Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance
-
摘要: 大兴安岭北部的漠河盆地广泛发育中生界二十二站组砂岩,其形成时代一直备受争议.首次利用碎屑锆石LA-ICP-MS U-Pb法测年对其形成时代作出较为精确的限定,并结合地球化学特征对其物源区及大地构造背景进行了探讨.研究结果表明,二十二站组砂岩碎屑物磨圆度较低、分选差,表现出源区相对不稳定,快速剥蚀、搬运及沉积的特征.锆石颗粒粗大,具有清晰的震荡环带,Th/U值为0.35~1.07,为典型的岩浆锆石.测年结果显示,90个测点年龄主要分布在3个群落:152~170Ma,峰值年龄约为158Ma,这一年龄区间揭示了二十二站组沉积成岩的下限为晚侏罗世;179~193Ma,峰值年龄约为190Ma;205~214Ma,峰值年龄约为210Ma.3个年龄峰值为蒙古-鄂霍茨克洋演化过程中一系列岩浆活动的地质记录,其中210Ma与190Ma峰值年龄与盆地南缘额尔古纳地块晚三叠世、早侏罗世的岩浆事件相吻合,而158Ma峰值年龄则对应于盆地北缘晚侏罗世的岩浆事件.主、微量元素构造判别图解揭示其物源区具有活动大陆边缘的特征,同时锆石定年数据显示其没有任何前中生代的碎屑物,暗示了该3期岩浆岩均形成于额尔古纳地块北缘的中生代活动大陆边缘环境,并为二十二站组的形成提供了主要碎屑物质.由此说明,二十二站组砂岩形成于晚侏罗世蒙古-鄂霍茨克洋闭合后的造山过程中,漠河盆地南北两侧物源区快速剥蚀、快速搬运与快速沉积的环境.Abstract: o address the controversy of the Ershi'erzhan Formation sandstone formation ages in the Mohe basin of the northern Great Khingan Range, this study presents an accurate limit to its formation ages using the LA-ICP-MS detrital zircon U-Pb dating for the first time in this paper, and discusses its provenance and tectonic setting combined with the geochemistry of major and trace elements. The results show that the fragmental material in sandstone has poor psephicity and sorting, indicating that source region is relatively unstable with characteristics of rapid denudation, transportation and sedimentation. The grains of detrital zircons are big with clear oscillatory zoning, and Th/U values range from 0.35-1.07, which is indicative of a magmatic origin. Zircon U-Pb dating results show that 90 dating data are distributed in the following three periods, namely, 152-170Ma with the peak of 158Ma, standing for the lower limit of Ershi'erzhan Formation sedimentary rocks at Late Jurassic; 179-193Ma with the peak of 190Ma and 205-214Ma with the peak of 210Ma. The three peak ages are the evolution records of the Mongolia-Okhotsk ocean. The peak ages of 210Ma and 190Ma are consistent with the Late Triassic and Early Jurassic magmatic events of south margin of the basin in the Erguna massif, the peak age of 158Ma fits the Late Jurassic magmatic event of north margin of the basin. The geochemical diagrams of major and trace elements reveal that the provenance has the background of active continental margin. Meanwhile, the zircon dating shows that there is no Pre-Mesozoic clastics in the Ershi'erzhan Formation. It suggest that these were generated within an active continental margin setting at the north margin of the Erguna massif in Mesozoic, and provided the most clastics for the Ershi'erzhan Formation. Combining with the previous studies, it is concluded that the Ershi'erzhan Formation sandstone was formed in Late Jurassic under the environment of rapid denudation, transportation and sedimentation, controlled by the uplift of the Mongolia-Okhotsk orogenic belt, indicating that the eastern Mongolia-Okhotsk ocean has already closed in Late Jurassic.
-
Key words:
- Mohe basin /
- Ershi'erzhan Formation /
- sandstone /
- detrital zircon /
- geochemistry /
- active continental margin /
- Mongolia-Okhotsk ocean
-
图 1 漠河盆地区域构造分区(a)、漠河盆地及邻区上阿穆尔盆地区域地质图(b)和砂宝斯金矿区地质图(c)
图a据和钟铧等(2008a)修改;图b据和政军等(2003)修改;图c据齐金忠等(2000)
Fig. 1. Regional tectonic subdivisions of the Mohe basin(a),regional geological sketch of the Mohe basin and Amur basin(b)and Shabaosi gold deposit(c)
图 8 二十二站组碎屑锆石年龄与额尔古纳地块岩浆锆石年龄对比
额尔古纳地块中生代花岗岩锆石年龄数据引自Wu et al.(2011)
Fig. 8. Probability curves of ages for detrital zircons from the Ershi'erzhan Formation sandstone and magmatic zircons from the Erguna massif
表 1 二十二站组砂岩碎屑锆石LA-ICP-MS U-Pb测年分析结果
Table 1. Detrital zircon LA-ICP-MS U-Pb analytical results of the Ershi'erzhan Formation sandstones
