• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Sage-Husa算法的拖曳式Overhauser海洋磁场传感器海浪磁场噪声实时抑制方法

    葛健 董浩斌 刘欢 罗望 柏明明 邱香域 袁志文 刘咏华 朱俊 张海洋

    葛健, 董浩斌, 刘欢, 罗望, 柏明明, 邱香域, 袁志文, 刘咏华, 朱俊, 张海洋, 2018. 基于Sage-Husa算法的拖曳式Overhauser海洋磁场传感器海浪磁场噪声实时抑制方法. 地球科学, 43(10): 3792-3798. doi: 10.3799/dqkx.2016.551
    引用本文: 葛健, 董浩斌, 刘欢, 罗望, 柏明明, 邱香域, 袁志文, 刘咏华, 朱俊, 张海洋, 2018. 基于Sage-Husa算法的拖曳式Overhauser海洋磁场传感器海浪磁场噪声实时抑制方法. 地球科学, 43(10): 3792-3798. doi: 10.3799/dqkx.2016.551
    Ge Jian, Dong Haobin, Liu Huan, Luo Wang, Bai Mingming, Qiu Xiangyu, Yuan Zhiwen, Liu Yonghua, Zhu Jun, Zhang Haiyang, 2018. Real-time Reduction of Magnetic Noise Associated with Ocean Waves via Sage-Husa Algorithm for Towed Overhauser Marine Geomagnetic Sensor. Earth Science, 43(10): 3792-3798. doi: 10.3799/dqkx.2016.551
    Citation: Ge Jian, Dong Haobin, Liu Huan, Luo Wang, Bai Mingming, Qiu Xiangyu, Yuan Zhiwen, Liu Yonghua, Zhu Jun, Zhang Haiyang, 2018. Real-time Reduction of Magnetic Noise Associated with Ocean Waves via Sage-Husa Algorithm for Towed Overhauser Marine Geomagnetic Sensor. Earth Science, 43(10): 3792-3798. doi: 10.3799/dqkx.2016.551

    基于Sage-Husa算法的拖曳式Overhauser海洋磁场传感器海浪磁场噪声实时抑制方法

    doi: 10.3799/dqkx.2016.551
    基金项目: 

    国家自然科学基金项目 41504137

    国家重大科学仪器设备开发专项 2014YQ100817

    青岛海洋科学与技术国家实验室开放基金项目 QNLM2016ORP0201

    科技部中小企业发展专项资金项目 14C26214202344

    中国博士后科学基金项目 2016M592410

    国家自然科学基金项目 41474158

    近地面探测技术重点实验室开放基金项目 TCGZ2015A008

    近地面探测技术重点实验室开放基金项目 TCGZ2016A005

    详细信息
      作者简介:

      葛健(1986-), 男, 副教授, 主要从事地球物理探测技术及仪器研究

      通讯作者:

      董浩斌

    • 中图分类号: TP216

    Real-time Reduction of Magnetic Noise Associated with Ocean Waves via Sage-Husa Algorithm for Towed Overhauser Marine Geomagnetic Sensor

    • 摘要: 利用Weaver海浪模型,对拖曳式Overhauser海洋磁场传感器海浪磁噪声与深度、波幅等之间的关系进行了理论分析,证明了在极端海况条件下对海浪磁噪声进行抑制的必要性.为提高海洋磁测灵敏度,提出了一种基于改进的Sage-Husa自适应Kalman算法的海浪磁场噪声抑制方法.仿真结果表明,该方法能在不需要先验的噪声统计或实时参考噪声的情况下,实现磁场噪声协方差的快速收敛;且与常规的Sage-Husa算法相比,改进后的Sage-Husa算法降低了对初始参数的依赖性.另外,设计了一种拖曳式Overhauser海洋磁场传感器测试仪来测试上述算法.对比结果表明该方法不仅实现了磁场噪声统计参数的自适应估计,而且比经典Kalman滤波具有更好的滤波效果;此外,海浪磁噪声的功率谱密度由50 pT/Hz1/2@1Hz下降到6 pT/Hz1/2@1Hz.

