Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance
-
摘要: 多龙矿集区是班公湖-怒江成矿带最重要的组成部分,其成矿规模巨大、时间跨度较长、成矿过程复杂,因而人们对该区成岩成矿地质背景及岩石成因等问题一直争议不断,值得进一步明确.通过研究矿集区中部拿若斑岩型铜(金)矿与成矿相关的花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄、全岩地球化学特征及Hf同位素组成,并与区域邻近矿床进行详细地对比研究,查明了多龙地区与成矿相关的岩浆岩形成构造背景、岩石成因及深部动力学过程.测试结果表明拿若铜(金)矿形成时代为早白垩世120Ma左右,与多龙地区其他矿床形成时代一致.这些岩浆岩均相对富集轻稀土(LREE)与大离子亲石元素(LILE: Rb, Ba, K等);亏损重稀土(HREE )与高场强元素(HFSE: Nb, Ta, Zr, Hf等).原位锆石εHf(t)均为正值,为1.38~7.37,Hf同位素两阶段模式年龄tDM2为707~1086Ma,表明多龙矿集区斑岩-浅成低温热液型铜(金)矿形成与早白垩世班公湖-怒江特提斯洋北向俯冲有关.当俯冲洋壳到达地壳50~70km深度时发生不同程度相变,从而导致角闪石等矿物脱水产生的熔体交代楔形地幔,进而诱发幔源物质部分熔融产生弧岩浆,其形成环境类似于南美安第斯成矿带洋陆俯冲背景之下的陆缘弧环境.Abstract: As the most important part of Bangong Lake-Nujiang River metallogenic belt, the Duolong ore-concentrated area is characterized by the occurrence of huge mineralization scale, extended time span and complex forming process, resulting in controversial understanding of its petrogenesis and tectonics and those of related deposits. To address this problem, this study firstly presents new data of LA-ICP-MS zircon U-Pb age, whole-rock geochemistry, and in situ zircon Hf isotopes for the mineralization-associated granite porphyry in Naruo porphyry copper (gold) deposit, and secondly we make a detailed comparison with research results of other porphyry deposits in Duolong area to find out the tectonic setting, petrogenesis and geodynamic processes of the mineralization-associated porphyry in Duolong area. The test results show that the age of the Naruo Cu (Au) deposit formation is consistent with that of other deposits in Duolong area formed at Early Cretaceous about 120Ma. All the main intrusive rocks have similar lithogeochemical characteristics, for they all show the relative enrichment in light rare earth elements (LREE) and large-ion lithophile elements (LILE: Rb, Ba, K, etc.), relatively depleted in heavy rare earth elements (HREE ) and high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38-7.37, and two-stage model ages of zircons are 707-1086Ma. The results suggest that the formation of porphyry-epithermal copper (gold) deposit in Duolong ore-concentrated area is dominated by northward subduction of the Bangongcuo Tethys plate beneath Qiangtang block at Early Cretaceous. When the subducted oceanic crust reached 50-70km underground and generated different degrees of phase transformation, which leads to melt produced by dehydration of amphibole minerals metasomatized mantle wedge and induced mantle partial melting produced magmatic arc. Those deposits occurred in a continental arc tectonic setting which is similar to the continental margin arc environment of the ocean-continent subduction setting of the Andes metallogenic belt in South America.
-
Key words:
- Naruo copper (gold) deposit /
- geochronology /
- geochemistry /
- Hf zircon isotope /
- continental arc /
- depleted mantle
-
图 1 研究区位置(a),西藏地区构造分区(b),班公湖-怒江结合带及邻区构造单元(c)
图b根据Hou et al.(2004)修改;图c根据耿全如等(2011)修改
Fig. 1. Geographic location(a),tectonic sketch in Tibet(b),tectonic units of the Bangong-Nujiang suture zone and its neighboring areas(c)
图 2 多龙地区地质图(a),拿若铜(金)矿地质图(b),拿若矿区A-A'剖面(c)
锆石U-Pb数据据Li et al.(2011a,2011b,2013)、方向等(2015)以及祝向平等(2015)
Fig. 2. Geological sketch of Duolong area(a)and Naruo porphyry Cu(Au)deposit(b),Section A-A' of the Naruo deposit(c)
图 3 拿若斑岩型铜(金)矿岩石、矿石脉体及蚀变照片
a.斑岩型矿体;b.花岗闪长斑岩中浸染状金属矿物;c.长石石英砂岩中脉-网脉状矿体;d.含硫化物石英脉;e.角砾岩型矿体;f.角砾之间填充的金属矿物;g.含矿花岗闪长斑岩;h.含矿花岗闪长斑岩,发育弱钾化(样品用于LA-ICP-MS锆石测年及Hf同位素测试);i.含矿花岗闪长岩斑岩镜下照片;j.含矿花岗闪长岩斑岩镜下照片;k.不含矿花岗闪长斑岩,发育弱青磐岩化(样品用于LA-ICP-MS锆石测年及Hf同位素测试).Py.黄铁矿;Mt.磁铁矿;Cp.黄铜矿;Bn.斑铜矿;Cov.铜蓝;Sup.硫化物;Q.石英;Kfs.钾长石;Pl.斜长石;Bi.黑云母;Ep.绿帘石;Rut.金红石
Fig. 3. Photographs of rocks,ore minerals,veins and alterations in Naruo porphyry Cu(Au)deposit
图 6 拿若斑岩型铜(金)矿花岗闪长斑岩地球化学图解
a.A/CNK(摩尔)-A/NK(摩尔),底图据Peccerillo and Taylor(1976);b.稀土元素Cl球粒陨石标准化配分曲线;c.微量元素原始地幔标准化蛛网图;Cl球粒陨石及原始地幔值分别采用Boynton(1984)和Sun and McDonough(1989);多龙地区含矿与不含矿花岗闪长斑岩数据李金祥等(2008)、Li et al.(2013)以及陈华安等(2013);拿若矿区花岗闪长斑岩数据祝向平等(2015)
Fig. 6. Geochemical diagram of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit
图 7 拿若斑岩型铜(金)矿区锆石εHf(t)值频率分布
以往研究数据祝向平等(2015)
Fig. 7. Frequency histogram of zircons εHf(t)value from Naruo porphyry Cu(Au)deposit
图 8 多龙地区主要岩浆活动
图中包括多不杂、波龙、拿若、拿顿、荣那5个矿床共计35个数据;数据佘宏全等(2009)、李金祥等(2008)、Li et al.(2011a,2011b,2013)、方向等(2015)、陈华安等(2013)、祝向平等(2015)以及王勤等(2015)
Fig. 8. Age of main magmatic event in Duolong area
图 9 拿若斑岩型铜(金)矿区花岗闪长斑岩地球化学图解
a.Th/Ta-Yb,底图据Gorton and Schandl(2000);b.Th/Yb-Nb/Yb;底图据Pearce(1983);c.Th-Co-Zr/10;d.Th-Sc-Zr/10,底图据Bhatia and Crook(1986).A.洋岛弧;B.陆缘弧;C.活动大陆边缘;D.被动大陆边缘.图中符号同图 6a
Fig. 9. Geochemical discrimination diagrams of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit
图 10 拿若矿区花岗闪长斑岩岩石性质及源区判别
a.Y-Sr/Y,底图据Defant and Drummond(1990);b.YbN-(La/Yb)N图解,底图据Martin(1999);c.Th/Ce-Th/Sm图解,底图据Boztuet al.(2007);d.Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)图解,底图据PatioDouce(1999);图中符号同图 6a
Fig. 10. Discriminant diagrams of rock properties and source region discrimination of Naruo granodiorite porphyry
图 11 拿若矿区花岗闪长斑岩εHf(t)与U-Pb年龄关系
部分数据祝向平等(2015);多龙地区数据李金祥等(2008)、Li et al.(2013)以及陈华安等(2013)
Fig. 11. Plot of εHf(t)versus U-Pb ages of granodiorite porphyry from Naruo deposit
图 12 多龙地区岩浆活动及矿床形成动力学模型
Fig. 12. Geodynamic model for the generation of the magma and the formation of the deposit in Duolong area
表 1 拿若矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb isotopes analyzed data of the granodiorite porphyry from the Naruo deposite