编号 Pb(10-6) Th(10-6) U(10-6) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ SBS-N1-01 6.1 104 189 0.55 0.05021 0.00347 0.16486 0.01104 0.02382 0.00041 205 158 155 10 152 3 151 2 SBS-N1-02 9.9 224 329 0.68 0.05228 0.00265 0.17320 0.00734 0.02403 0.00040 298 66 162 6 153 3 150 3 SBS-N1-03 4.8 83 153 0.54 0.04627 0.00275 0.15568 0.00889 0.02440 0.00040 12 130 147 8 155 3 157 4 SBS-N1-04 8.8 158 258 0.61 0.04742 0.00335 0.15935 0.01089 0.02437 0.00043 70 157 150 10 155 3 156 3 SBS-N1-05 8.8 206 281 0.73 0.05127 0.00253 0.17193 0.00694 0.02432 0.00038 253 64 161 6 155 2 157 3 SBS-N1-06 7.1 127 233 0.55 0.05224 0.00237 0.17577 0.00634 0.02440 0.00038 296 54 164 5 155 2 169 3 SBS-N1-07 24.6 778 794 0.98 0.05735 0.00205 0.19246 0.00445 0.02434 0.00035 505 27 179 4 155 2 104 2 SBS-N1-08 4.6 129 130 0.99 0.04926 0.00308 0.16685 0.00924 0.02456 0.00043 160 94 157 8 156 3 166 4 SBS-N1-09 10.0 199 307 0.65 0.04989 0.00247 0.16873 0.00692 0.02453 0.00040 190 65 158 6 156 3 143 3 SBS-N1-10 8.7 197 278 0.71 0.04973 0.00211 0.16802 0.00545 0.02450 0.00037 182 48 158 5 156 2 153 3 SBS-N1-11 6.7 134 222 0.61 0.05007 0.00239 0.16945 0.00658 0.02454 0.00039 198 61 159 6 156 2 152 3 SBS-N1-12 8.3 164 269 0.61 0.05248 0.00231 0.17868 0.00605 0.02469 0.00037 306 50 167 5 157 2 154 3 SBS-N1-13 7.8 144 242 0.59 0.05231 0.00258 0.17810 0.00724 0.02469 0.00040 299 63 166 6 157 3 167 4 SBS-N1-14 7.4 151 235 0.64 0.04883 0.00217 0.16640 0.00582 0.02471 0.00038 140 53 156 5 157 2 170 3 SBS-N1-15 6.8 135 210 0.64 0.05195 0.00284 0.17654 0.00828 0.02464 0.00042 283 76 165 7 157 3 152 4 SBS-N1-16 9.6 179 298 0.60 0.05103 0.00266 0.17399 0.00764 0.02473 0.00041 242 70 163 7 157 3 154 4 SBS-N1-17 11.5 280 357 0.78 0.05016 0.00204 0.17204 0.00518 0.02488 0.00037 202 43 161 4 158 2 150 2 SBS-N1-18 11.1 207 353 0.59 0.04966 0.00212 0.17042 0.00554 0.02488 0.00037 179 48 160 5 158 2 161 3 SBS-N1-19 5.7 100 175 0.57 0.05227 0.00310 0.17838 0.00927 0.02475 0.00044 297 86 167 8 158 3 164 5 SBS-N1-20 11.3 259 317 0.82 0.05070 0.00270 0.17301 0.00779 0.02475 0.00041 227 73 162 7 158 3 156 4 SBS-N1-21 7.6 193 218 0.88 0.04752 0.00264 0.16290 0.00781 0.02486 0.00042 75 75 153 7 158 3 151 3 SBS-N1-22 7.8 140 242 0.58 0.04797 0.00267 0.16372 0.00790 0.02475 0.00041 98 78 154 7 158 3 148 4 SBS-N1-23 11.5 260 358 0.73 0.04860 0.00198 0.16608 0.00502 0.02478 0.00037 129 43 156 4 158 2 152 2 SBS-N1-24 7.2 131 227 0.58 0.04908 0.00266 0.16758 0.00777 0.02477 0.00041 152 77 157 7 158 3 147 4 SBS-N1-25 9.1 159 274 0.58 0.04936 0.00273 0.16893 0.00800 0.02482 0.00042 165 79 158 7 158 3 161 4 SBS-N1-26 8.1 139 256 0.54 0.05382 0.00238 0.18378 0.00633 0.02476 0.00038 364 50 171 5 158 2 187 4 SBS-N1-27 11.3 220 326 0.68 0.04904 0.00277 0.16882 0.00823 0.02496 0.00043 150 81 158 7 159 3 160 4 SBS-N1-28 9.1 189 272 0.70 0.05089 0.00245 0.17497 0.00687 0.02494 0.00040 236 61 164 6 159 3 152 3 SBS-N1-29 14.0 291 428 0.68 0.04955 0.00202 0.17058 0.00514 0.02496 0.00037 174 43 160 4 159 2 161 3 SBS-N1-30 9.5 234 288 0.81 0.04710 0.00223 0.16195 0.00624 0.02494 0.00039 54 56 152 5 159 2 144 3 SBS-N1-31 11.8 254 363 0.70 0.04762 0.00200 0.16392 0.00524 0.02496 0.00037 80 48 154 5 159 2 159 3 SBS-N1-32 10.4 183 317 0.58 0.05203 0.00263 0.17869 0.00749 0.02491 0.00041 287 66 167 6 159 3 173 4 SBS-N1-33 10.7 188 329 0.57 0.05101 0.00225 0.17581 0.00602 0.02499 0.00038 241 51 164 5 159 2 179 3 SBS-N1-34 11.0 225 349 0.65 0.05099 0.00210 0.17524 0.00534 0.02492 0.00037 240 43 164 5 159 2 154 3 SBS-N1-35 18.2 436 520 0.84 0.04841 0.00204 0.16691 0.00528 0.02500 0.00037 119 47 157 5 159 2 160 3 SBS-N1-36 6.9 156 192 0.81 0.04575 0.00306 0.15757 0.00950 0.02498 0.00045 15 95 149 8 159 3 154 4 SBS-N1-37 10.4 210 329 0.64 0.04877 0.00209 0.16784 0.00549 0.02496 0.00037 137 49 158 5 159 2 157 3 SBS-N1-38 12.9 208 421 0.49 0.04840 0.00190 0.16719 0.00469 0.02505 0.00036 119 39 157 4 159 2 161 3 SBS-N1-39 8.7 193 250 0.77 0.04788 0.00276 0.16460 0.00830 0.02493 0.00043 93 81 155 7 159 3 156 4 SBS-N1-40 7.4 146 222 0.66 0.05000 0.00316 0.17303 0.01056 0.02510 0.00041 195 145 162 9 160 3 160 2 SBS-N1-41 12.2 277 377 0.74 0.05138 0.00210 0.17779 0.00533 0.02509 0.00037 258 42 166 5 160 2 156 3 SBS-N1-42 11.2 309 308 1.00 0.04878 0.00358 0.16863 0.01203 0.02507 0.00043 137 166 158 10 160 3 160 2 SBS-N1-43 10.5 187 313 0.60 0.04926 0.00267 0.17055 0.00787 0.02511 0.00042 160 76 160 7 160 3 173 4 SBS-N1-44 9.1 117 295 0.40 0.05322 0.00241 0.18679 0.00662 0.02545 0.00039 338 53 174 6 162 2 194 4 SBS-N1-45 6.8 123 201 0.61 0.05172 0.00255 0.18930 0.00767 0.02654 0.00042 273 64 176 7 169 3 181 4 SBS-N1-46 11.1 213 330 0.64 0.05130 0.00224 0.18882 0.00632 0.02669 0.00040 254 49 176 5 170 3 165 3 SBS-N1-47 6.4 99 190 0.52 0.05105 0.00430 0.19839 0.01552 