       

    • 图  1  Weaver海浪感应磁场模型

      Fig.  1.  Weaver model for the induced magnetic field from ocean waves

      图  2  ω=0.4 π rad/s时的海浪磁场噪声

      Fig.  2.  Magnetic noise associated with ocean waves (ω=0.4π rad/s)

      图  3  a=3 m时的海浪磁场噪声

      Fig.  3.  Magnetic noise associated with ocean waves (a=3 m)

      图  4  R0分别为0.75 (a)和4.75 (b)时基于Sage-Husa算法的QR的估计

      Fig.  4.  Estimations of Q and R using Sage-Husa algorithm with R0=0.75 (a) and R0=4.75 (b)

      图  5  R0分别为0.75 (a)和4.75 (b)时基于改进后的Sage-Husa自适应算法的QR的估计

      Fig.  5.  Estimations of Q and R using improved Sage-Husa algorithm with R0=0.75 (a) and R0=4.75 (b)

      图  6  测试仪器的结构

      Fig.  6.  Block diagram of test instrument

      图  7  经典Kalman算法和改进后Sage-Husa自适应算法的抑制效果

      Fig.  7.  Suppression effect of standard Kalman and improved Sage-Husa algorithm

      图  8  海浪磁噪声的功率谱密度

      Fig.  8.  Power spectral density of magnetic noise associated with ocean waves

    • [1] Abrecht, D.G., Schwantes, J.M., Kukkadapu, R.K., et al., 2015.Real-Time Noise Reduction for Mössbauer Spectroscopy through Online Implementation of a Modified Kalman Filter.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 773:66-71.doi: 10.1010/j.nima.2014.10.053
      [2] Deng, P., Lin, C.S., 2009.Implementation of Adaptive Filter on Wave-Generated Magnetic Noise Based on LMS Algorithm.Electronic Measurement Technology, 32(12):58-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSZK201101006.htm
      [3] Dhanak, M., An, E., Coulson, R., et al., 2015.AUV-Based Characterization of EMF Emissions from Submerged Power Cables.2015 IEEE OCEANS, Genova.doi: 10.1109/OCEANS-Genova.2015.7271719
      [4] Dhanak, M., An, E., Couson, R., et al., 2013.Magnetic Field Surveys of Coastal Waters Using an AUV-Towed Magnetometer.2013 IEEE Oceans, San Diego.
      [5] Dostal, J., Martinec, Z., Thomas, M., 2012.The Modelling of the Toroidal Magnetic Field Induced by Tidal Ocean Circulation.Geophysical Journal International, 189(2):782-798.doi: 10.1111/j.1365-246x.2012.05407.x
      [6] Gao, X.D., You, D.Y., Katayama, S., 2012.Seam Tracking Monitoring Based on Adaptive Kalman Filter Embedded Elman Neural Network during High-Power Fiber Laser Welding.IEEE Transactions on Industrial Electronics, 59(11):4315-4325.doi: 10.1109/tie.2012.2193854
      [7] Ge, J., Dong, H.B., Liu, H., et al., 2016.Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting.Sensors, 16(6):806. doi: 10.3390/s16060806
      [8] Ge, J., Lu, C.D., Dong, H.B., et al., 2015.The Detection Technology of Near-Surface UXO Based on Magnetic Gradient Method and Overhauser Sensor.Chinese Journal of Scientific Instrument, 36(5):38-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201505001
      [9] Huan, Y.C., Hu, H.B., Fang, S., 2009.Simulation and Removal of Magnetic Field Noise Generated by Ocean Waves.Marine Electric & Electronic Engineering, 29(11):61-63 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chuandjs200911013
      [10] Hughes, M., Tomic, M., 2010.Geomagnetic Noise Analysis and Suppression from Next Generation Autonomous Systems 2009 Sea Trials.2010 MTS/IEEE Oceans Seattle.doi: 10.1109/OCEANS.2010.5664294
      [11] Lilley, F.E.M., Hitchman, A.P., Milligan, P.R., et al., 2004.Sea-Surface Observations of the Magnetic Signals of Ocean Swells.Geophysical Journal International, 159(2):565-572.doi: 10.1111/j.1365-246x.2004.02420.x
      [12] Liu, D.G., Xu, X., Huang, C., et al., 2014.Adaptive Cancellation of Geomagnetic Background Noise for Magnetic Anomaly Detection Using Coherence.Measurement Science and Technology, 26(1):015008.doi: 10.1088/0957-0233/26/1/015008
