian Deposits of the Alleghanian Clastic Wedge in Eastern North America.Sedimentary Geology,182(1-4):59-86.doi: 10.1016/j.sedgeo.2005.07.014
      [3] Bhatia,M.R.,1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology,45(1-2):97-113.doi: 10.1016/0037-0738(85)90025-9
      [4] Bruguier,O.,Lancelot,J.R.,Malavieille,J.,1997.U-Pb Dating on Single Detrital Zircon Grains from the Triassic Songpan-Ganze Flysch (Central China):Provenance and Tectonic Correlations.Earth and Planetary Science Letters,152:217-231.doi: 10.1016/s0012-821x(97)00138-6
      [5] Bureau of Geology and Mineral Resources of Heilongjiang Province (BGMRH),1993.Regional Geology of Heilongjiang Province.Geological Publishing House,Beijing (in Chinese).
      [6] Chen,Z.G.,Zhang,L.C.,Lu,B.Z.,et al.,2010.Geochronology and Geochemistry of the Taipingchuan Copper-Molybdenum Deposit in Inner Mongolia,and Its Geological Significances.Acta Petrologica Sinica,26(5):1437-1449 (in Chinese with English abstract). http://www.oalib.com/paper/1476127
      [7] Fedo,C.M.,2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry,53(1):277-303.doi: 10.2113/0530277
      [8] Floyd,P.A.,Shail,R.,Leveridge,B.E.,et al.,1991.Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones:Implications for Tectonic Environment Discrimination.Geological Society,London,Special Publications,57(1):173-188.doi: 10.1144/gsl.sp.1991.057.01.14
      [9] He,Z.H.,Liu,Z.J.,Guo,H.W.,et al.,2008a.Provenance Analysis of Middle Jurassic Sediments and Its Geological Significance in Mohe Basin.Journal of Jilin University (Earth Science Edition),38(3):398-404 (in Chinese with English abstract).
      [10] He,Z.H.,Wang,Y.F.,Hou,W.,2008b.Geochemisry and Provenance Analysis of the Middle Jurassic Sandstones in the Mohe Basin,Heilongjiang.Sedimentary Geology and Tethyan Geology,28(4):93-100 (in Chinese with English abstract). doi: 10.1360%2F02yd0376
      [11] He,Z.J.,Li,J.Y.,Mo,S.G.,et al.,2003.Geochemistry,Tectonic Background and Provenance Analysis of the Sandstones from the Mohe Foreland Basin.Science in China (Series D),33(12):1219-1226 (in Chinese). doi: 10.1360%2F02yd0376
      [12] Herron,M.M.,1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Research,58:820-883.doi: 10.1306/212f8e77-2b24-11d7-8648000102c1865d
      [13] Hou,W.,2006.Evolution of Sedimentary and Provenance Analysis in Middle Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      [14] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010a.Provenance Analysis of Upper Jurassic and Its Geological Significances in Mohe Basin.Geological Review,56(1):71-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200604014.htm
      [15] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010b.Sedimentary Characteristics and Tectonic Setting of the Upper Jurassic Mohe Basin.Journal of Jilin University (Earth Science Edition),40(2):286-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287168307_Sedimentary_characteristics_and_tectonic_setting_of_the_Upper_Jurassic_Mohe_Basin
      [16] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010c.Application of REE Geochemical Characteristics of Sandstone to Study on Provenance:A Case from the Middle Jurassic of Mohe Basin in Northeast China.Acta Sedimentologica Sinica,28(2):285-293 (in Chinese with English abstract).
      [17] Li,B.L.,Sun,Y.G.,Chen,G.J.,et al.,2016.Zircon U-Pb Geochronology,Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science,41(1):1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201601001.htm
      [18] Li,C.L.,2007.Structural Characteristic,Tectonic Evolution and Basin Dynamics of Mohe Basin (Dissertation).China University of Geosciences,Beijing (in Chinese with English abstract).