0.02818 0.00061 243 138 184 13 179 4 184 8 SBS-N1-48 10.1 167 298 0.56 0.05207 0.00265 0.20763 0.00875 0.02892 0.00047 288 66 192 7 184 3 176 4 SBS-N1-49 6.8 144 197 0.73 0.04950 0.00303 0.19910 0.01074 0.02917 0.00051 172 92 184 9 185 3 187 5 SBS-N1-50 23.9 569 605 0.94 0.05175 0.00211 0.20896 0.00626 0.02928 0.00043 274 42 193 5 186 3 194 3 SBS-N1-51 10.8 156 301 0.52 0.05124 0.00235 0.20772 0.00759 0.02940 0.00046 252 55 192 6 187 3 199 4 SBS-N1-52 20.8 38 601 0.51 0.04898 0.00230 0.19916 0.00759 0.02949 0.00047 147 59 184 6 187 3 181 4 SBS-N1-53 8.1 128 197 0.65 0.04634 0.00273 0.18858 0.01071 0.02951 0.00046 15 129 175 9 187 3 189 4 SBS-N1-54 6.6 133 185 0.72 0.05043 0.00326 0.20519 0.01186 0.02951 0.00054 215 100 190 10 187 3 174 5 SBS-N1-55 17.1 233 453 0.51 0.05162 0.00217 0.21053 0.00663 0.02958 0.00044 269 45 194 6 188 3 197 4 SBS-N1-56 8.5 105 229 0.46 0.05064 0.00227 0.20802 0.00734 0.02979 0.00046 224 53 192 6 189 3 195 4 SBS-N1-57 14.2 180 385 0.47 0.04945 0.00218 0.20300 0.00842 0.02977 0.00044 169 102 188 7 189 3 189 2 SBS-N1-58 13.5 251 392 0.64 0.04979 0.00226 0.20380 0.00736 0.02969 0.00046 185 55 188 6 189 3 216 5 SBS-N1-59 11.3 173 292 0.59 0.05089 0.00261 0.20910 0.01024 0.02980 0.00046 236 120 193 9 189 3 189 2 SBS-N1-60 8.6 134 228 0.59 0.05063 0.00226 0.20933 0.00733 0.02998 0.00046 224 53 193 6 190 3 181 4 SBS-N1-61 8.8 185 236 0.78 0.04983 0.00244 0.20590 0.00832 0.02996 0.00048 187 64 190 7 190 3 181 4 SBS-N1-62 9.8 197 271 0.73 0.04874 0.00235 0.20130 0.00795 0.02996 0.00048 135 63 186 7 190 3 196 4 SBS-N1-63 11.9 273 290 0.94 0.06720 0.00287 0.27764 0.00900 0.02996 0.00047 844 42 249 7 190 3 218 4 SBS-N1-64 10.0 191 260 0.73 0.06220 0.00261 0.25710 0.00814 0.02997 0.00046 681 42 232 7 190 3 219 4 SBS-N1-65 15.1 236 423 0.56 0.05581 0.00219 0.23040 0.00647 0.02994 0.00044 445 37 211 5 190 3 209 4 SBS-N1-66 23.2 310 625 0.50 0.05006 0.00175 0.20809 0.00454 0.03014 0.00042 198 26 192 4 191 3 190 3 SBS-N1-67 24.8 339 671 0.51 0.05176 0.00178 0.21465 0.00450 0.03007 0.00042 275 24 197 4 191 3 200 3 SBS-N1-68 19.2 285 536 0.53 0.04914 0.00184 0.20366 0.00524 0.03006 0.00043 155 34 188 4 191 3 191 3 SBS-N1-69 3.3 51 85 0.60 0.05213 0.00461 0.21571 0.01786 0.03001 0.00067 291 147 198 15 191 4 208 8 SBS-N1-70 28.7 434 767 0.57 0.04938 0.00169 0.20505 0.00434 0.03011 0.00042 166 25 189 4 191 3 192 3 SBS-N1-71 13.9 195 368 0.53 0.04844 0.00210 0.20074 0.00676 0.03006 0.00046 121 51 186 6 191 3 185 4 SBS-N1-72 11.4 194 302 0.64 0.04976 0.00208 0.20583 0.00653 0.03000 0.00045 184 46 190 5 191 3 185 3 SBS-N1-73 12.4 217 338 0.64 0.05108 0.00216 0.21162 0.00679 0.03004 0.00045 244 46 195 6 191 3 190 3 SBS-N1-74 19.2 305 503 0.61 0.05227 0.00196 0.21732 0.00561 0.03015 0.00044 297 33 200 5 191 3 185 3 SBS-N1-75 23.4 364 631 0.58 0.05180 0.00189 0.21456 0.00516 0.03004 0.00043 277 30 197 4 191 3 200 3 SBS-N1-76 6.7 163 152 1.07 0.05050 0.00281 0.21154 0.01013 0.03038 0.00051 218 80 195 8 193 3 200 4 SBS-N1-77 19.5 411 450 0.91 0.05079 0.00311 0.22586 0.01337 0.03225 0.00051 232 142 207 11 205 3 204 2 SBS-N1-78 20.1 285 519 0.55 0.05138 0.00196 0.22920 0.00615 0.03235 0.00047 258 36 210 5 205 3 203 3 SBS-N1-79 17.5 211 453 0.47 0.05082 0.00202 0.22773 0.00650 0.03250 0.00048 233 39 208 5 206 3 222 4 SBS-N1-80 6.8 137 161 0.85 0.05240 0.00313 0.23654 0.01238 0.03273 0.00058 303 87 216 10 208 4 207 5 SBS-N1-81 15.2 249 381 0.66 0.05073 0.00192 0.23068 0.00607 0.03297 0.00048 229 35 211 5 209 3 214 3 SBS-N1-82 31.0 291 821 0.35 0.05162 0.00181 0.23443 0.00507 0.03293 0.00046 269 26 214 4 209 3 214 3 SBS-N1-83 21.9 293 550 0.53 0.05388 0.00244 0.24484 0.01045 0.03295 0.00050 366 105 222 9 209 3 207 3 SBS-N1-84 17.9 261 439 0.60 0.05059 0.00192 0.23030 0.00606 0.03301 0.00048 222 35 210 5 209 3 223 3 SBS-N1-85 14.7 162 397 0.41 0.05061 0.00213 0.23124 0.00731 0.03313 0.00050 223 45 211 6 210 3 225 5 SBS-N1-86 11.6 130 303 0.43 0.04864 0.00199 0.22253 0.00683 0.03318 0.00050 131 44 204 6 210 3 194 4 SBS-N1-87 20.1 299 517 0.58 0.05125 0.00205 0.23414 0.00678 0.03313 0.00049 252 40 214 6 210 3 208 4 SBS-N1-88 24.6 390 585 0.67 0.05580 0.00202 0.25501 0.00608 0.03314 0.00047 444 29 231 5 210 3 227 3 SBS-N1-89 28.3 421 686 0.61 0.05026 0.00180 0.23183 0.00529 0.03345 0.00047 207 28 212 4 212 3 218 3 SBS-N1-90 17.8 269 357 0.75 0.05060 0.00259 0.23509 0.01004 0.03369 0.00055 223 68 214 8 214 3 224 5 表 2 二十二站组砂岩主量元素、微量元素及稀土元素分析结果