样品点 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ Z01-01 5 162 255 0.63 0.0187 0.0002 0.1443 0.0123 0.0560 0.0048 119.34 1.05 137 12 453 189 Z01-02 9 265 469 0.57 0.0186 0.0001 0.1553 0.0076 0.0606 0.0030 118.79 0.80 147 7 623 105 Z01-03 10 293 505 0.58 0.0189 0.0001 0.1252 0.0063 0.0479 0.0024 120.96 0.77 120 6 95 118 Z01-04 7 227 321 0.71 0.0188 0.0001 0.1350 0.0098 0.0520 0.0038 120.30 0.87 129 9 285 165 Z01-05 3 82 164 0.50 0.0187 0.0002 0.1395 0.0204 0.0540 0.0081 119.59 1.47 133 19 372 336 Z01-06 6 186 304 0.61 0.0188 0.0001 0.1413 0.0077 0.0544 0.0029 120.36 0.89 134 7 387 121 Z01-07 5 123 233 0.53 0.0189 0.0001 0.1605 0.0131 0.0615 0.0050 120.92 0.93 151 12 656 174 Z01-08 9 308 413 0.75 0.0190 0.0001 0.1752 0.0081 0.0669 0.0029 121.24 0.94 164 8 836 90 Z01-09 4 113 205 0.55 0.0190 0.0003 0.1300 0.0307 0.0496 0.0119 121.35 1.73 124 29 176 558 Z01-10 5 124 229 0.54 0.0191 0.0002 0.1293 0.0176 0.0492 0.0068 121.69 1.08 123 17 157 323 Z01-11 8 193 391 0.49 0.0191 0.0001 0.1267 0.0106 0.0482 0.0038 121.82 0.89 121 10 108 188 Z01-12 3 98 159 0.62 0.0191 0.0002 0.1380 0.0185 0.0523 0.0072 122.10 1.18 131 18 300 313 Z15-01 10 387 503 0.77 0.0185 0.0001 0.1412 0.0058 0.0555 0.0022 117.96 0.79 134 5 431 88 Z15-02 6 219 297 0.74 0.0185 0.0001 0.1467 0.0106 0.0575 0.0042 118.14 0.88 139 10 512 160 Z15-03 8 301 429 0.70 0.0185 0.0001 0.1304 0.0059 0.0510 0.0023 118.33 0.78 124 6 243 104 Z15-04 6 170 286 0.60 0.0188 0.0002 0.1400 0.0103 0.0540 0.0038 120.02 0.97 133 10 372 159 Z15-05 10 145 521 0.28 0.0187 0.0003 0.2119 0.0193 0.0824 0.0064 119.13 1.84 195 18 1255 152 Z15-06 11 450 528 0.85 0.0188 0.0001 0.1408 0.0063 0.0542 0.0024 120.31 0.79 134 6 380 99 Z15-07 5 150 251 0.60 0.0190 0.0001 0.1270 0.0105 0.0485 0.0040 121.21 0.92 121 10 126 193 Z15-08 4 109 214 0.51 0.0188 0.0002 0.1260 0.0186 0.0486 0.0074 120.02 1.07 121 18 130 357 Z15-09 3 80 159 0.50 0.0188 0.0002 0.1322 0.0174 0.0510 0.0070 120.00 1.12 126 17 242 316 Z15-10 8 179 441 0.41 0.0186 0.0001 0.1342 0.0084 0.0523 0.0032 118.87 0.79 128 8 299 140 Z15-11 14 565 689 0.82 0.0187 0.0001 0.1146 0.0043 0.0444 0.0016 119.63 0.90 110 4 -90 90 注:因测得年龄<1000Ma,故采用206Pb/238U年龄. 表 2 拿若斑岩型铜(金)矿区花岗闪长斑岩的主量元素(%)和微量元素(10-6)分析结果
Table 2. Major elements(%)and trace elements(10-6)analytic data of the granodiorite porphyry from the Naruo porphyry Cu(Au)deposit
岩性样品编号 含矿花岗闪长斑岩 不含矿花岗闪长斑岩 Z01-125 Z01-278 Z07-263 Z07-301 Z08-239 Z15-179 Z15-255 SiO2 65.01 65.13 64.53 65.54 64.85 63.91 64.71 Al2O3 15.19 14.16 15.98 15.87 15.45 15.50 14.96 Fe2O3 1.66 2.75 2.89 2.83 2.19 2.33 2.22 FeO 4.29 3.17 3.02 2.44 3.82 4.19 3.84 MgO 1.57 1.65 1.71 1.62 1.66 1.74 1.73 CaO 3.00 2.00 2.82 1.48 3.05 3.86 3.60 K2O 3.01 4.60 2.64 3.44 2.80 2.61 2.25 TiO2 0.37 0.36 0.37 0.32 0.38 0.39 0.38 MnO 0.14 0.19 0.07 0.07 0.09 0.08 0.09 P2O5 0.13 0.12 0.14 0.10 0.12 0.15 0.13 LOSS 2.55 4.34 2.57 3.46 2.67 2.17 2.73 Total 99.45 98.57 99.44 99.17 99.37 99.64 99.34 FeOT 5.79 5.64 5.62 4.98 5.79 6.28 5.84 Mg# 32.6 34.27 35.15 36.68 33.84 33.06 34.56 ANK 2.05 2.74 2.19 2.26 2.27 2.18 2.13 ACNK 1.18 1.61 1.29 1.63 1.25 1.12 1.08 Bi 0.70 2.21 0.22 0.52 0.48 0.22 0.10 Li 28.30 25.05 30.46 23.76 21.51 24.58 27.53 Be 1.46 1.09 1.36 1.25 1.30 1.17 1.33 Sc 8.97 7.07 8.25 7.81 8.03 7.16 7.71 V 81.62 59.88 76.13 87.61 82.01 74.19 83.80 Cr 7.34 4.78 5.77 5.05 6.03 6.18 7.23 Co 9.33 7.53 6.22 6.05 8.09 8.35 8.80 Ni 5.96 4.62 3.83 2.69 6.54 7.33 13.19 Cu 602.00 5 733.00 399.30 357.30 1 422.00 2 528.50 356.30 Pb 12.57 10.44 9.44 6.07 10.67 10.75 8.76 Zn 110.05 77.25 60.87 50.05 64.84 67.41 38.05 Ga 18.04 15.62 18.27 18.09 17.56 17.99 18.16 Rb 72.32 193.70 75.71 133.10 90.12 63.51 90.49 Sr 421.40 421.70 402.70 208.20 379.30 453.85 480.90 Y 12.07 7.99 12.57 12.84 8.93 9.35 9.59 Zr 95.18 76.82 91.61 84.08 97.41 97.92 89.95 Nb 8.81 6.59 5.26 5.27 7.29 6.78 7.88 Cs 18.32 17.71 16.62 15.98 10.99 10.92 28.79 Ba 615.70 791.20 515.70 591.30 425.90 414.60 482.50 La 12.60 9.33 10.60 15.44 8.74 10.60 10.72 Ce 18.72 15.42 16.19 25.60 12.59 15.30 15.64 Pr 2.84 2.35 2.60 3.89 1.89 2.26 2.29 Nd 11.28 9.27 10.86 15.56 7.61 9.03 9.07 Sm 2.19 1.88 2.20 2.96 1.47 1.74 1.73 Eu 0.60 0.69 0.63 0.81 0.51 0.57 0.58 Gd 1.88 1.86 1.96 2.71 1.40 1.59 1.59 Tb 0.35 0.35 0.37 0.50 0.26 0.28 0.28 Dy 1.90 1.98 2.08 2.71 1.41 1.55 1.52 Ho 0.35 0.32 0.38 0.47 0.26 0.29 0.28 Er 1.18 1.09 1.26 1.56 0.84 0.92 0.90 Tm 0.19 0.17 0.20 0.27 0.13 0.14 0.14 Yb 1.31 1.11 1.38 1.62 0.86 0.90 0.90 Lu 0.21 0.17 0.22 0.26 0.14 0.15 0.14 Hf 12.07 7.99 12.57 12.84 8.93 9.35 9.59 Ta 0.76 0.57 0.48 1.00 0.52 0.53 0.71 Tl 0.84 1.65 0.88 1.08 1.09 0.85 1.31 Th 9.93 9.06 8.07 6.76 6.59 7.07 7.36 U 1.12 0.88 0.87 0.75 0.37 0.49 0.64 ΣREE 55.57 45.99 50.93 74.38 38.10 45.32 45.79 LREE 48.22 38.93 43.07 64.28 32.81 39.50 40.03 HREE 7.35 7.06 7.86 10.10 5.29 5.82 5.76 LREE/HREE 6.56 5.52 5.48 6.37 6.20 6.79 6.95 δEu 0.91 1.14 0.93 0.88 1.09 1.05 1.07 δCe 0.77 0.81 0.76 0.81 0.76 0.77 0.77 LaN/YbN 6.91 6.04 5.53 6.84 7.28 8.41 8.54 注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔比值;A/NK=(Al2O3)/(K2O+Na2O)摩尔比值;δEu=EuN/[(SmN)×(GdN)]1/2;δCe=CeN/[(LaN)×(PrN)]1/2. 表 3 拿若斑岩型铜(金)矿区锆石Hf同位素分析结果
Table 3. Hf isotopes analyzed data of the zircons from the Naruo porphyry Cu(Au)deposit
岩性 样品编号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) 2σ tDM1(Ma) tDM2(Ma) fLu/Hf 含矿花岗闪长斑岩 Z01-01 119.59 0.062560 0.001861 0.282868 0.000016 0.282864 3.39 5.87 0.6 558 801 -0.94 Z01-02 121.24 0.035551 0.001092 0.282883 0.000016 0.282881 3.94 6.51 0.6 524 761 -0.97 Z01-03 121.69 0.059476 0.001616 0.282893 0.000014 0.282890 4.29 6.83 0.5 517 741 -0.95 Z01-04 120.92 0.047134 0.001418 0.282881 0.000015 0.282878 3.85 6.39 0.5 532 768 -0.96 Z01-05 121.35 0.052565 0.001445 0.282889 0.000016 0.282886 4.13 6.68 0.6 521 750 -0.96 Z01-06 120.30 0.034450 0.001024 0.282863 0.000015 0.282860 3.21 5.77 0.5 553 808 -0.97 Z01-07 122.10 0.026299 0.000772 0.282906 0.000016 0.282905 4.75 7.37 0.6 487 707 -0.98 Z01-08 121.82 0.031657 0.000958 0.282899 0.000013 0.282897 4.50 7.09 0.5 500 724 -0.97 Z01-09 120.36 0.054250 0.001642 0.282876 0.000013 0.282872 3.67 6.18 0.5 543 781 -0.95 不含矿花岗闪长斑岩 Z15-01 121.21 0.029555 0.000831 0.282846 0.000017 0.282845 2.63 5.23 0.6 573 843 -0.97 Z15-02 120.02 0.019530 0.000565 0.282853 0.000014 0.282852 2.88 5.47 0.5 559 827 -0.98 Z15-03 120.00 0.047284 0.001260 0.282860 0.000016 0.282857 3.10 5.63 0.6 561 816 -0.96 Z15-04 118.14 0.032316 0.000841 0.282740 0.000016 0.282738 -1.15 1.38 0.6 724 1086 -0.97 Z15-05 120.02 0.031431 0.000879 0.282830 0.000015 0.282828 2.05 4.62 0.5 597 881 -0.97 Z15-06 120.31 0.034790 0.000999 0.282844 0.000015 0.282842 2.54 5.10 0.5 579 851 -0.97 Z15-07 118.33 0.033119 0.000980 0.282829 0.000016 0.282827 2.01 4.53 0.6 600 885 -0.97 Z15-08 119.13 0.032367 0.001021 0.282835 0.000015 0.282833 2.23 4.77 0.5 592 871 -0.97 -
