• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    细颗粒粘滑运动的能量耗散与释放试验

    崔德山 项伟 陈琼 王顺

    崔德山, 项伟, 陈琼, 王顺, 2016. 细颗粒粘滑运动的能量耗散与释放试验. 地球科学, 41(9): 1603-1610. doi: 10.3799/dqkx.2016.519
    引用本文: 崔德山, 项伟, 陈琼, 王顺, 2016. 细颗粒粘滑运动的能量耗散与释放试验. 地球科学, 41(9): 1603-1610. doi: 10.3799/dqkx.2016.519
    Cui Deshan, Xiang Wei, Chen Qiong, Wang Shun, 2016. Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads. Earth Science, 41(9): 1603-1610. doi: 10.3799/dqkx.2016.519
    Citation: Cui Deshan, Xiang Wei, Chen Qiong, Wang Shun, 2016. Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads. Earth Science, 41(9): 1603-1610. doi: 10.3799/dqkx.2016.519

    细颗粒粘滑运动的能量耗散与释放试验

    doi: 10.3799/dqkx.2016.519
    基金项目: 

    国家自然科学基金项目 41272308

    国家自然科学基金项目 41002102

    详细信息
      作者简介:

      崔德山(1981-),男,副教授,博士,主要从事岩土体工程性质的教学与研究工作.E-mail: cuideshan@cug.edu.cn

    • 中图分类号: P642.2

    Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads

    • 摘要: 近年来,利用断层产物以及其中的颗粒来研究断层或地震带的能量耗散与释放,已引起大家的重视.在围压分别为30 kPa、60 kPa、100 kPa、200 kPa、400 kPa和600 kPa的条件下,采用直径为0.6~0.8 mm的玻璃珠以0.02 mm/min的轴向应变速率进行干燥、松散细颗粒材料的固结不排水三轴压缩试验.为了减少轴向应变过大时主应力轴旋转产生的误差及其对做功的影响,试验只分析加载后轴向应变为10%时试样变形破坏过程中的能量耗散与能量释放特性.试验结果表明:随着围压的增大,主震频率减小、偏应力降幅增大,但偏应力降幅与最大偏应力的比值逐渐趋于稳定.粘滑运动过程中,在偏应力骤降瞬间,声发射强烈、试样体积收缩,说明能量控制着试样的变形与破坏特征,耗散结构能量越大,系统发生滑动的频率越小.粘滑运动过程可以表示为能量耗散与能量突然释放.最后,从热力学的角度分析滑动过程的3个阶段,得出粘滑运动为不可逆耗散能与可释放应变能共同作用的结果.

       

    • 图  1  静三轴仪

      Fig.  1.  Static electromechanical triaxial testing system

      图  2  不同围压条件下偏应力与轴向应变关系

      Fig.  2.  Deviatoric stress versus axial strain

      图  3  一次粘滑运动的定义

      Fig.  3.  Stick-slip definition

      图  4  应力-应变曲线中前震、主震和余震

      Fig.  4.  Foreshock, main shock and aftershocks

      图  5  最大偏应力降幅(ε=10%)(a)、Δq/qmax(b)与围压关系

      Fig.  5.  Relationships between Δq/qmax and cell pressure (a), Δqmax and cell pressure (b)

      图  6  偏应力、体变与轴向应变的关系

      Fig.  6.  Deviatoric stress and volumetric strain versus axial strain

      图  7  轴向力做功积分区间

      Fig.  7.  Integrating range for the work of axial force

      图  8  典型的粘滑运动过程中能量耗散与释放

      Fig.  8.  Energy dissipation and release of typical stick-slip motions

      图  9  颗粒表面不同形式擦痕

      Fig.  9.  Different Scratches of the granular surface

      表  1  不同围压条件下试样的峰值强度和摩擦角

      Table  1.   Peak strengths and friction angles of glass beads within different cell pressures

      编号高度(mm)直径(mm)围压(kPa)峰值强度(kPa)内摩擦角(°)
      UU_D1100503064.6231.23
      UU_D21005060130.6731.42
      UU_D310050100218.4531.47
      UU_D410050200442.4331.68
      UU_D510050400836.1830.73
      UU_D6100506001299.3131.32
      下载: 导出CSV

