Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs
-
摘要: 页岩压裂改造过程中渗透率变化和压裂缝扩展的机理对页岩气开发压裂工程设计具有重要意义,通过页岩岩心首次加载-卸载-二次加载流-固耦合物理模拟实验和二次加载实验后岩心微米CT成像分析,揭示出两个重要现象:(1) 首次加载-卸载-二次加载过程,有助于提高岩心的渗透率;(2) 在二次加载过程中,岩心渗透率随轴压增加出现增加或降低不同的现象,分别对应压裂缝的有序化和方向性扩展或无序化和局部糜棱化扩展.实验获得的认识对页岩储层压裂改造有两条启示:(1) 泵入-停泵-再泵入循环压裂有助于改善页岩气储层的渗透率;(2) 对天然裂缝发育的页岩储层,压裂规模的针对性设计十分关键.Abstract: The mechanisms of permeability variations and fracture extension are essential for hydraulic fracturing design in shale gas exploitation. Based on fluid-solid coupling physical experiments and Micro-CT imaging analysis, this study reveals two important phenomena: (1) loading-unloading-reloading cycle has an effect on increasing the permeability of shale samples, (2) during the reloading process, the permeability of shale samples show different trends with increasing axial pressure. In the permeability increasing case with increasing axial pressure, the fractures are produced directionally and orderly. In another case, the fractures are produced disorderly and locally mylonitic. The results show that (1) pumping-intermission-repumping multi-cycles could help modify the stimulation effect of in-site fracturing operations, and (2) hydraulic fracturing volume should be appropriately controlled for naturally fractured shale gas reservoirs.
-
Key words:
- shale gas /
- fluid-solid coupling effect /
- physical experiment /
- permeability /
- CT imaging /
- fracturing stimulation /
- petroleum geology
-
表 1 流-固耦合物理模拟实验页岩岩心描述表
Table 1. Shale core sample descriptions for fluid-solid coupling physical experiments
井号 岩心编号 取样深度(m) 均深(m) 层位 岩心描述 黔江2井 QJ2-9-1 695.79~698.51 697.15 志留系龙马溪组黑色页岩段 灰黑色页岩,结构致密,含天然裂缝,实验后因岩心破碎,未做岩矿分析 龙山1井 LS1-2-3 939.50~942.50 941.00 寒武系筇竹寺组黑色页岩 暗黑色,结构致密,不含天然裂缝,脆性矿物石英含量为49.41%,长石含量为11.81%,方解石+白云石含量为0.92% 黔江2井 QJ2-14 724.29~728.80 726.55 志留系龙马溪组黑色页岩段 暗黑色页岩,结构致密,含天然裂缝,脆性矿物石英含量为29.55%,长石含量为9.83%,方解石+白云石含量为4.38% 表 2 含天然缝岩心QJ2-9-1首次加载实验数据
Table 2. Experiment data of first-time loading for naturally fractured shale sample QJ2-9-1
轴压(MPa) 围压(MPa) 时间(h) 入口气压(MPa) 出口气压(MPa) 平均流量(mL/s) 渗透率(mD) 8.00 5.00 0.53 1.580 0.1 0.69 0.08 12.00 5.00 0.72 1.414 0.1 0.73 0.09 16.00 5.00 0.94 1.427 0.1 0.65 0.08 20.00 5.00 4.80 1.480 0.1 - 因实验控制问题,未测渗透率 24.00 5.00 5.31 2.000 0.1 - 30.00 5.00 5.84 2.050 0.1 - 36.00 5.00 6.31 2.050 0.1 - 44.00 5.00 6.81 2.040 0.1 - 52.00 5.00 8.54 2.030 0.1 - 62.00 5.00 9.04 2.030 0.1 - 72.00 5.00 9.70 2.030 0.1 - 表 3 含天然缝岩心QJ2-9-1二次加载实验数据
Table 3. Experiment data records of second-time loading for naturally fractured shale sample QJ2-9-1
轴压(MPa) 围压(MPa) 时间(h) 入口气压(MPa) 出口气压(MPa) 平均流量(mL/s) 渗透率(mD) 8.00 5.00 0.52 - 0.10 - - 18.00 5.00 0.93 0.79 0.10 0.48 0.19 28.00 5.00 5.30 0.82 0.10 0.45 0.17 38.00 5.00 6.31 0.82 0.10 0.36 0.13 48.00 5.00 6.87 0.83 0.10 0.33 0.12 58.00 5.00 8.54 0.83 0.10 0.31 0.11 68.00 5.00 9.01 0.83 0.10 0.32 0.11 78.00 5.00 9.71 0.83 0.10 0.30 0.11 表 4 不含天然缝岩心LS1-2-3首次加载实验数据
Table 4. Experiment data records of first-time loading for naturally un-fractured shale sample LS1-2-3
轴压(MPa) 围压(MPa) 时间(h) 入口气压(MPa) 出口气压(MPa) 平均流量(mL/s) 渗透率(mD) 8.00 5.00 0.55 2.98 0.1 无流量 0 10.00 5.00 1.22 2.98 0.1 无流量 0 12.00 5.00 2.03 2.98 0.1 无流量 0 14.00 5.00 2.74 2.98 0.1 无流量 0 16.00 5.00 3.47 2.98 0.1 无流量 0 20.00 5.00 3.70 2.98 0.1 无流量 0 24.00 5.00 4.20 2.98 0.1 无流量 0 28.00 5.00 4.63 2.98 0.1 无流量 0 32.00 5.00 4.74 2.98 0.1 无流量 0 38.00 5.00 5.14 2.98 0.1 无流量 0 44.00 5.00 5.94 2.98 0.1 无流量 0 50.00 5.00 6.36 2.98 0.1 无流量 0 56.00 5.00 6.55 2.98 0.1 无流量 0 62.00 5.00 6.88 2.98 0.1 无流量 0 68.00 5.00 7.08 2.98 0.1 无流量 0 表 5 不含天然缝岩心LS1-2-3岩心二次加载实验数据