[1] Amelin,Y.,Lee,D.C.,Halliday,A.N.,et al.,1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature,399(6733):252-255.doi: 10.1038/20426 [2] Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology,192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x [3] Belousova,E.,Griffin,W.,O'Reilly,S.Y.,et al.,2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology,143(5):602-622.doi: 10.1007/s00410-002-0364-7 [4] Beate,B.,Monzier,M.,Spikings,R.,et al.,2001.Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador:The Quimsacocha Volcanic Center.Earth and Planetary Science Letters,192(4):561-570.doi: 10.1016/s0012-821x(01)00466-6 [5] Bhatia,M.R.,Crook,K.A.W.,1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology,92(2):181-193.doi: 10.1007/bf00375292 [6] Bouvier,A.,Vervoort,J.D.,Patchett,P.J.,2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters,273(1-2):48-57.doi: 10.1016/j.epsl.2008.06.010 [7] Boynton,W.V.,1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies.Developments in Geochemistry,2:63-114.doi: 10.1016/b978-0-444-42148-7.50008-3 [8] Boztu ,D.,Harlavan,Y.,Arehart,G.B.,et al.,2007.K-Ar Age,Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divrii Sivas Region,Eastern-Central Anatolia,Turkey.Lithos,97(1-2):193-218.doi: 10.1016/j.lithos.2006.12.014 [9] Cao,S.H.,Deng,S.Q.,Xiao,Z.J.,et al.,2006.The Archipelagic Arc Tectonic Evolution of the Meso-Tethys in the Western Part of the Bangong Lake-Nujiang Suture Zone.Sedimentary Geology and Tethyan Geology,26(4):25-32 (in Chinese with English abstract). [10] Chen,H.A.,Zhu,X.P.,Ma,D.F.,et al.,2013.Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit,Tibet and Its Mineralizing Significance.Acta Geologica Sinica,87(10):1593-1611 (in Chinese with English abstract). https://www.researchgate.net/publication/284686858_Geochronology_and_geochemistry_of_the_Bolong_porphyry_Cu-Au_deposit_Tibet_and_its_mineralizing_significance [11] Cooke,D.R.,Hollings,P.,Walshe,J.L.,2005.Giant Porphyry Deposits:Characteristics,Distribution,and Tectonic Controls.Economic Geology,100(5):801-818.doi: 10.2113/gsecongeo.100.5.801 [12] Defant,M.J.,Drummond,M.S.,1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature,347(6294):662-665.doi: 10.1038/347662a0 [13] Du,D.D.,Qu,X.M.,Wang,G.H.,et al.,2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture,Tibet:Evidence from Zircon U-Pb LA-ICPMS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica,27(7):1993 -2002 (in Chinese with English abstract). http://www.oalib.com/search?kw=Bidirectional%20subduction&searchField=keyword [14] Duan,Z.M.,Li,G.M.,Zhang,H.,et al.,2013a.The Formation and Its Geologic Significance of Late Triassic-Jurassic Accretionary Complexes and Constraints on Metallogenic and Geological Settings in Duolong Porphyry Copper Gold Ore Concentration Area,Northern Bangong Co-Nujiang Suture Zone,Tibet.Geological Bulletin of China,32(5):742-750 (in Chinese with English abstract). https://www.researchgate.net/publication/279895275_The_formation_and_its_geologic_significance_of_Late_Triassic-Jurassic_accretionary_complexes_and_constraints_on_metallogenic_and_geological_settings_in_Duolong_porphyry_copper_gold_ore_concentration_a [15] Duan,Z.M.,Li,G.M.,Zhang,H.,et al.,2013b.Zircon U-Pb Age & Geochemical Characteristics of the Quartz Monzobiorite and Metallogenic Background of the Sena Gold Deposit in Duolong Metallogenic Concentrated Area,Tibet.Journal of Jilin University (Earth Science Edition),43(6):1864-1877 (in Chinese with English abstract). [16] Drummond,M.S.,Defant,M.J.,Kepezhinskas,P.K.,1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences,87(1-2):205-215.doi: 10.1017/s0263593300006611 [17] Eliopoulos,D.,Economou-Eliopoulos,M.,Zelyaskova-Panayiotova,M.,2014.Critical Factors Controlling Pd and Pt Potential in Porphyry Cu-Au Deposits:Evidence from the Balkan Peninsula.Geosciences,4(1):31-49.doi: 10.3390/geosciences4010031 [18] Fang,X.,Tang,J.X.,Song,Y.,et al.,2015.Formation Epoch of the South Tiegelong Superlarge Epithermal Cu (Au-Ag) Deposit in Tibet and Its Geological Implications.Acta Geoscientica Sinica,36(2):168-176 (in Chinese with English abstract). https://www.researchgate.net/publication/281996814_Formation_epoch_of_the_South_Tiegelong_supelarge_epithermal_Cu_Au-Ag_deposit_in_tibet_and_its_geological_implications [19] Fu,J.J.,Ding,L.,Xu,Q.,et al.,2015.Zircon U-Pb Geochronology and Hf Isotopic Composition of the Cretaceous Volcanic Rocks and Constraint of the Collision Age of Bangong-Nujiang Suture Zone in Dongco Area,Gaize,Tibet.Chinese Journal of Geology,50(1):182-202 (in Chinese with English abstract) https://www.researchgate.net/publication/281762727_Zircon_U-Pb_geochronology_and_Hf_isotopic_composition_of_the_Cretaceous_volcanic_rocks_and_constraint_of_the_collision_age_of_Bangong-Nujiang_suture_zone_in_Dongco_area_Gaize_Tibet?