      [19] Li,J.Y.,He,Z.J.,Mo,S.G.,et al.,2004.The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains,NE China,and Their Tectonic Implications.Geological Bulletin of China,23(2):120-129 (in Chinese with English abstract). http://www.oalib.com/references/17381607
      [20] Li,L.,Sun,F.Y.,Li,B.L.,et al.,2015.Ore-Forming Fluid Features and Genesis of Shabaosi Gold Deposit in Mohe County,Heilongjiang Province.Earth Science,40(7):1163-1176 (in Chinese with Englishabstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507005.htm
      [21] Li,Y.P.,Li,J.Y.,Sun,G.H.,et al.,2007.Basement of Junggar Basin:Evidence from Detrital Zircons in Sandstone of Previous Devonian Kalamaili Formation.Acta Petrologica Sinica,23(7):1577-1590 (in Chinese with English abstract). http://www.oalib.com/paper/1492690
      [22] Liu,Y.S.,Gao,S.,Hu,Z.C.,et al.,2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology,51(1-2):537-571.doi: 10.1093/petrology/egp082
      [23] Liu,Y.S.,Hu,Z.C.,Gao,S.,et al.,2008.In Situ Analysis of Major and Trace Elements Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology,257(1-2):34-43.doi:http://dx.doi.org/ 10.1016/j.chemgeo.2008.08.004
      [24] Meng,E.,Xu,W.L.,Yang,D.B.,et al.,2011.Zircon U-Pb Chronology,Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area,and Its Tectonic Implications.Acta Petrologica Sinica,27(4):1209-1226 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110425
      [25] Orolmaa,D.,Erdenesaihan,G.,Borisenko,A.S.,et al.,2008.Permian-Triassic Granitoid Magmatism and Metallogeny of the Hangayn (Central Mongolia).Russian Geology and Geophysics,49(7):534-544.doi: 10.1016/j.rgg.2008.06.008
      [26] Qihe,R.G.,1995.Vestigiofossils of the Middle Jurassic Ershi'erzhan Group in Mohe Area,Heilongjiang Province.Regional Geology of China,(3):243-244 (in Chinese).
      [27] Qi,J.Z.,Li,L.,Guo,X.D.,2000.Geological Characteristics of the Shabaosi Altered Sandstone Type Gold Deposit in North Da Hinggan Mountains.Mineral Deposits,19(2):116-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200002002.htm
      [28] Roser,B.P.,Korsch,R.J.,1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology,67(1-2):119-139.doi: 10.1016/0009-2541(88)90010-1
      [29] Shao,L.,Stattergger,K.,Li,W.H.,1998.Discussion of Tectonic Background by the Sandstone's Geochemistry.Chinese Science Bulletin,43(9):985-987 (in Chinese). doi: 10.1007/BF02883223
      [30] Sorokin,A.A.,Yarmolyuk,V.V.,Kotov,A.B.,et al.,2004.Geochronology of Triassic-Jurassic Granitoids in the Southern Framing of the Mongol-Okhotsk Foldbelt and the Problem of Early Mesozoic Granite Formation in Central and Eastern Asia.Doklady Earth Sciences,399(8):1091-1094. https://www.researchgate.net/publication/258563760_Geochronology_of_Triassic-Jurassic_Granitoids_in_the_Southern_Framing_of_the_Mongol-Okhotsk_Foldbelt_and_the_Problem_of_Early_Mesozoic_Granite_Formation_in_Central_and_Eastern_Asia
      [31] Sun,G.R.,Liu,X.G.,Han,Z.Z.,et al.,2002.Stratigraphic Division and Age of the Mid-Upper Jurassic Ershi'erzhan Group in the Upper Heilongjiang River Basin.Geological Bulletin of China,21(3):150-155 (in Chinese with English abstract).