Table 2. Major, trace and rare earth elements compositions of the Ershi'erzhan Formation sandstones
样品号 SBS-N1-B1 SBS-N1-B2 SBS-N1-B3 SBS-N1-B4 SBS-N1-B5 SBS-N1-B6 SBS-N1-B7 SBS-N1-B8 SBS-N1-B9 SBS-N1-B10 SiO2 73.94 72.08 65.85 70.19 71.39 72.07 71.50 67.26 70.98 68.28 TiO2 0.19 0.27 0.40 0.33 0.18 0.23 0.25 0.43 0.24 0.40 Al2O3 14.22 13.96 13.96 13.96 12.73 13.55 14.20 15.11 13.88 13.50 Fe2O3 1.91 1.79 3.73 3.13 2.06 1.70 2.47 3.40 2.26 2.90 FeO 0.96 1.36 2.98 2.82 1.66 1.44 1.00 2.75 1.92 1.95 MnO 0.07 0.09 0.13 0.11 0.12 0.09 0.09 0.11 0.09 0.10 MgO 0.22 0.41 0.91 0.41 0.48 0.51 0.22 0.97 0.41 0.64 CaO 0.28 0.75 2.59 0.98 2.63 1.42 1.32 1.99 1.33 2.88 Na2O 4.47 4.42 3.66 4.25 4.76 4.82 4.33 3.60 4.34 3.71 K2O 3.43 4.39 3.61 3.54 2.54 2.78 3.02 3.66 3.23 2.89 P2O5 0.06 0.06 0.11 0.08 0.06 0.07 0.07 0.11 0.07 0.08 LOI 1.13 1.70 4.84 2.84 2.92 2.64 2.42 3.22 2.99 4.37 Total 100.88 101.28 102.77 102.65 101.53 101.31 100.89 102.61 101.74 101.70 Fe2O3T 2.98 3.30 7.04 6.26 3.90 3.30 3.58 6.46 4.39 5.07 K2O/Na2O 0.77 0.99 0.99 0.83 0.53 0.58 0.70 1.02 0.74 0.78 Fe2O3/K2O 0.56 0.41 1.03 0.88 0.81 0.61 0.82 0.93 0.70 1.00 F1 -1.42 -3.02 -0.82 -1.01 0.09 -0.82 -0.05 -0.97 -0.90 -0.24 F2 0.46 1.77 -0.01 0.21 -0.08 -0.15 0.09 -0.15 0.22 -0.41 La 18.1 43.7 37.7 65.5 18.6 24.1 28.5 38.4 36.7 78.4 Ce 37.0 82.2 75.4 123.0 34.9 46.9 51.9 75.1 68.8 151.0 Pr 4.03 8.70 8.30 12.70 3.79 5.05 5.68 8.12 7.25 16.20 Nd 14.5 28.8 28.7 41.7 13.8 17.9 19.9 29.1 24.9 54.3 Sm 2.48 4.32 4.30 5.37 2.53 2.97 3.09 4.44 3.55 7.83 Eu 0.58 0.64 0.71 0.64 0.48 0.49 0.57 0.80 0.59 1.17 Gd 1.87 2.90 3.74 3.94 1.75 2.12 2.71 3.97 2.89 5.49 Tb 0.36 0.54 0.56 0.66 0.36 0.40 0.44 0.59 0.51 0.80 Dy 1.85 2.59 3.37 3.16 1.69 2.06 2.28 3.34 2.31 4.14 Ho 0.34 0.52 0.64 0.60 0.35 0.38 0.48 0.68 0.47 0.80 Er 0.81 1.27 1.68 1.61 0.94 1.00 1.19 1.74 1.26 1.98 Tm 0.16 0.25 0.29 0.28 0.18 0.19 0.23 0.34 0.23 0.38 Yb 1.00 1.47 1.90 1.73 1.06 1.22 1.35 2.06 1.46 2.42 Lu 0.14 0.21 0.28 0.28 0.15 0.17 0.22 0.29 0.21 0.36 Eu/Eu* 0.83 0.55 0.54 0.42 0.69 0.59 0.60 0.58 0.56 0.55 Ce/Ce* 1.06 1.03 1.05 1.05 1.02 1.04 1.00 1.04 1.03 1.04 ∑REE 83.2 178.0 168.0 261.0 80.6 105.0 119.0 169.0 151.0 325.0 LREE/HREE 11.7 17.3 12.5 20.3 11.5 12.9 12.3 12.0 15.2 18.9 (La/Yb)N 13.0 21.3 14.2 27.2 12.6 14.2 15.1 13.4 18.0 23.2 (Eu/Eu*)UCC 1.27 0.84 0.83 0.65 1.06 0.91 0.92 0.90 0.86 0.83 (La/Yb)UCC 1.33 2.18 1.46 2.78 1.29 1.45 1.55 1.37 1.84 2.38 Li 4.45 3.24 5.00 4.56 17.9 4.05 4.62 53.1 5.12 7.11 Be 2.02 1.83 2.46 1.98 1.32 1.37 1.81 1.92 1.80 1.80 Sc 2.96 3.71 6.35 5.87 3.05 3.21 5.13 6.27 3.76 6.12 V 15.5 17.7 37.7 29.4 17.8 16.8 22.7 37.7 20.6 34.7 Cr 15.20 19.00 27.50 19.50 23.90 7.50 8.70 16.50 15.80 12.40 Co 2.18 3.89 5.90 4.22 3.63 3.37 2.98 5.55 3.63 4.49 Ni 4.91 6.60 7.48 5.66 6.42 4.26 3.95 6.73 5.14 5.65 Ga 15.6 21.0 22.7 27.9 13.6 15.3 17.5 23.0 21.0 32.4 Rb 90.5 113.0 106.0 96.8 70.1 72.5 82.5 103.0 100.0 91.3 Sr 176 140 196 147 178 177 184 225 143 179 Y 9.06 14.10 17.70 17.10 10.40 11.10 13.20 19.20 13.10 22.00 Ba 500 703 438 515 490 481 456 625 560 331 Pb 17.5 15.8 14.4 12.0 16.1 16.7 16.8 19.3 16.8 11.3 Th 4.75 9.89 10.80 15.20 4.68 5.47 7.39 11.10 9.04 18.40 U 1.07 2.31 1.98 1.94 1.18 1.03 1.56 2.15 1.31 2.62 Nb 5.22 7.62 9.55 9.60 5.04 6.03 6.18 10.50 6.70 12.70 Ta 0.36 0.58 0.61 0.77 0.37 0.40 0.48 0.71 0.48 1.30 Zr 46.4 54.9 87.8 69.7 39.0 43.2 54.6 92.3 56.7 121.0 Hf 1.45 1.87 2.74 2.34 1.33 1.37 1.83 2.86 1.79 3.81 Rb/Sr 0.51 0.81 0.54 0.66 0.39 0.41 0.45 0.46 0.70 0.51 Rb/Nb 17.30 14.80 11.10 10.10 13.90 12.00 13.30 9.81 14.90 7.19 注:主量元素单位为%,稀土、微量元素单位为10-6;F1=-1.773w(TiO2)+0.607w(Al2O3)+0.76w(Fe2O3)-1.5w(MgO)+0.616w(CaO)+0.509w(Na2O)-1.224w(K2O)-9.09;F2=-0.445w(TiO2)+0.07w(Al2O3)-0.25w(Fe2O3)-1.142w(MgO)+0.438w(CaO)+0.475w(Na2O)+1.426w(K2O)-6.861,据Roser,and Korsch(1988). -