      表  2  不同围压条件下外力对试样所做的功

      Table  2.   The work of external force on the samples

      试样编号围压(kPa)固结阶段做功(N·m)加载阶段做功(N·m)外力总功(N·m)
      UU_D1300.0021.4691.471
      UU_D2600.0342.1702.203
      UU_D31000.2075.5715.778
      UU_D42000.45711.14711.604
      UU_D54007.31123.21430.525
      UU_D660011.63837.87949.517
      下载: 导出CSV
    • [1] Adjemian, F., Evesque, P., 2004.Experimental Study of Stick-Slip Behaviour.International Journal for Numerical and Analytical Methods in Geomechanics, 28(6):501-530.doi: 10.1002/nag.350
      [2] Brown, S.R., 1998.Frictional Heating on Faults:Stable Sliding versus Stick Slip.Journal of Geophysical Research(Solid Earth), 103(B4):7413-7420.doi: 10.1029/98jb00200
      [3] Brune, J.N., Henyey, T.L., Roy, R.F., 1969.Heat Flow, Stress, and Rate of Slip along the San Andreas Fault, California.Journal of Geophysical Research, 74(15):3821-3827.doi: 10.1029/jb074i015p03821
      [4] Dai, Z.D., Xue, Q.J., Wang, M., 1998.Non-Equilibrium Thermodynamical Study of Friction and Wear Pocesses.Nature Magazine, 20(4):220-228 (in Chinese). https://www.deepdyve.com/lp/elsevier/entropy-generation-related-to-plastic-deformation-in-fretting-friction-4OtvImBGTy
      [5] Daniels, K.E., Bauer, C., Shinbrot, T., 2014.Correlations between Electrical and Mechanical Signals during Granular Stick-Slip Events.Granular Matter, 16(2):217-222.doi: 10.1007/s10035-013-0471-3
      [6] Doanh, T., Hoang, M.T., Roux, J.N., et al., 2012.Stick-Slip Behaviour of Model Granular Materials in Drained Triaxial Compression.Granular Matter, 15(1):1-23.doi: 10.1007/s10035-012-0384-6
      [7] Doanh, T., Le Bot, A., Abdelmoula, N., et al., 2014.Liquefaction of Immersed Granular Media under Isotropic Compression.EPL(Europhysics Letters), 108(2):24004.doi: 10.1209/0295-5075/108/24004
      [8] Elkholy, K.N., Khonsari, M.M., 2008.Experimental Investigation on the Stick-Slip Phenomenon in Granular Collision Lubrication.Journal of Tribology, 130(2):021302.doi: 10.1115/1.2842244
      [9] Fulton, P.M., Rathbun, A.P., 2011.Experimental Constraints on Energy Partitioning during Stick-Slip and Stable Sliding within Analog Fault Gouge.Earth and Planetary Science Letters, 308(1-2):185-192.doi: 10.1016/j.epsl.2011.05.051
      [10] Gong, X.N., 2000.Prospects for the Development of Geotechnical Engineering in the 21th Century.Chinese Journal of Geotechnical Engineering, 22(2):238-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200002019.htm
      [11] Guo, Q., Yang Y.C., Lü, J., et al., 2014.Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network.Earth Science, 39(12):1807-1817(in Chinese with English abstract). https://www.researchgate.net/publication/289775140_Observation_of_local_infrasound_coupled_by_seismic_wave_on_wide_spread_infrasound_network
      [12] Kondepudi, D., Prigogine, I., 1998.Modern Thermodynamics:From Heat Engines to Dissipative Structures.John Wiley & Sons, Chichester.
      [13] Krim, J., Yu, P.D., Behringer, R.P., 2011.Stick-Slip and the Transition to Steady Sliding in a 2D Granular Medium and a Fixed Particle Lattice.Pure and Applied Geophysics, 168(12):2259-2275.doi: 10.1007/s00024-011-0364-5
      [14] Lachenbruch, A.H., Sass, J.H., 1980.Heat Flow and Energetics of the San Andreas Fault Zone.Journal of Geophysical Research(Solid Earth), 85(B11):6185-6222.doi: 10.1029/jb085ib11p06185
      [15] Lieou, C.K.C., Elbanna, A.E., Langer, J.S., et al., 2015.Stick-Slip Instabilities in Sheared Granular Flow:The Role of Friction and Acoustic Vibrations.Physical Review E, 92(2):022209.doi: 10.1103/physreve.92.022209
      [16] Li, X.R., Zeng, Z.X., Zhou, Q., et al., 2014.Seismogenesis of Badong Earthquake (Ms5.1) in Three Gorges Reservoir Area and Infrasound Anomaly.Earth Science, 39(12):1793-1806(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201412005.htm