Table 5. Experiment data records of second-time loading for naturally un-fractured shale sample LS1-2-3
轴压(MPa) 围压(MPa) 时间(h) 入口气压(MPa) 出口气压(MPa) 平均流量(mL/s) 渗透率(mD) 8.00 5.00 0.06 1.45 0.10 0.76 0.10 18.00 5.00 0.50 1.43 0.10 1.00 0.14 33.00 5.00 0.65 1.42 0.10 1.36 0.19 48.00 5.00 0.77 1.41 0.10 1.85 0.26 63.00 5.00 0.89 1.40 0.10 3.08 0.44 78.00 5.00 1.00 1.05 0.10 2.73 0.66 93.00 5.00 1.13 0.61 0.10 1.85 1.18 表 6 含天然缝岩心QJ2-14首次-二次加载实验数据
Table 6. Experiment data records for naturally fractured shale sample QJ2-14
加载情况 轴压(MPa) 围压(MPa) 时间(h) 入口气压(MPa) 出口气压(MPa) 平均流量(mL/s) 渗透率(mD) 首次加载 8.00 5.00 0.08 0.95 0.10 0.29 0.08 10.00 5.00 0.74 0.92 0.10 0.15 0.04 20.00 5.00 0.93 0.92 0.10 1.76 0.51 30.00 5.00 1.05 0.93 0.10 2.51 0.71 40.00 5.00 1.28 0.94 0.10 3.33 0.92 50.00 5.00 1.68 0.94 0.10 3.45 0.95 60.00 5.00 2.14 0.95 0.10 3.39 0.92 二次加载 8.00 5.00 0.06 1.01 0.10 3.64 0.88 10.00 5.00 0.09 1.01 0.10 4.03 0.98 20.00 5.00 0.22 1.02 0.10 4.15 0.99 30.00 5.00 0.36 1.01 0.10 4.56 1.10 40.00 5.00 0.45 1.01 0.10 6.90 1.67 50.00 5.00 0.53 1.00 0.10 9.38 2.31 60.00 5.00 0.59 1.00 0.10 12.45 3.07 -
[1] Arash, J., Daleghani, D., 2009.Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction with Natural Fracture.SPE Hydraulic Fracturing Technology Conference, New York. [2] Cao, T.T., Xu, S.H., Zhou, L., et al., 2014.Element Chemistry Evaluation of Marine Source Rock with High Maturity:A Case Study of Lower Cambrian in Yangba Section of Nanjiang County, Sichuan.Earth Science, 39(2):199-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402008.htm [3] Chen, M., 2013.Re-Orientation and Propagation of Hydraulic Fractures in Shale Gas Reservoir.Journal of China University of Petroleum, 37(5):88-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201305014.htm [4] Cipolla, C.L., Warpinski, N.R., Mayerhofer, M.J., 2008.Hydraulic Fracture Complexity: Diagnosis, Remediation, and Exploitation.SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth. [5] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d [6] Deng, Y.N., Guo, Q.J., Zhu, M.Y., et al., 2014.RRE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan.Earth Science, 39(3):283-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201403004.htm [7] Gale, J.F.W., Robert, M.R., Holder, J., 2007.Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatment.American Association of Petroleum Geologists Bulletin, 91(4): 603-622.doi: 10.1306/11010606061 [8] Gu, H., Weng, X., Lund, J., et al., 2011.Hydraulic Fracture Crossing Natural Fracture at Non-Orthogonal Angles, a Criterion, Its Validation and Applications.SPE Hydraulic Fracturing Technology Conference.New York.doi:10.2118/139984-ms [9] Guo, T.K., Zhang, S.C., Gao, J., et al., 2013.Experimental Study of Fracture Permeability for Stimulated Reservoir Volume (SRV) in Shale Formation.Transport in Porous Media, 98:525-542.doi: 10.1007/s11242-013-0157-7 [10] Hu, Y.Q., Jia, S.G., Zhao, J.Z., et al., 2013.Study on Controlling Conditions in Network Hydraulic Fracturing.Journal of Southwest Petroleum University, 35(4):126-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201304020.htm [11] Liu, H.L., Wang, H.Y., 2012.Absorptivity and Influential Factors of Marine Shales in South China.Natural Gas Industry, 32(9):5-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201209001.htm [12] Liu, H.L., Wang, H.Y., 2013.Ultra-Low Water Saturation Characteristics and the Identification of Over-Pressured Play Fairways of Marine Shales in South China.Natural Gas Industry, 33(7):1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201307032.htm [13] Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005.Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas:Gas-Shale Play with Multi-Trillion Cubic Foot Potential.AAPG Bulletin, 89(2):155-175.doi: 10.1306/09170404042 [14] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004 [15] Yang, H.L., Shen, R.C., Fu, L., 2013.Texture and Mechanical Characterisitcs of Gaseous Shale in Southern Sichuan.In:Ye, J.P., Fu, X.K., Li, W.Z., eds., Proceedings of National Symposium on Coalbed Methane.Geological Publishing House, Beijing, 459-466 (in Chinese). [16] Yang, J., Fu, Y.Q., Chen, H.F.et al., 2012.Mechanical Characteristics of Shale Gas Reservoirs.Natural Gas Industry, 32(7):1-3 (in Chinese with English abstract). https://pangea.stanford.edu/departments/geophysics/dropbox/SRB/public/docs/theses/SRB_128_MAR12_Sone.pdf [17] Ye, J., Hu, Y.Q., Ye, S.L., et al., 2012.Technical Progress of Hydraulic Fracturing in Shale Gas Reservoirs.Natural Gas Exploration & Development, 35(4):64-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRKT201204016.htm [18] Yuan, J.L., Deng, J.G., Zhang, D.Y., et al., 2013.Fracability Evaluation of Shale-Gas Reservoirs.Acta Petrolei Sinica, 34(3):523-527 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303017.htm [19] Zhang, G.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Super-Region in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201502003.htm [20] Zhang, S.C., Guo, T.K., Zhou, T., et al., 2014.Fracture Propagation Mechanism Experiment Hydraulic Fracturing in Natural Shale.Acta Petrolei Sinica, 35(3):496-503 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201403014.htm [21] 曹婷婷, 徐思煌, 周炼, 等, 2014.高演化海相烃源岩元素地球化学评价:以四川南江杨坝地区下寒武统为例.地球科学, 39(2): 199-209. http://earth-science.net/WebPage/Article.aspx?id=2819 [22] 陈勉, 2013.页岩气储层水力裂缝转向扩展机制.中国石油大学学报, 37(5): 88-94. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201305014.htm [23] 邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3): 283-292. http://earth-science.net/WebPage/Article.aspx?id=2839 [24] 胡永全, 贾锁刚, 赵金洲, 等, 2013.缝网压裂控制条件研究.西南石油大学学报, 35(4): 126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201304020.htm [25] 刘洪林, 王红岩, 2012.中国南方海相页岩吸附特征及其影响因素.天然气工业, 32(9): 5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201209001.htm [26] 刘洪林, 王红岩, 2013.中国南方海相页岩超低含水饱和度特征及超压核心区选择指标.天然气工业, 33(7): 1-5. doi: 10.3787/j.issn.1000-0976.2013.07.001 [27] 杨恒林, 申瑞臣, 付利, 2013. 蜀南含气页岩组构和岩石力学特性. 见: 叶建平, 傅小康, 李五忠主编, 煤层气学术研讨会论文集, 北京: 地质出版社, 459-466. [28] 杨建, 付永强, 陈鸿飞, 等, 2012.页岩储层的岩石力学特性.天然气工业, 32(7): 1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309027.htm [29] 叶静, 胡永全, 叶生林, 等, 2012.页岩气藏水力压裂技术进展.天然气勘探与开发, 35(4): 64-68. http://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201204016.htm [30] 袁俊亮, 邓金根, 张定宇, 等, 2013.页岩气储层可压裂性评价技术.石油学报, 34(3): 523-527. doi: 10.7623/syxb201303015 [31] 张高信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2): 206-233. http://earth-science.net/WebPage/Article.aspx?id=3179 [32] 张士诚, 郭天魁, 周彤, 等, 2014.天然页岩压裂裂缝扩展机理试验.石油学报, 35(3): 496-503. doi: 10.7623/syxb201403011