      [32] Sun,Q.S.,2013.Study on the Exhumation Process from Late Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      [33] Tang,J.,Xu,W.L.,Wang,F.,et al.,2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif,NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos,184-187:1-16.doi:http://dx.doi.org/ 10.1016/j.lithos.2013.10.024
      [34] Tomurtogoo,O.,Windley,B.F.,Kroner,A.,et al.,2005.Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone,Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean,Suture and Orogen.Journal of the Geological Society,162(1):125-134.doi: 10.1144/0016-764903-146
      [35] Wan,Y.S.,Zhang,Q.D.,Song,T.R.,2003.Detrital Zircon SHRIMP Chronology of the Mesoproterozoic Changzhougou Formation Clastic Rocks in Beijing Ming Tombs:Limitation on the Provenance and Maximal Sedimentary Age of Cap Rocks in North China Craton.Chinese Science Bulletin,48(18):1970-1975 (in Chinese).
      [36] Wang,F.,Zhou,X.H.,Zhang,L.C.,et al.,2006.Late Mesozoic Volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia.Earth and Planetary Science Letters,251(1-2):179-198.doi: 10.1016/j.epsl.2006.09.007
      [37] Wang,J.,Sun,F.Y.,Li,B.L.,et al.,2016.Age,Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige,Urad Zhongqi,Inner Mongolia.Earth Science,41(5):792-808 (in Chinese with English abstract). https://www.researchgate.net/publication/304880140_Age_petrogenesis_and_tectonic_implications_of_Permian_hornblendite_in_Tugurige_Urad_Zhongqi_Inner_Mongolia
      [38] Wang,Q.,2007.The Geophysical Research of the Structure Characteristics in the Western of the Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      [39] Williams,I.S.,2001.Response of Detrital Zircon and Monazite and Their U-Pb Isotopic Systems to Regional Metamorphism and Host-Rock Partial Melting,Cooma Complex,Southeastern Australia.Australian Journal of Earth Sciences,48(4):557-580.doi: 10.1046/j.1440-0952.2001.00883.x
      [40] Wu,F.Y.,Sun,D.Y.,Ge,W.C.,et al.,2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences,41(1):1-30 .doi: 10.1016/j.jseaes.2010.11.014
      [41] Wu,H.Y.,Xin,R.C.,Yang,J.G.,2003a.The Middle Jurassic Sedimentary Evolution and Petroleum Potential of the Mohe Basin.Petroleum Geology & Experiment,25(2):116-121 (in Chinese with English abstract).
      [42] Wu,H.Y.,Yang,J.G.,Huang,Q.H.,et al.,2003b.Sequence and Age of the Mesozoic Strata in the Mohe Basin.Journal of Stratigraphy,27(3):193-198 (in Chinese with English abstract).
      [43] Xin,R.C.,Wu,H.Y.,Yang,J.G.,2003.Upper Jurassic Sequence-Stratigraphic Framework of the Mohe Basin.Journal of Stratigraphy,27(3):199-204 (in Chinese with English abstract).