_sg=u1lZgfVOI6JeNwqrMS7vV03852_Xm5zn6kX4DNpLegbyT3cA9L28cdIOK0JOmLNkdUJfePP9ACYGAyQ8kr1H1Q [20] Fu,J.J.,Zhao,Y.Y.,Guo ,S.,2014.Geochemical Characteristics and Significance of Granodiorite Porphyry in the Duolong Ore Concentration Area,Tibet.Acta Petrologica et Mineralogica,33(6):1039-1051 (in Chinese with English abstract). http://www.oalib.com/paper/1560923 [21] Geng,Q.R.,Pan,G.T.,Wang,L.Q.,et al.,2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China,30(8):1261-1274 (in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet [22] Gorton,M.P.,Schandl,E.S.,2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.The Canadian Mineralogist,38(5):1065-1073.doi: 10.2113/gscanmin.38.5.1065 [23] Gustafson ,L.B.,1978.Some Major Factors of Porphyry Copper Genesis.Economic Geology,73(5):600-607.doi: 10.2113/gsecongeo.73.5.600 [24] Gutscher,M.A.,Maury,R.,Eissen,J.P.,et al.,2000.Can Slab Melting be Caused by Flat Subduction?Geology,28(6):535-538.doi: 10.1130/0091-7613(2000)028<0535:csmbcb>2.3.co;2 [25] Guynn,J.H.,Kapp,P.,Pullen,A.,et al.,2006.Tibetan Basement Rocks near Amdo Reveal“Missing”Mesozoic Tectonism along the Bangong Suture,Central Tibet.Geology,34(6):505.doi: 10.1130/g22453.1 [26] Halter,W.E.,Heinrich,C.A.,Pettke,T.,2005.Magma Evolution and the Formation of Porphyry Cu-Au Ore Fluids:Evidence from Silicate and Sulfide Melt Inclusions.Mineral Deposits,39(8):845-863.doi: 10.1007/s00126-004-0457-5 [27] Hildreth,W.,Moorbath,S.,1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology,98(4):455-489.doi: 10.1007/bf00372365 [28] Hgdahl,K.,Sjstrm,H.,Andersson,U.B.,et al.,2008.Continental Margin Magmatism and Migmatisation in the West-Central Fennoscandian Shield.Lithos,102(3-4):435-459.doi: 10.1016/j.lithos.2007.07.019 [29] Hoskin,P.W.O.,Schaltegger,U.,2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.In:Manchar,J.M.,Hoskin,P.W.O.,eds..Reviews in Mineralogy and Geochemistry,53(1):27-62 doi: 10.2113/0530027 [30] Hou,K.J.,Li,Y.H.,Zhou,T.J.,et al.,2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologlca Sinica,23(10):2595-2604 (in Chinese with English abstract). http://www.oalib.com/paper/1472292 [31] Hou,Z.Q.,2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology,98(1):125-145.doi: 10.2113/98.1.125 [32] Hou,Z.Q.,Gao,Y.F.,Qu,X.M.,et al.,2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters,220(1-2):139-155.doi: 10.1016/s0012-821x(04)00007-x [33] Hou,Z.Q.,Lu,Q.T.,Wang,J.A.,et al.,2003.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen.Mineral Deposits,22(4):319-333 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200304000.htm [34] Hou,Z.Q.,Xie,Y.L.,Xu,W.Y.,et al.,2007.Yulong Deposit,Eastern Tibet:A High-Sulfidation Cu-Au Porphyry Copper Deposit in the Eastern Indo-Asian Collision Zone.International Geology Review,49(3):235-258.doi: 10.2747/0020-6814.49.3.235 [35] Hou,Z.Q.,Yang,Z.M.,Qu,X.M.,et al.,2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006 [36] Hou,Z.Q.,Yang,Z.S.,Xu,W.Y.,et al.,2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits,25(4):337-358 (in Chinese with English abstract). http://www.oalib.com/references/17343420 [37] Hou,Z.Q.,Zeng,P.S.,Gao,Y.F.,et al.,2006.Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collision Zone:Constraints from Re-Os Dating of Molybdenite.Mineralium Deposita,41(1):33-45.doi: 10.1007/s00126-005-0038-2 [38] Hou,Z.Q.,Zheng,Y.C.,Yang,Z.M.,et al.,2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits,31(4):647-670 (in Chinese with English abstract). [39] Jiang,Y.H.,Jiang,S.Y.,Dai,B.Z.,et al.,2006a.Comparison on Elemental and Isotopic Geochemistry of Ore-Bearing and Barren Porphyries from the Yulong Porphyry Cu Depsit,East Tibet.Acta Petrologica Sinica,22(10):2561-2566 (in Chinese with English abstract). https://www.researchgate.net/publication/286880895_Comparison_on_elemental_and_isotopic_geochemistry_and_ore-bearing_and_barren_poryphyries_from_the_Yulong_poryphyry_Cu_deposit_east_Tibet [40] Jiang,Y.H.,Jiang,S.Y.,Ling,H.F.,et al.,2006b.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt,East Tibet.Acta Petrologica Sinica,22(3):697-706 (in Chinese with English abstract). http://www.oalib.com/references/17382653 [41] John,D.A.,Ayuso,R.A.,Barton,M.D.,et al.,2010.Porphyry Copper Deposit Model.In:Survey,W.S.G.,ed.,Mineral Deposit Model for Resource Assessment.U.S.Geological Survey,Reston. [42] Kapp,P.,Murphy,M.A.,Yin,A.,et al.,2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics,22(4):253.doi: 10.1029/2001tc001332 [43] Kay,R.W.,1978.Aleutian Magnesian Andesites:Melts from Subducted Pacific Ocean Crust.Journal of Volcanology and Geothermal Research,4(1-2):117-132.doi: 10.1016/0377-0273(78)90032-x [44] Kelemen,P.B.,1995.Genesis of High Mg# Andesites and the Continental Crust.Contributions to Mineralogy and Petrology,120(1):1-19.doi: 10.1007/bf00311004 [45] Kesler,S.E.,Wilkinson,B.H.,2008.Earth's Copper Resources Estimated from Tectonic Diffusion of Porphyry Copper Deposits.Geology,36(3):255.doi: 10.1130/g24317a.1 [46] Lang,X.H.,Tang,J.X.,Chen,Y.C.,et al.,2012.Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt,Tibet,China:Evidence from Re-Os Ages of Xiongcun Orebody No.1.Earth Science,37(3):515-525 (in Chinese with English abstract). [47] Leng,Q.F.,Tang,J.X.,Zheng,W.B.,et al.,2016.Geochronology,Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit,Tibet.Earth Science,41(6):999-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606007.htm [48] Li,D.W.,2008.Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area.Earth Science,33(6):723-742 (in Chinese with English abstract). http://d.wanfangdata.com.cn/NSTLQK_10.3799-dqkx.2008.089.aspx [49] Li,G.M.,Li,J.X.,Qin,K.Z.,et al.,2012.Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt,Northwestern Tibet.Resource Geology,62(1):99-118.doi: 10.1111/j.1751-3928.2011.00182.x [50] Li,G.M.,Duan,Z.M.,Liu,B.,et al.,2011.The Discovery of Jurassic Accretionary Complexes in Duolong Area,Northern Bangong Co-Nujiang Suture Zone,Tibet,and Its Geologic Significance.Geological Bulletin of China,30(8):1256-1260 (in Chinese with English abstract). https://www.researchgate.net/publication/279669870_The_discovery_of_Jurassic_accretionary_complexes_in_Duolong_area_northern_Bangong_Co-Nujiang_suture_zone_Tibet_and_its_geologic_significance [51] Li,G.M.,Zhang,X.N.,Qin,K.Z.,et al.,2015.The Telescoped Porphyry-High Sulfidation Epithermal Cu (Au) Mineralization of Rongna Deposit in Duolong Ore Cluster at the Southern Margin of Qiangtang Terrane,Central Tibet:Integrated Evidence from Geology.Acta Petrologica Sinica,31(8):2307-2324 (in Chinese with English abstract). https://www.researchgate.net/publication/282846858_The_telescoped_porphyry-high_sulfidation_epithermal_Cu-Au_mineralization_of_Rongna_deposit_in_Duolong_ore_cluster_at_the_southern_margin_of_Qiangtang_Terrane_Central_Tibet_Integrated_evidence_from_geo [52] Li,J.X.,Li,G.M.,Qin,K.Z.,et al.,2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica,24(3):531-543 (in Chinese with English abstract). https://www.researchgate.net/publication/279598497_Geochemistry_of_porphyries_and_volcanic_rocks_and_ore-forming_geochronology_of_Duobuza_gold-rich_porphyry_copper_deposit_in_Bangonghu_belt_Tibet_Constraints_on_mettalogenic_tectonic_settings?_sg=5FEMvVMPFkkXdqXQtrpGtVftcwB5ZdbWEMe83pbJWu1ktNMPpN8cs62HqDcwFvFHAOyHViQ7PgA61H73S_SkKw [53] Li,J.X.,Li,G.M.,Qin,K.Z.,et al.,2011a.Mineralogy and Mineral Chemistry of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Arc,Northern Tibet.Resource Geology,62(1):19-41. doi: 10.1111/j.1751-3928.2011.00178.x [54] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2011b.Magmatic-Hydrothermal Evolution of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Metallogenic Belt,Tibet:Evidence from U-Pb and 40Ar/39Ar Geochronology.Journal of Asian Earth Sciences,41(6):525-536. doi: 10.1016/j.jseaes.2011.03.008 [55] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2013.Petrogenesis of Ore-Bearing Porphyries from the Duolong Porphyry Cu-Au Deposit,Central Tibet:Evidence from U-Pb Geochronology,Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics.Lithos,160-161:216-227.doi: 10.1016/j.lithos.2012.12.015 [56] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2014.Geochronology,Geochemistry,and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos,198-199:77-91.doi: 10.1016/j.lithos.2014.03.025 [57] Li,Y.L.,He,J.,Wang,C.S.,et al.,2015.Cretaceous Volcanic Rocks in South Qiangtang Terrane:Products of Northward Subduction of the Bangong-Nujiang Ocean?Journal of Asian Earth Sciences,104:69-83.doi: 10.1016/j.jseaes.2014.09.033 [58] Liao,L.G.,Cao,S.H.,Xiao,Y.B.,et al.,2005.The Delineation and Significance of the Continental-Margin Volcanic-Magmatic Arc Zone in the Northern Part of the Bangong-Nujiang Suture Zone.Sedimentary Geology and Tethyan Geology,25(1-2):163-170 (in Chinese with English abstract). http://www.oalib.com/paper/4874137 [59] Liang,H.Y.,Mo,J.H.,Sun,W.D.,et al.,2009.Study on Geochemical Composition and Isotope Ages of the Malasongduo Porphyry Associated with Cu-Mo Mineralization.Acta Petrologica Sinica,25(2):385-392 (in Chinese with English abstract). http://www.oalib.com/paper/1472205 [60] Liang,H.Y.,Sun,W.D.,Su,W.C.,et al.,2009.Porphyry Copper-Gold Mineralization at Yulong,China,Promoted by Decreasing Redox Potential during Magnetite Alteration.Economic Geology,104(4):587-596.doi: 10.2113/gsecongeo.104.4.587 [61] Liu,D.L.,Huang,Q.S.,Fan,S.Q.,et al.,2014.Subduction of the Bangong-Nujiang Ocean:Constraints from Granites in the Bangong Co Area,Tibet.Geological Journal,49(2):188-206.doi: 10.1002/gj.2510 [62] Liu,S.,Hu,R.Z.,Gao,S.,et al.,2012.U-Pb Zircon Age,Geochemical and Sr-Nd Isotopic Data as Constraints on the Petrogenesis and Emplacement Time of Andesites from Gerze,Southern Qiangtang Block,Northern Tibet.Journal of Asian Earth Sciences,45:150-161.doi: 10.1016/j.jseaes.2011.09.025 [63] Logan,J.M.,Mihalynuk,M.G.,2014.Tectonic Controls on Early Mesozoic Paired Alkaline Porphyry Deposit Belts (Cu-Au±Ag-Pt-Pd-Mo) within the Canadian Cordillera.Economic Geology,109(4):827-858.doi: 10.2113/econgeo.109.4.827 [64] Ludwig,K.R.,2003.Isoplot/Ex Version 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication,Berkeley. [65] Manning,C.,2004.The Chemistry of Subduction-Zone Fluids.Earth and Planetary Science Letters,223(1-2):1-16.doi: 10.1016/j.epsl.2004.04.030 [66] Martin,H.,1999.Adakitic Magmas:Modern Analogues of Archaean Granitoids.Lithos,46(3):411-429.doi: 10.1016/s0024-4937(98)00076-0 [67] Martin,H.,Smithies,R.H.,Rapp,R.,et al.,2005.An Overview of Adakite,Tonalite-Trondhjemite-Granodiorite (TTG),and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos,79(1-2):1-24.doi: 10.1016/j.lithos.2004.04.048 [68] Matte,P.,Tapponnier,P.,Arnaud,N.,et al.,1996.Tectonics of Western Tibet,between the Tarim and the Indus.Earth and Planetary Science Letters,142(3-4):311-330.doi: 10.1016/0012-821x(96)00086-6 [69] Misra,K.C.2000.Understanding Mineral Deposits.Kluwer Academic,London,353-413. http://www.springer.com/gb/book/9780045530090 [70] Patio Douce,A.E.,1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?Geological Society,London,Special Publications,168(1):55-75.doi: 10.1144/gsl.sp.1999.168.01.05 [71] Peacock,S.M.,Rushmer,T.,Thompson,A.B.,1994.Partial Melting of Subducting Oceanic Crust.Earth and Planetary Science Letters,121(1-2):227-244.doi: 10.1016/0012-821x(94)90042-6 [72] Pearce,J.A.,1983.Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins.Journal of the Electrochemical Society,147(6):2162-2173 https://www.researchgate.net/publication/247434731_Role_of_the_sub-continental_lithosphere_in_magma_genesis_at_active_continental_margin [73] Peccerillo,A.,Taylor,S.R.,1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81.doi: 10.1007/bf00384745 [74] Qu,X.M.,Wang,R.J.,Dai,J.J.,et al.,2012a.Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance.Mineral Deposits,31(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201201002.htm [75] Qu,X.M.,Wang,R.J.,Xin,H.B.,et al.,2009.Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone,the Western Tibetan Plateau.Geochimica,38(6):523-535 (in Chinese with English abstract). https://www.researchgate.net/publication/284324341_Geochronology_and_geochemistry_of_igneous_rocks_related_to_the_subduction_of_the_Tethys_oceanic_plate_along_the_Bangong_Lake_arc_zone_the_western_Tibetan_Plateau [76] Qu,X.M.,Xin,H.B.,2006.Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet,China.Geological Bulletin of China,25(7):792-799 (in Chinese with English abstract). https://www.researchgate.net/publication/279695342_Ages_and_tectonic_environment_or_the_Bangong_Co_porphyry_copper_belt_in_western_Tibet_China [77] Qu,X.M.,Wang,R.J.,Xin,H.B.,et al.,2012.Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture,Tibetan Plateau.Lithos,146-147:264-275.doi: 10.1016/j.lithos.2012.05.006 [78] Qu,X.M.,Xin,H.B.,Du,D.D.,et al.,2012b.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture,the Tibetan Plateau.Geochimica,41(1):1-14 (in Chinese with English abstract). http://www.oalib.com/references/17342174 [79] Qu,X.M.,Fan,S.F.,Ma,X.D.,et al.,2015.Post-Collisional Copper Ore Deposits along Bangong Co-Nujiang Metallogenic Belt,Tibetan Plateau.Mineral Deposits,34(3):431-448 (in Chinese with English abstract). [80] Rapp,R.P.,Shimizu,N.,Norman,M.D.,et al.,1999.Reaction betweens Lab Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8GPa.Chemical Geology,160:335-356.doi:http://dx.doi.org/ 10.1016/S0009-2541(99)00106-0 [81] Richards,J.P.,2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology,98:1515-1533.doi: 10.2113/98.8.1515 [82] Richards,J.P.,2005.Cumulative Factors in the Generation of Giant Calc-Alkaline Porphyry Cu Deposits.In:Porter,T.M.,ed.,Super Porphyry Copper & Gold Deposits.PGC Publishing,Linden Park. http://www.oalib.com/references/19018622 [83] Rollinson,H.P.,1993.Using Geochemical Date:Evaluation,Presentation,Interpretation.Longman Publishing Group,New York,174-206. [84] Schwab,M.,Ratschbacher,L.,Siebel,W.,et al.,2004.Assembly of the Pamirs:Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet.Tectonics,23(4):.doi: 10.1029/2003tc001583 [85] Seedorff,E.,Dilles,J.H.,Proffett,J.M.,et al.,2005.Porphyry Deposit:Characteristics and Origin of Hypogene Features.Economic Geology 100th Anniversary Volume,Society of Economic Geologists,Inc.,Littleton. [86] She,H.Q.,Li,J.W.,Ma,D.F.,et al.,2009.Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Porphyry Copper Deposit in Tibet and Its Geological Implications.Mineral Deposits,28(6):737-746 (in Chinese with English abstract). http://www.oalib.com/references/17371111 [87] Shi,R.D.,2007.SHRIMP Dating of the Bangong Lake SSZ-Type Ophiolite:Constraints on the Closure Time of Ocean in the Bangong Lake-Nujiang River,Northwestern Tibet.Chinese Science Bulletin,52(7):936-941.doi: 10.1007/s11434-007-0134-z [88] Sillitoe,R.H.,1972.A Plate Tectonic Model for the Origin of Porphyry Copper Deposits.Economic Geology,67(2):184-197.doi: 10.2113/gsecongeo.67.2.184 [89] Sillitoe,R.H.,1979.Some Thoughts on Gold-Rich Porphyry Copper Deposits.Mineralium Deposita,14(2):161-174.doi: 10.1007/bf00202933 [90] Sillitoe,R.H.,Perelló,J.,2005.Andean Copper Province:Tectonomagmatic Settings,Deposit Types,Metallogeny,Exploration,and Discovery.Economic Geology 100th Anniversary Volume,Society of Economic Geologists,Inc.,Littleton. [91] Sillitoe,R.H.,2010.Porphyry Copper Systems.Economic Geology,105(1):3-41.doi: 10.2113/gsecongeo.105.1.3 [92] Sinclair,W.D.,2007.Porphyry Deposits.In:Goodfellow,W.D.,ed.,Mineral Deposits of Canada:A Synthesis of Major Deposit Types,District Metallogeny,the Evolution of Geological Provinces and Exploration Methods.Mineral Deposits Division,Special Publication,5:223-243. [93] Singer,D.A.,1995.World Class Base and Precious Metal Deposits:A Quantitative Analysis.Economic Geology,90(1):88-104.doi: 10.2113/gsecongeo.90.1.88 [94] Singer,D.A.,Berger,V.I.,Moring,B.C.,2005a.Porphyry Copper Deposits of the World:Database,Map,and Grade and Tonnage Models.Open-File Report 2005-1060.U.S.Geological Survey,Melo Park. https://pubs.usgs.gov/of/2005/1060/of2005-1060.pdf [95] Singer,D.A.,Berger,V.I.,Menzie,W.D.,et al.,2005b.Porphyry Copper Deposit Density.Economic Geology,100(3):491-514.doi: 10.2113/gsecongeo.100.3.491 [96] Singer,D.A.,Berger,V.I.,Moring,B.C.,2008.Porphyry Copper Deposits of the World:Database and Grade and Tonnage Models.Open-File Report 2008-1155.U.S.Geological Survey,Melo Park. https://pubs.usgs.gov/of/2008/1155/ [97] Sisson,T.W.,1994.Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe.Chemical Geology,117(1-4):331-344.doi: 10.1016/0009-2541(94)90135-x [98] Sderlund,U.,Patchett,P.J.,Vervoort,J.D.,et al.,2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters,219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3 [99] Stern,C.R.,Kilian,R.,1996.Role of the Subducted Slab,Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology,123(3):263-281.doi: 10.1007/s004100050155 [100] Stolz,A.J.,Jochum,K.P.,Spettel,B.,et al.,1996.Fluid- and Melt-Related Enrichment in the Subarc Mantle:Evidence from Nb/Ta Variations in Island-Arc Basalts.Geology,24(7):587-590.doi: 10.1130/0091-7613(1996)024<0587:famreitalic>2.3.co;2 [101] Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [102] Sun,W.D.,Liang,H.Y.Ling,M.X.,et al.,2013.The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas.Geochimica et Cosmochimica Acta,103:263-275.doi: 10.1016/j.gca.2012.10.054 [103] Sun,W.D.,Hang,R.F.,Li,H.,et al.,2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews,65:97-131.doi: 10.1016/j.oregeorev.2014.09.004 [104] Tang,J.X.,Dorji.,Liu,H.F.,et al.,2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica,33(4):393-410 (in Chinese with English abstract). http://www.oalib.com/paper/1559914 [105] Tang,J.X.,Wang,L.Q.,Zheng,W.B.,et al.,2014a.Ore Deposits Metallogenic Regularity and Prospecting in the Eastern Section of the Gangdese Metallogenic Belt.Acta Geologica Sinica,88(12):2545-2555 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201412027.htm [106] Tang,J.X.,Sun,X.G.,Ding,S.,et al.,2014b.Discovery of the Epithermal Deposit of Cu (Au-Ag) in the Duolong Ore Concentrating Area,Tibet.Acta Geoscientica Sinica,35(1):6-10 (in Chinese with English abstract). https://www.researchgate.net/profile/Jilin_Duan/publication/277963808_The_Discovery_of_the_Cu_Au-Ag_Epithermal_Deposit_in_the_Duolong_Ore_Concentrating_Area_Northern_Tibet/links/56a76a4b08ae0fd8b3fe00f2.