[1] Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses That do not Report Pb.Chemical Geology,192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [2] Becker,T.P.,Thomas,W.A.,Samson,S.D.,et al.,2005.Detrital Zircon Evidence of Laurentian Crustal Dominance in the Lower Pennsylvanian Deposits of the Alleghanian Clastic Wedge in Eastern North America.Sedimentary Geology,182(1-4):59-86.doi: 10.1016/j.sedgeo.2005.07.014 [3] Bhatia,M.R.,1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology,45(1-2):97-113.doi: 10.1016/0037-0738(85)90025-9 [4] Bruguier,O.,Lancelot,J.R.,Malavieille,J.,1997.U-Pb Dating on Single Detrital Zircon Grains from the Triassic Songpan-Ganze Flysch (Central China):Provenance and Tectonic Correlations.Earth and Planetary Science Letters,152:217-231.doi: 10.1016/s0012-821x(97)00138-6 [5] Bureau of Geology and Mineral Resources of Heilongjiang Province (BGMRH),1993.Regional Geology of Heilongjiang Province.Geological Publishing House,Beijing (in Chinese). [6] Chen,Z.G.,Zhang,L.C.,Lu,B.Z.,et al.,2010.Geochronology and Geochemistry of the Taipingchuan Copper-Molybdenum Deposit in Inner Mongolia,and Its Geological Significances.Acta Petrologica Sinica,26(5):1437-1449 (in Chinese with English abstract). http://www.oalib.com/paper/1476127 [7] Fedo,C.M.,2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry,53(1):277-303.doi: 10.2113/0530277 [8] Floyd,P.A.,Shail,R.,Leveridge,B.E.,et al.,1991.Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones:Implications for Tectonic Environment Discrimination.Geological Society,London,Special Publications,57(1):173-188.doi: 10.1144/gsl.sp.1991.057.01.14 [9] He,Z.H.,Liu,Z.J.,Guo,H.W.,et al.,2008a.Provenance Analysis of Middle Jurassic Sediments and Its Geological Significance in Mohe Basin.Journal of Jilin University (Earth Science Edition),38(3):398-404 (in Chinese with English abstract). [10] He,Z.H.,Wang,Y.F.,Hou,W.,2008b.Geochemisry and Provenance Analysis of the Middle Jurassic Sandstones in the Mohe Basin,Heilongjiang.Sedimentary Geology and Tethyan Geology,28(4):93-100 (in Chinese with English abstract). doi: 10.1360%2F02yd0376 [11] He,Z.J.,Li,J.Y.,Mo,S.G.,et al.,2003.Geochemistry,Tectonic Background and Provenance Analysis of the Sandstones from the Mohe Foreland Basin.Science in China (Series D),33(12):1219-1226 (in Chinese). doi: 10.1360%2F02yd0376 [12] Herron,M.M.,1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Research,58:820-883.doi: 10.1306/212f8e77-2b24-11d7-8648000102c1865d [13] Hou,W.,2006.Evolution of Sedimentary and Provenance Analysis in Middle Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract). [14] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010a.Provenance Analysis of Upper Jurassic and Its Geological Significances in Mohe Basin.Geological Review,56(1):71-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200604014.htm [15] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010b.Sedimentary Characteristics and Tectonic Setting of the Upper Jurassic Mohe Basin.Journal of Jilin University (Earth Science Edition),40(2):286-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287168307_Sedimentary_characteristics_and_tectonic_setting_of_the_Upper_Jurassic_Mohe_Basin [16] Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010c.Application of REE Geochemical Characteristics of Sandstone to Study on Provenance:A Case from the Middle Jurassic of Mohe Basin in Northeast China.Acta Sedimentologica Sinica,28(2):285-293 (in Chinese with English abstract). [17] Li,B.L.,Sun,Y.G.,Chen,G.J.,et al.,2016.Zircon U-Pb Geochronology,Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science,41(1):1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201601001.htm [18] Li,C.L.,2007.Structural Characteristic,Tectonic Evolution and Basin Dynamics of Mohe Basin (Dissertation).China University of Geosciences,Beijing (in Chinese with English abstract). [19] Li,J.Y.,He,Z.J.,Mo,S.G.,et al.,2004.The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains,NE China,and Their Tectonic Implications.Geological Bulletin of China,23(2):120-129 (in Chinese with English abstract). http://www.oalib.com/references/17381607 [20] Li,L.,Sun,F.Y.,Li,B.L.,et al.,2015.Ore-Forming Fluid Features and Genesis of Shabaosi Gold Deposit in Mohe County,Heilongjiang Province.Earth