      [17] Rockwell, T., Sisk, M., Girty, G., et al., 2009.Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults:Implications for Earthquake Physics.Pure & Applied Geophysics, 166(10):1725-1746.doi: 10.1007/978-3-0346-0138-2_9
      [18] Shen, Y., Zhou, J., Gong, X.N., 2006.Experimental Progress Research on Influence of Principal Stress Rotation on Soils Characteristics.Chinese Journal of Rock Mechanics and Engineering, 25(7):1408-1416(in Chinese with English abstract). http://www.oalib.com/paper/1485706
      [19] Tanaka, H., Chen, W.M., Wang, C.Y., et al., 2006.Frictional Heat from Faulting of the 1999 Chi-Chi, Taiwan Earthquake.Geophysical Research Letters, 33(16):373-386.doi: 10.1029/2006gl026673
      [20] Volfson, D., Tsimring, L.S., Aranson, I.S., 2004.Stick-Slip Dynamics of a Granular Layer under Shear.Physical Review E, 69(3):287-316.doi: 10.1103/physreve.69.031302
      [21] Wilson, B., Dewers, T., Reches, Z., et al., 2005.Particle Size and Energetics of Gouge from Earthquake Rupture Zones.Nature, 434(7034):749-752.doi: 10.1038/nature03433
      [22] Xie, H.P., Ju, Y., Li, L.Y., 2005.Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles.Chinese Journal of Rock Mechanics and Engineering, 24(17):3003-3010(in Chinese with English abstract). https://www.researchgate.net/publication/245568373_Energy_analysis_and_criteria_for_structural_failure_of_rocks
      [23] Xie, H.P., Peng, R.D., Ju, Y., 2004.Energy Dissipation of Rock Deformation and Fracture.Chinese Journal of Rock Mechanics and Engineering, 23(21):3565-3570(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX200421001.htm
      [24] Zhang, Y.S., Guo, X., Zhong, M.J., et al., 2010.Wenchuan Earthquake:Brightness Temperature Changes from Satellite Infrared Information.Chinese Science Bulletin, 55(10):904-910(in Chinese). doi: 10.1007%2Fs11434-010-3016-8.pdf
      [25] Zhao, H.J., Ma, F.S., Li, G.Q., et al., 2008.Fault Effect Due to Underground Excavation in Hangingwalls and Footwalls of Faults.Chinese Journal of Geotechnical Engineering, 30(9):1372-1375 (in Chinese with English abstract). https://www.researchgate.net/publication/293738959_Features_of_fault_zone_rockmass_engineering_geological_mechanics_and_its_effect_on_leaving_fault_waterproof_pillar
      [26] Zhao, Z.H., Xie, H.P., 2008.Energy Transfer and Energy Dissipation in Rock Deformation and Fracture.Journal of Sichuan University (Engineering Science Edition), 40(2):26-31(in Chinese with English abstract). https://www.researchgate.net/publication/287638566_Energy_transfer_and_energy_dissipation_in_rock_deformation_and_fracture
      [27] 戴振东, 薛群基, 王珉, 1998.摩擦磨损过程的非平衡态热力学研究.自然杂志, 20(4): 220-228. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199804008.htm
      [28] 龚晓南, 2000.21世纪岩土工程发展展望.岩土工程学报, 22(2): 238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200002019.htm
      [29] 郭泉, 杨亦春, 吕君, 等, 2014.基于广域次声传感器网络的地震本地次声波监测.地球科学, 39(12): 1807-1817. http://www.earth-science.net/WebPage/Article.aspx?id=2994
      [30] 李献瑞, 曾佐勋, 周强, 等, 2014.三峡库区巴东地震(Ms5.1) 成因机制及次声波信号.地球科学, 39(12): 1793-1806. http://www.earth-science.net/WebPage/Article.aspx?id=3011
      [31] 沈扬, 周建, 龚晓南, 2006.主应力轴旋转对土体性状影响的试验进展研究.岩石力学与工程学报, 25(7): 1408-1416. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607016.htm
      [32] 谢和平, 鞠杨, 黎立云, 2005.基于能量耗散与释放原理的岩石强度与整体破坏准则.岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
      [33] 谢和平, 彭瑞东, 鞠杨, 2004.岩石变形破坏过程中的能量耗散分析.岩石力学与工程学报, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
      [34] 张元生, 郭晓, 钟美娇, 等, 2010.汶川地震卫星热红外亮温变化.科学通报, 55(10): 904-910. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201010010.htm
      [35] 赵海军, 马凤山, 李国庆, 等, 2008.断层上下盘开挖引起岩移的断层效应.岩土工程学报, 30(9): 1372-1375. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200809022.htm
      [36] 赵忠虎, 谢和平, 2008.岩石变形破坏过程中的能量传递和耗散研究.四川大学学报(工程科学版), 40(2): 26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  5275
    • HTML全文浏览量:  1723
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-02-11
    • 刊出日期:  2016-09-15

    目录

      /

      返回文章
      返回