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [107] Tang,J.X.,Lang,X.H.,Xie,F.W.,et al.,2015.Geological Characteristics and Genesis of the Jurassic No.1 Porphyry Cu-Au Deposit in the Xiongcun District,Gangdese Porphyry Copper Belt,Tibet.Ore Geology Reviews,70(4):94-95.doi: 10.1016/j.oregeorev.2015.02.008 [108] Taylor,S.R.,McLennan,S.M.,1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics,33(2):241-265.doi: 10.1029/95rg00262 [109] Wang,Q.,Tang,J.X.,Fang,X.,et al.,2015.Petrogenetic Setting of Andsites in Rongna Ore Block,Tiegelong Cu (Au-Ag) Deposit,Duolong Ore Concentration Area,Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Andsites.Geology in China,42(5):1324-1336 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505011.htm [110] White,W.M.,Patchett,J.,1984.Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs:Implications for Magma Origins and Crust-Mantle Evolution.Earth and Planetary Science Letters,67:167-185.doi: 10.1016/0012-821x(84)90112-2 [111] Xie,Y.L.,Hou,Z.Q.,Xu,J.H.,et al.,2005.Evolution of Multi-Stage Ore-Forming Fluid and Mineralization:Evidence from Fluid Inclusions in Yulong Porphyry Copper Deposit,East Tibet.Acta Petrologica Sinica,21(5):1409-1415 (in Chinese with English abstract). https://www.researchgate.net/publication/289359405_Evolution_of_multi-stage_ore-forming_fluid_and_mineralization_Evidence_form_fluid_inclusions_in_Yulong_porphyry_copper_deposit_East_Tibet [112] Xin,H.B.,Qu,X.M.,Wang,R.J.,et al.,2009.Geochemistry and Pb,Sr,Nd Isotopic Features of Ore-Bearing Porphyries in Bangong Lake Porphyry Copper Belt,Western Tibet.Mineral Deposits,28(6):785-792 (in Chinese with English abstract). [113] Xiong,X.L.,Xia,B.,Xu,J.F.,et al.,2006.Na Depletion in Modern Adakites via Melt/Rock Reaction within the Sub-Arc Mantle.Chemical Geology,229(4):273-292.doi: 10.1016/j.chemgeo.2005.11.008 [114] Yang,C.,Tang,J.X.,Wang,Y.Y.,et al.,2014.Fluid and Geological Characteristics Researches of Southern Tiegelong Epithermal Porphyry Cu-Au Deposit in Tibet.Mineral Deposits,33(6):1287-1305 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201406010.htm [115] Yin,A.,Harrison,T.M.,2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.doi: 10.1146/annurev.earth.28.1.211 [116] Yogodzinski,G.M.,Lees,J.M.,Churikova,T.G.,et al.,2001.Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges.Nature,409(6819):500-504.doi: 10.1038/35054039 [117] Zhang,S.,Shi,H.F.,Hao,H.J.,et al.,2014.Geochronology,Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake,Tibet.Earth Science,39(5):509-524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201405002.htm [118] Zhang,Z.,Chen,Y.C.,Tang,J.X.,et al.,2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District,Tibet.Earth Science,40(1):77-97 (in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet [119] Zhou,J.S.,Meng,X.J.,Zang,W.S.,et al.,2013.Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-Bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit,Tibet,and Its Geological Significance.Acta Petrologica Sinica,29(11):3755-3766 (in Chinese with English abstract). https://www.researchgate.net/publication/293486311_Zircon_U-Pb_geochronology_and_trace_element_geochemistry_of_the_ore-bearing_porphyry_in_Qingcaoshan_porphyry_Cu-Au_deposit_Tibet_and_its_geological_significance [120] Zhu,D.C.,Pan,G.T.,Mo,X.X.,et al.,2006.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology,Geochemistry and Their Tectonic Setting.Acta Geologica Sinica,80(9):1312-1328 (in Chinese with English abstract). http://www.docin.com/p-1205414971.html [121] Zhu,X.P.,Chen,H.A.,Liu,H.F.,et al.,2015.Geochronology and Geochemistry of Porphyries from the Naruo Porphyry Copper Deposit,Tibet and Their Metallogenic Significance.Acta Geologica Sinica,89(1):109-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201501009.htm [122] Zhu,X.P.,Chen,H.A.,Ma,D.F.,et al.,2013.40Ar/39Ar Dating of Hydrothermal K-Feldspar and Hydrothermal Sericite from Bolong Porphyry Cu-Au Deposit in Tibet.Mineral Deposits,32(5):954-962 (in Chinese with English abstract). [123] Zhu,X.P.,Li,G.M.,Chen,H.A.,et al.,2015.Zircon U-Pb,Molybdenite Re-Os and K-Feldspar 40Ar/39Ar Dating of the Bolong Porphyry Cu-Au Deposit,Tibet,China.Resource Geology,65(2):122-135.doi: 10.1111/rge.12059 [124] Zimmerman,A.,Stein,H.J.,Hannah,J.L.,et al.,2008.Tectonic Configuration of the Apuseni-Banat-Timok-Srednogorie Belt,Balkans-South Carpathians,Constrained by High Precision Re-Os Molybdenite Ages.Mineralium Deposita,43:1-21.doi: 10.1007/s00126-007-0149-z [125] 曹圣华,邓世权,肖志坚,等,2006.班公湖-怒江结合带西段中特提斯多岛弧构造演化.沉积与特提斯地质,26(4): 25-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200604003.htm [126] 陈华安,祝向平,马东方,等,2013.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义.地质学报,87(10): 1593-1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm [127] 杜德道,曲晓明,王根厚,等,2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb 年龄和元素地球化学的证据.岩石学报,27(7): 1993-2002. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm [128] 段志明,李光明,张晖,等,2013a.