Science,40(7):1163-1176 (in Chinese with Englishabstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507005.htm [21] Li,Y.P.,Li,J.Y.,Sun,G.H.,et al.,2007.Basement of Junggar Basin:Evidence from Detrital Zircons in Sandstone of Previous Devonian Kalamaili Formation.Acta Petrologica Sinica,23(7):1577-1590 (in Chinese with English abstract). http://www.oalib.com/paper/1492690 [22] Liu,Y.S.,Gao,S.,Hu,Z.C.,et al.,2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology,51(1-2):537-571.doi: 10.1093/petrology/egp082 [23] Liu,Y.S.,Hu,Z.C.,Gao,S.,et al.,2008.In Situ Analysis of Major and Trace Elements Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology,257(1-2):34-43.doi:http://dx.doi.org/ 10.1016/j.chemgeo.2008.08.004 [24] Meng,E.,Xu,W.L.,Yang,D.B.,et al.,2011.Zircon U-Pb Chronology,Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area,and Its Tectonic Implications.Acta Petrologica Sinica,27(4):1209-1226 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110425 [25] Orolmaa,D.,Erdenesaihan,G.,Borisenko,A.S.,et al.,2008.Permian-Triassic Granitoid Magmatism and Metallogeny of the Hangayn (Central Mongolia).Russian Geology and Geophysics,49(7):534-544.doi: 10.1016/j.rgg.2008.06.008 [26] Qihe,R.G.,1995.Vestigiofossils of the Middle Jurassic Ershi'erzhan Group in Mohe Area,Heilongjiang Province.Regional Geology of China,(3):243-244 (in Chinese). [27] Qi,J.Z.,Li,L.,Guo,X.D.,2000.Geological Characteristics of the Shabaosi Altered Sandstone Type Gold Deposit in North Da Hinggan Mountains.Mineral Deposits,19(2):116-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200002002.htm [28] Roser,B.P.,Korsch,R.J.,1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology,67(1-2):119-139.doi: 10.1016/0009-2541(88)90010-1 [29] Shao,L.,Stattergger,K.,Li,W.H.,1998.Discussion of Tectonic Background by the Sandstone's Geochemistry.Chinese Science Bulletin,43(9):985-987 (in Chinese). doi: 10.1007/BF02883223 [30] Sorokin,A.A.,Yarmolyuk,V.V.,Kotov,A.B.,et al.,2004.Geochronology of Triassic-Jurassic Granitoids in the Southern Framing of the Mongol-Okhotsk Foldbelt and the Problem of Early Mesozoic Granite Formation in Central and Eastern Asia.Doklady Earth Sciences,399(8):1091-1094. https://www.researchgate.net/publication/258563760_Geochronology_of_Triassic-Jurassic_Granitoids_in_the_Southern_Framing_of_the_Mongol-Okhotsk_Foldbelt_and_the_Problem_of_Early_Mesozoic_Granite_Formation_in_Central_and_Eastern_Asia [31] Sun,G.R.,Liu,X.G.,Han,Z.Z.,et al.,2002.Stratigraphic Division and Age of the Mid-Upper Jurassic Ershi'erzhan Group in the Upper Heilongjiang River Basin.Geological Bulletin of China,21(3):150-155 (in Chinese with English abstract). [32] Sun,Q.S.,2013.Study on the Exhumation Process from Late Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract). [33] Tang,J.,Xu,W.L.,Wang,F.,et al.,2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif,NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos,184-187:1-16.doi:http://dx.doi.org/ 10.1016/j.lithos.2013.10.024 [34] Tomurtogoo,O.,Windley,B.F.,Kroner,A.,et al.,2005.Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone,Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean,Suture and Orogen.Journal of the Geological Society,162(1):125-134.doi: 10.1144/0016-764903-146 [35] Wan,Y.S.,Zhang,Q.D.,Song,T.R.,2003.Detrital Zircon SHRIMP Chronology of the Mesoproterozoic Changzhougou Formation Clastic Rocks in Beijing Ming Tombs:Limitation on the Provenance and Maximal Sedimentary Age of Cap Rocks in North China Craton.Chinese Science Bulletin,48(18):1970-1975 (in Chinese). [36] Wang,F.,Zhou,X.H.,Zhang,L.C.,et al.,2006.Late Mesozoic Volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia.Earth and Planetary Science Letters,251(1-2):179-198.doi: 10.1016/j.epsl.2006.09.007 [37] Wang,J.,Sun,F.Y.,Li,B.L.,et al.,2016.Age,Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige,Urad Zhongqi,Inner Mongolia.Earth Science,41(5):792-808 (in Chinese with English abstract). https://www.researchgate.net/publication/304880140_Age_petrogenesis_and_tectonic_implications_of_Permian_hornblendite_in_Tugurige_Urad_Zhongqi_Inner_Mongolia [38] Wang,Q.,2007.The Geophysical Research of the