      [44] Xu,M.J.,Xu,W.L.,Meng,E.,et al.,2011.LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area,Northeastern Inner Mongolia.Geological Bulletin of China,30(9):1321-1338 (in Chinesewith English abstract). https://www.researchgate.net/publication/282559967_LA-ICP-MS_zircon_U-Pb_chronology_and_geochemistry_of_Mesozoic_volcanic_rocks_from_the_Shanghulin-Xiangyang_basin_in_Ergun_area_northeastern_Inner_Mongolia
      [45] Xu,W.L.,Wang,F.,Pei,F.P.,et al.,2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica,29(2):339-353 (in Chinese with English abstract). https://www.researchgate.net/publication/282382991_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_Constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations_Acta_Petrologica_Sinica_292
      [46] Yang,J.G.,Wu,H.Y.,Liu,J.L.,2006.Stratigraphic Correlation of the Mesozoic and Cenozoic in the Outer Basins of the Daqing Exploration Area,Heilongjiang,China.Geological Bulletin of China,25(9-10):1088-1093 (in Chinese with English abstract). https://www.researchgate.net/publication/279574216_Stratigraphic_correlation_of_the_Mesozoic_and_Cenozoic_in_the_outer_basins_of_the_Daqing_exploration_area_Heilongjiang_China
      [47] Yang,W.,Li,S.G.,2008.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning:Implications for Lithospheric Thinning of the North China Craton.Lithos,102(1/2):88-117.doi: 10.1016/j.lithos.2007.09.018
      [48] Yuan,H.L.,Gao,S.,Liu,X.M.,et al.,2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research,28(3):353-370.doi: 10.1111/j.1751-908x.2004.tb00755.x
      [49] Zhang,C.,Yang,W.H.,He,Z.H.,et al.,2014.Chronology and Geochemistry of Rhyolites in Mankegou'ebo Formation from Ta'erqi Area,Southern-Central Greater Xing'an Range.Global Geology,33(2):255-265 (in Chinese with English abstract).
      [50] Zhang,J.H.,2005.Geochronological Framework of the Mesozoic Volcanic Rocks in the Great Xing'an Range,NE China (Dissertation).Jilin University,Changchun (in Chinese with English abstract). https://www.researchgate.net/publication/248352568_Geochronological_framework_of_Mesozoic_volcanic_rocks_in_the_Great_Xing%27an_Range_NE_China_and_their_geodynamic_implications?_sg=NmLLcgBFugarWUwjuAU87irYQT_HV8Jk97puepa2AXXeVLqr37zt2A5wMz7BpF5GnhOUUHSNc53jDpTVQjg8NS3kciFzUcFNUNPZRHHvwiA
      [51] Zhang,J.H.,Ge,W.C.,Wu,F.Y.,et al.,2008.Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range,Northeastern China.Lithos,102(1-2):138-157.doi: 10.1016/j.lithos.2007.08.011
      [52] Zhang,S.,Lin,C.M.,Wu,C.D.et al.,2003.Tectonic Characteristics and Basin Evolution of the Mohe Basin,Heilongjiang Province.Geological Journal of China Universities,9(3):411-419 (in Chinese with English abstract). https://www.researchgate.net/publication/304396417_Tectonic_characteristics_and_basin_evolution_of_the_Mohe_BasinHeilongjiang_Province
      [53] Zorin,Y.A.,1999.Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt,Trans-Baikal Region (Russia) and Mongolia.Tectonophysics,306(1):33-56.doi: 10.1016/s0040-1951(99)00042-6
      [54] 黑龙江省地质矿产局,1993.黑龙江省区域地质志.北京:地质出版社. https://zhidao.baidu.com/share/471c20e7f0bf79adc03e1be68104bb2e.html
      [55] 陈志广,张连昌,卢百志,等,2010.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义.岩石学报,26(5): 1437-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm
      [56] 和钟铧,刘招君,郭宏伟,等,2008a.漠河盆地中侏罗世沉积源区分析及地质意义.吉林大学学报(地球科学版),38(3): 398-404. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803006.htm
      [57] 和钟铧,王玉芬,侯伟,2008b.漠河盆地中侏罗统砂岩地球化学特征及物源属性分析.沉积与特提斯地质,28(4): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200804017.htm
      [58] 和政军,李锦轶,莫申国,等,2003.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学(D辑),33(12): 1219-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm
      [59] 侯伟,2006.漠河盆地中侏罗世沉积演化与物源分析(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093064.htm