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束.地质通报,32(5): 742-750. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201305007.htm [129] 段志明,李光明,张晖,等,2013b.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束.吉林大学学报(地球科学版),43(6): 1864-1877. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306016.htm [130] 方向,唐菊兴,宋扬,等,2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义.地球学报,36(2): 168-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm [131] 付佳俊,丁林,许强,等,2015.西藏改则洞错地区白垩纪火山岩锆石U-Pb年代学、Hf同位素组成及对班公-怒江洋俯冲闭合的制约.地质科学,50(1): 182-202. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501011.htm [132] 符家骏,赵元艺,郭硕,2014.西藏多龙矿集区花岗闪长斑岩地球化学特征及其意义.岩石矿物学杂志,33(6): 1039-1051. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201406004.htm [133] 耿全如,潘桂棠,王立全,等,2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报,30(8): 1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm [134] 侯可军,李延河,邹天人,等,2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10): 2595-2604. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm [135] 侯增谦,吕庆田,王建安,等,2003.初论陆陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质,22(4): 319-333. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304000.htm [136] 侯增谦,杨竹森,徐文艺,等,2006.青藏高原碰撞造山带Ⅰ:主碰撞造山成矿作用.矿床地质,25(4): 337-358. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [137] 侯增谦,郑远川,杨志明,等,2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质,31(4): 647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm [138] 姜耀辉,蒋少涌,戴宝章,等,2006a.玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究.岩石学报,22: 2561-2566. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610016.htm [139] 姜耀辉,蒋少涌,凌洪琶,等,2006b.陆-陆碰撞造山环境下含铜斑岩岩石成因:以藏东玉龙斑岩铜矿带为例.岩石学报,22(3): 697-706. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603019.htm [140] 郎兴海,唐菊兴,陈毓川,等,2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学,37(3): 515-525. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203015.htm [141] 冷秋锋,唐菊兴,郑文宝,等,2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学,41(6): 999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312 [142] 李德威,2008.青藏高原及邻区三阶段构造演化与成矿演化.地球科学,33(6): 723-742. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806000.htm [143] 李光明,段志明,刘波,等,2011.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义.地质通报,30(8): 1256-1260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108012.htm [144] 李光明,张夏楠,秦克章,等,2015.羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据.岩石学报,31(8): 2307-2324. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508013.htm [145] 李金祥,李光明,秦克章,等,2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报,24(3): 531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm [146] 廖六根,曹圣华,肖业斌,等,2005.班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义,沉积与特提斯地质,25(1-2): 163-170. http://www.oalib.com/references/17350768 [147] 梁华英,莫济海,孙卫东,等,2009.玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析.岩石学报,25(2): 385-392. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902012.htm [148] 曲晓明,辛洪波,2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报,25(7): 792-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm [149] 曲晓明,王瑞江,辛洪波,等,2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学,38(6): 523-535. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906005.htm [150] 曲晓明,王瑞江,代晶晶,等,2012a.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质,31(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201201002.htm [151] 曲晓明,辛洪波,杜德道,等,2012b.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学,41(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm [152] 曲晓明,范淑芳,马旭东,等,2015.西藏班公湖-怒江成矿带上的碰撞后铜矿床.矿床地质,34(3): 431-448. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201503001.htm [153] 佘宏全,李进文,马东方,等,2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质,28(6): 737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm [154] 唐菊兴,多吉,刘鸿飞,等,2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报,33(4): 393-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm [155] 唐菊兴,孙兴国,丁帅,等,2014b.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报,35(1): 6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm [156] 唐菊兴,王立强,郑文宝,等,2014a.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报,88(12): 2545-2555. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm [157] 王勤,唐菊兴,方向,等,2015.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据.中国地质,42(5): 1324-1336. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505011.htm [158] 谢玉玲,侯增谦,徐九华,等,2005.藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据.岩石学报,21: 1409-1415. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505010.htm [159] 辛洪波,曲晓明,王瑞江,等,2009.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nd同位素特征.矿床地质,28(6): 785-792. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906006.htm [160] 杨超,唐菊兴,王艺云,等,2014.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究.矿床地质,33(6): 1287-1305. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406010.htm [161] 张硕,史洪峰,郝海健,等,2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学,39(5): 509-524. http://www.earth-science.net/WebPage/Article.aspx?id=2860 [162] 张志,陈毓川,唐菊兴,等,2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学,40(1): 77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024 [163] 周金胜,孟祥金,臧文栓,等,2013.西藏青草山斑岩铜金矿含矿斑岩锆石 U-Pb 年代学、微量元素地球化学及地质意义.岩石学报,29(11): 3755-3766. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311009.htm [164] 朱弟成,潘桂棠,莫宣学,等,2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报,80(9): 1312-1328. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm [165] 祝向平,陈华安,刘鸿飞,等,2015.西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义.地质学报,89(1): 109-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm [166] 祝向平,陈华安,马东方,等,2013.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义.矿床地质,32(5): 954-962. http://d.wanfangdata.com.cn/Periodical/kcdz201305007