Structure Characteristics in the Western of the Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract). [39] Williams,I.S.,2001.Response of Detrital Zircon and Monazite and Their U-Pb Isotopic Systems to Regional Metamorphism and Host-Rock Partial Melting,Cooma Complex,Southeastern Australia.Australian Journal of Earth Sciences,48(4):557-580.doi: 10.1046/j.1440-0952.2001.00883.x [40] Wu,F.Y.,Sun,D.Y.,Ge,W.C.,et al.,2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences,41(1):1-30 .doi: 10.1016/j.jseaes.2010.11.014 [41] Wu,H.Y.,Xin,R.C.,Yang,J.G.,2003a.The Middle Jurassic Sedimentary Evolution and Petroleum Potential of the Mohe Basin.Petroleum Geology & Experiment,25(2):116-121 (in Chinese with English abstract). [42] Wu,H.Y.,Yang,J.G.,Huang,Q.H.,et al.,2003b.Sequence and Age of the Mesozoic Strata in the Mohe Basin.Journal of Stratigraphy,27(3):193-198 (in Chinese with English abstract). [43] Xin,R.C.,Wu,H.Y.,Yang,J.G.,2003.Upper Jurassic Sequence-Stratigraphic Framework of the Mohe Basin.Journal of Stratigraphy,27(3):199-204 (in Chinese with English abstract). [44] Xu,M.J.,Xu,W.L.,Meng,E.,et al.,2011.LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area,Northeastern Inner Mongolia.Geological Bulletin of China,30(9):1321-1338 (in Chinesewith English abstract). https://www.researchgate.net/publication/282559967_LA-ICP-MS_zircon_U-Pb_chronology_and_geochemistry_of_Mesozoic_volcanic_rocks_from_the_Shanghulin-Xiangyang_basin_in_Ergun_area_northeastern_Inner_Mongolia [45] Xu,W.L.,Wang,F.,Pei,F.P.,et al.,2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica,29(2):339-353 (in Chinese with English abstract). https://www.researchgate.net/publication/282382991_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_Constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations_Acta_Petrologica_Sinica_292 [46] Yang,J.G.,Wu,H.Y.,Liu,J.L.,2006.Stratigraphic Correlation of the Mesozoic and Cenozoic in the Outer Basins of the Daqing Exploration Area,Heilongjiang,China.Geological Bulletin of China,25(9-10):1088-1093 (in Chinese with English abstract). https://www.researchgate.net/publication/279574216_Stratigraphic_correlation_of_the_Mesozoic_and_Cenozoic_in_the_outer_basins_of_the_Daqing_exploration_area_Heilongjiang_China [47] Yang,W.,Li,S.G.,2008.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning:Implications for Lithospheric Thinning of the North China Craton.Lithos,102(1/2):88-117.doi: 10.1016/j.lithos.2007.09.018 [48] Yuan,H.L.,Gao,S.,Liu,X.M.,et al.,2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research,28(3):353-370.doi: 10.1111/j.1751-908x.2004.tb00755.x [49] Zhang,C.,Yang,W.H.,He,Z.H.,et al.,2014.Chronology and Geochemistry of Rhyolites in Mankegou'ebo Formation from Ta'erqi Area,Southern-Central Greater Xing'an Range.Global Geology,33(2):255-265 (in Chinese with English abstract). [50] Zhang,J.H.,2005.Geochronological Framework of the Mesozoic Volcanic Rocks in the Great Xing'an Range,NE China (Dissertation).Jilin University,Changchun (in Chinese with English abstract). https://www.researchgate.net/publication/248352568_Geochronological_framework_of_Mesozoic_volcanic_rocks_in_the_Great_Xing%27an_Range_NE_China_and_their_geodynamic_implications?_sg=NmLLcgBFugarWUwjuAU87irYQT_HV8Jk97puepa2AXXeVLqr37zt2A5wMz7BpF5GnhOUUHSNc53jDpTVQjg8NS3kciFzUcFNUNPZRHHvwiA [51] Zhang,J.H.,Ge,W.C.,Wu,F.Y.,et al.,2008.Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range,Northeastern China.Lithos,102(1-2):138-157.doi: 10.1016/j.lithos.2007.08.011 [52] Zhang,S.,Lin,C.M.,Wu,C.D.et al.,2003.Tectonic Characteristics and Basin Evolution of the Mohe Basin,Heilongjiang Province.Geological Journal of China Universities,9(3):411-419 (in Chinese with English abstract). https://www.researchgate.net/publication/304396417_Tectonic_characteristics_and_basin_evolution_of_the_Mohe_BasinHeilongjiang_Province [53] Zorin,Y.A.,1999.Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt,Trans-Baikal Region (Russia) and Mongolia.Tectonophysics,306(1):33-56.doi: 10.1016/s0040-1951(99)00042-6 [54] 黑龙江省地质矿产局,1993.黑龙江省区域地质志.北京:地质出版社. https://zhidao.baidu.com/share/471c20e7f0bf79adc03e1be68104bb2e.html [55] 陈志广,张连昌,卢百志,等,2010.