      [60] 侯伟,刘招君,何玉平,等,2010a.漠河盆地上侏罗统物源分析及其地质意义.地质论评,56(1): 71-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001012.htm
      [61] 侯伟,刘招君,何玉平,等,2010b.漠河盆地上侏罗统沉积特征与构造背景.吉林大学学报(地球科学版),40(2): 286-297. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002007.htm
      [62] 侯伟,刘招君,何玉平,等,2010c.砂岩稀土元素地球化学特征在沉积物源区分析中的应用:以中国东北漠河盆地中侏罗统为例.沉积学报,28(2): 285-293. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002010.htm
      [63] 李碧乐,孙永刚,陈广俊,等,2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学,41(1): 1-16. http://www.earth-science.net/WebPage/Article.aspx?id=3215
      [64] 李春雷,2007.漠河盆地构造特征演化与成盆动力学研究(硕士学位论文).北京:中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y1784198
      [65] 李锦轶,和政军,莫申国,等,2004.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报,23(2): 120-129. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402003.htm
      [66] 李良,孙丰月,李碧乐,等,2015.黑龙江省漠河县砂宝斯金矿床流体特征及矿床成因.地球科学,40(7):1163-1176. http://www.earth-science.net/WebPage/Article.aspx?id=3117
      [67] 李亚萍,李锦轶,孙桂华,等,2007.准噶尔盆地基底的探讨: 来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,23(7): 1577-1590. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707002.htm
      [68] 孟恩,许文良,杨德彬,等,2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报,27(4): 1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm
      [69] 其和日格,1995.黑龙江省漠河地区中侏罗统二十二站组的遗迹化石.中国区域地质,(3): 243-244. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD503.008.htm
      [70] 齐金忠,李莉,郭晓东,2000.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征.矿床地质,19(2): 116-125. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200002002.htm
      [71] 邵磊,Stattergger,K.,李文厚,1998.从砂岩地球化学探讨盆地构造背景.科学通报,43(9): 985-987. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199809020.htm
      [72] 孙广瑞,刘旭光,韩振哲,等,2002.上黑龙江盆地中上侏罗统二十二站群的地层划分与时代.地质通报,21(3): 150-155. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200203008.htm
      [73] 孙求实,2013.漠河盆地晚侏罗系以来剥露过程研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013195446.htm
      [74] 万渝生,张巧大,宋天锐,2003.北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定.科学通报,48(18): 1970-1975. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200318013.htm
      [75] 王键,孙丰月,李碧乐,等,2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学,41(5): 792-808. http://www.earth-science.net/WebPage/Article.aspx?id=3299
      [76] 王骞,2007.漠河盆地西部构造特征的地球物理研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/article/cdmd-10183-2007095175.htm
      [77] 吴河勇,辛仁臣,杨建国,2003a.漠河盆地中侏罗统沉积演化及含油气远景.石油实验地质,25(2): 116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200302003.htm
      [78] 吴河勇,杨建国,黄清华,等,2003b.漠河盆地中生代地层层序及时代.地层学杂志,27(3): 193-198. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303004.htm
      [79] 辛仁臣,吴河勇,杨建国,2003.漠河盆地上侏罗统层序地层格架.地层学杂志,27(3): 199-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303005.htm
      [80] 徐美君,许文良,孟恩,等,2011.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报,30(9): 1321-1338. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201109001.htm
      [81] 许文良,王枫,裴福萍,等,2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报,29(2): 339-353. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
      [82] 杨建国,吴河勇,刘俊来,2006.大庆探区外围盆地中、新生代地层对比及四大勘探层系.地质通报,25(9-10): 1088-1093. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2016.htm
      [83] 张超,杨伟红,和钟铧,等,2014.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究.世界地质,33(2): 255-265. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201402002.htm
      [84] 张吉衡,2005.大兴安岭地区中生代火山岩的年代学格架(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2006091982.htm
      [85] 张顺,林春明,吴朝东,等,2003.黑龙江漠河盆地构造特征与成盆演化.高校地质学报,9(3): 411-419. http://cdmd.cnki.com.cn/Article/CDMD-11415-2007066666.htm
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  4285
    • HTML全文浏览量:  1958
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-07-25
    • 刊出日期:  2017-01-15

    目录

      /

      返回文章
      返回