      [13] Longuet-Higgins, M.S., Stern, M.E., Stommel, H.M., 1954.The Electrical Field Induced by Ocean Currents and Waves, with Applications to the Method of Towed Electrodes.Papers in Physical Oceanography and Meteorology Ⅷ, Ⅰ, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.doi: 10.1575/1912/1064
      [14] Lyall, R., Li, X., Rowe, J., 2014.Identification and Removal of Ocean Swell Effects in Aeromagnetic Surveys.SEG (Society of Exploration Geophysicists) Annual Meeting. doi: 10.1190/segam2014-0159.1
      [15] Mathieu, J.L., Koch, S., Callaway, D.S., 2013.State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance.IEEE Transactions on Power Systems, 28(1):430-440.doi: 10.1109/tpwrs.2012.2204074
      [16] Naets, F., Cuadrado, J., Desmet, W., 2015.Stable Force Identification in Structural Dynamics Using Kalman Filtering and Dummy-Measurements.Mechanical Systems and Signal Processing, 50-51:235-248.doi: 10.1016/j.ymssp.2014.05.042
      [17] Quinquis, A., 1998.Multisensors Detection of Underwater Magnetic Signals:A Wavelet Packets Application.Traitement du Signal, 15(1):57-66.
      [18] Sage, A.P., Husa, G.W., 1969.Adaptive Filtering with Unknown Prior Statistics.Joint Automatic Control Conference, 7:760-769.doi: 10.1109/jacc.1969.4169325
      [19] Semkin, S.V., Smagin, V.P., 2012.The Effect of Self-Induction on Magnetic Field Generated by Sea Surface Waves.Izvestiya, Atmospheric and Oceanic Physics, 48(2):207-213.doi: 10.1134/s0001433812020119
      [20] Smit, P.B., Janssen, T.T., Herbers, T.H.C., 2015.Stochastic Modeling of Inhomogeneous Ocean Waves.Ocean Modelling, 96:26-35.doi: 10.1016/j.ocemod.2015.06.009
      [21] Tumanski, S., 2016.Handbook of Magnetic Measurements.CRC Press, Boca Raton.
      [22] Wang, Z.G., 2011.Study on Noise Removing by Wavelet Transform for Dynamic Measuring of Ship Magnetic Field.Ship Electronic Engineering, 31(4):158-160 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcdzgc201104042
      [23] Weaver, J.T., 1965.Magnetic Variations Associated with Ocean Waves and Swell.Journal of Geophysical Research, 70(8):1921-1929.doi: 10.1029/jz070i008p01921
      [24] Weaver, J.T., 1997.Generation of Magnetic Signal by Waves and Swell, in Transient and Induced Variations in Aeromagnetic.Rec Aust Geol Surv Organ, 27:15-16. http://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=23477
      [25] Xiong, X., Yang, R.J., Wang, H.J., 2015.Airborne Magnetic Anomaly Detection Algorithm for Moving Target under Ocean Wave Generated Magnetic Noise.Journal of Huazhong University of Science and Technology (Natural Science Edition), 43(3):101-106 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201503020
      [26] Zhu, X.L., Xiao, C.H., Yao, Z.N., 2014.Noise Elimination of Wave-Generated Magnetic Field at Limited Depth in Ship's Dynamic Magnetic Measurement.Journal of Naval University of Engineering, 26(3):48-51 (in Chinese with English abstract). http://europepmc.org/articles/pmc3954553/
      [27] 邓鹏, 林春生, 2009.基于LMS算法的自适应滤波器在海浪磁场噪声中的应用.电子测量技术, 32(12):58-60. doi: 10.3969/j.issn.1002-7300.2009.12.017
      [28] 葛健, 陆承达, 董浩斌, 等, 2015.基于Overhauser传感器的近地表UXO磁梯度法探测技术.仪器仪表学报, 36(5):38-50. http://d.old.wanfangdata.com.cn/Periodical/yqyb201505001
      [29] 还迎春, 胡海滨, 方石, 2009.海浪磁场噪声的仿真与消除.船电技术, 29(11):61-63. doi: 10.3969/j.issn.1003-4862.2009.11.013
      [30] 王志刚, 2011.舰船磁场动态测量中的小波消噪技术研究.舰船电子工程, 31(4):158-160. doi: 10.3969/j.issn.1627-9730.2011.04.042
      [31] 熊雄, 杨日杰, 王鸿吉, 2015.海浪磁噪声背景中动目标航空磁异常检测算法.华中科技大学学报(自然科学版), 43(3):101-106. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201503020
      [32] 朱兴乐, 肖昌汉, 姚振宁, 2014.舰艇动态磁性检测中有限深海浪磁场的噪声消除.海军工程大学学报, 26(3):48-51. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb201403010
    • 加载中
    图(8)
    计量
    • 文章访问数:  4776
    • HTML全文浏览量:  1696
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-11
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回