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义.岩石学报,26(5): 1437-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm [56] 和钟铧,刘招君,郭宏伟,等,2008a.漠河盆地中侏罗世沉积源区分析及地质意义.吉林大学学报(地球科学版),38(3): 398-404. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803006.htm [57] 和钟铧,王玉芬,侯伟,2008b.漠河盆地中侏罗统砂岩地球化学特征及物源属性分析.沉积与特提斯地质,28(4): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200804017.htm [58] 和政军,李锦轶,莫申国,等,2003.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学(D辑),33(12): 1219-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm [59] 侯伟,2006.漠河盆地中侏罗世沉积演化与物源分析(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093064.htm [60] 侯伟,刘招君,何玉平,等,2010a.漠河盆地上侏罗统物源分析及其地质意义.地质论评,56(1): 71-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001012.htm [61] 侯伟,刘招君,何玉平,等,2010b.漠河盆地上侏罗统沉积特征与构造背景.吉林大学学报(地球科学版),40(2): 286-297. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002007.htm [62] 侯伟,刘招君,何玉平,等,2010c.砂岩稀土元素地球化学特征在沉积物源区分析中的应用:以中国东北漠河盆地中侏罗统为例.沉积学报,28(2): 285-293. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002010.htm [63] 李碧乐,孙永刚,陈广俊,等,2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学,41(1): 1-16. http://www.earth-science.net/WebPage/Article.aspx?id=3215 [64] 李春雷,2007.漠河盆地构造特征演化与成盆动力学研究(硕士学位论文).北京:中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y1784198 [65] 李锦轶,和政军,莫申国,等,2004.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报,23(2): 120-129. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402003.htm [66] 李良,孙丰月,李碧乐,等,2015.黑龙江省漠河县砂宝斯金矿床流体特征及矿床成因.地球科学,40(7):1163-1176. http://www.earth-science.net/WebPage/Article.aspx?id=3117 [67] 李亚萍,李锦轶,孙桂华,等,2007.准噶尔盆地基底的探讨: 来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,23(7): 1577-1590. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707002.htm [68] 孟恩,许文良,杨德彬,等,2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报,27(4): 1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm [69] 其和日格,1995.黑龙江省漠河地区中侏罗统二十二站组的遗迹化石.中国区域地质,(3): 243-244. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD503.008.htm [70] 齐金忠,李莉,郭晓东,2000.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征.矿床地质,19(2): 116-125. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200002002.htm [71] 邵磊,Stattergger,K.,李文厚,1998.从砂岩地球化学探讨盆地构造背景.科学通报,43(9): 985-987. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199809020.htm [72] 孙广瑞,刘旭光,韩振哲,等,2002.上黑龙江盆地中上侏罗统二十二站群的地层划分与时代.地质通报,21(3): 150-155. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200203008.htm [73] 孙求实,2013.漠河盆地晚侏罗系以来剥露过程研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013195446.htm [74] 万渝生,张巧大,宋天锐,2003.北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定.科学通报,48(18): 1970-1975. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200318013.htm [75] 王键,孙丰月,李碧乐,等,2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学,41(5): 792-808. http://www.earth-science.net/WebPage/Article.aspx?id=3299 [76] 王骞,2007.漠河盆地西部构造特征的地球物理研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/article/cdmd-10183-2007095175.htm [77] 吴河勇,辛仁臣,杨建国,2003a.漠河盆地中侏罗统沉积演化及含油气远景.石油实验地质,25(2): 116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200302003.htm [78] 吴河勇,杨建国,黄清华,等,2003b.漠河盆地中生代地层层序及时代.地层学杂志,27(3): 193-198. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303004.htm [79] 辛仁臣,吴河勇,杨建国,2003.漠河盆地上侏罗统层序地层格架.地层学杂志,27(3): 199-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303005.htm [80] 徐美君,许文良,孟恩,等,2011.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报,30(9): 1321-1338. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201109001.htm [81] 许文良,王枫,裴福萍,等,2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报,29(2): 339-353. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [82] 杨建国,吴河勇,刘俊来,2006.大庆探区外围盆地中、新生代地层对比及四大勘探层系.地质通报,25(9-10): 1088-1093. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2016.htm [83] 张超,杨伟红,和钟铧,等,2014.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究.世界地质,33(2): 255-265. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201402002.htm [84] 张吉衡,2005.大兴安岭地区中生代火山岩的年代学格架(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2006091982.htm [85] 张顺,林春明,吴朝东,等,2003.黑龙江漠河盆地构造特征与成盆演化.高校地质学报,9(3): 411-419. http://cdmd.cnki.com.cn/Article/CDMD-11415-2007066666.htm