Development and Distribution Characteristics of Debris Flow in Zhejiang Province and Its Regional Forecast
-
摘要: 泥石流灾害是我国东南地区引起群死群伤的主要自然灾害,目前对其发育规律和区域预报的研究程度还较低.基于浙江省小流域泥石流地质灾害调查评价成果数据,开展沟谷泥石流发育特征和时空分布规律研究,研究表明,浙江省泥石流发生时期集中在台汛期和梅汛期,其中台汛期发生的泥石流占总数的70.1%,梅汛期占27.4%,可见台风诱因显著;泥石流在浙江省三大降雨区,即台风雨主控区、梅雨主控区和梅台雨兼容区的空间分布具有明显差异性,总体上东南沿海一带台风雨控制区分布密度要大于西部和北部地区,而梅汛期发生泥石流则比较明显集中在西部地区.在此基础上,分别求取了梅汛期和台汛期的浙江省东南地层区和杨子地层区引发泥石流的降雨阈值;选择泥石流易发程度区划图、24h预报雨量和前期有效降雨量3个因子,以小流域作为评价单元,基于可拓理论方法,构建了泥石流危险性区域预报模型.采用灾害强度R值和危险性等级面积百分比累加-泥石流频度百分比累加曲线两种方法,以2004年“云娜”台风期间和2006年6月份梅雨期发生的泥石流灾害样本开展模型合理性检验,证明预测结果合理.Abstract: Debris flow is one of the major geohazards that may lead to mass injuries or casualties in Southeast China, however, studies on the development law and predictions need to be furthered. This study presents the characteristics of debris flow development and spatial-temporal distribution in Zhejiang Province based on the results of small drainage geohazards survey. It is found that the debris flows mainly occur in Meiyu period (i.e. 27.4%) and typhoon season (i.e. 70.1%). Generally, the debris flows in typhoon season are mostly distributed in southeast Zhejiang, whereas those in Meiyu period are distributed in west. Based on that, rainfall thresholds of different raining seasons have been determined. Separate forecasting models based on extension method have been established taking small drainage as assessment unit, where the susceptibility map, 24-hour forecast rainfall and effective antecedent precipitation are employed as model inputs. Two debris flows, occurred in Yunna typhoon period in 2004 and in Meiyu period in June, 2006, were selected to validate the established forecasting models. The results in terms of hazard intensity (R) and receiver operating characteristiccurve (ROC) confirm the feasibility of the proposed scheme for debris flow forecasting.
-
图 1 浙江省近年来造成重大人员伤亡和财产损失的泥石流灾害
a.2004年“云娜”台风引发的乐清龙西仙人坦泥石流;b.2004年“云娜”台风引发的乐清仙溪白岩山下屋泥石流;c.2006年“桑美”台风引发的庆元县荷地镇石磨下村泥石流;d.2007年“韦帕”台风引发的青田县小舟山乡乌马沙泥石流;e.2013年“菲特”台风引发的上虞区曹娥街道朱山头村泥石流;f.2012年8月10日局地特大暴雨引发嵊州市长乐镇寨岭头自然村“8·10”泥石流;g.2014年6月梅汛期局地强降雨引发的遂昌县黄沙腰镇大熟村特大泥石流;h.2014年6月梅汛期局地强降雨引发的龙泉市龙渊街道一村泥石流;i.2015年“苏迪罗”台风引发的平阳县顺溪镇石柱村泥石流
Fig. 1. The major debris flows causing severe casualties and property losses occurred in Zhejiang in recent years
图 4 不同影响因素下泥石流频度分布
a.相对高差,①<100 m,② 100~200 m,③ 200~300 m,④ 300~400 m,⑤ 400~500 m,⑥ 500~600 m,⑦ 600~700 m,⑧ 700~800 m,⑨>800 m;b.山坡坡度,①<10°,② 10°~15°,③ 15°~20°,④ 20°~25°,⑤ 25°~30°,⑥ 30°~35°,⑦ 35°~40°,⑧ 40°~45°,⑨ 45°~50°,⑩ 50°~55°,>55°;c.纵坡降,①<100,② 100~200,③ 200~300,④ 300~400,⑤ 400~500,⑥>500;d.主沟长度,①<0.4 m,② 0.4~0.8 m,③ 0.8~1.2 m,④ 1.2~1.6 m,⑤ 1.6~2.0 m,⑥ 2.0~2.4 m,⑦ 2.4~2.8 m,⑧ 2.8~3.2 m,⑨>3.2 m;e.流域面积,①<0.5 m2,② 0.5~1.0 m2,③ 1~1.5 m2,④ 1.5~2.0 m2,⑤ 2.0~2.5 m2,⑥ 2.5~3.0 m2,⑦ 3.0~3.5 m2,⑧ 3.5~5.0 m2,⑨ 5.0~10.0 m2,⑩>10.0 m2;f.距断层距离,①<0.5 km,② 0.5~1.0 km,③ 1.0~1.5 km,④ 1.5~2.0 km,⑤>2.0 km;g.工程地质岩组,H.火山碎屑岩,S.砂岩、砂砾岩、泥岩等碎屑岩,Q.侵入岩,R.熔岩,B.变质岩,T.碳酸盐岩;h.在工程地质岩组中的分布密度,横坐标代号同(g)
Fig. 4. The frequency ratios of debris flows in various controlling factors
表 1 泥石流预报标准物元模型
Table 1. Standard matter element model for debris flow hazard prediction
分区 “梅汛期”HX区*标准物元 “梅汛期”YZ区*标准物元 “台汛期”标准物元 可能性小 $ \left[ {\begin{array}{*{20}{c}} {可能性较小} & W & { < 0, 1 > }\\ {} & J & { < 0, 50 > }\\ {} & Y & { < 0, 100 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性较小} & W & { < 0, 1 > }\\ {} & J & { < 0, 30 > }\\ {} & Y & { < 0, 50 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性较小} & W & { < 0, 1 > }\\ {} & J & { < 0, 100 > }\\ {} & Y & { < 0, 100 > } \end{array}} \right] $ 可能性较大 $ \left[ {\begin{array}{*{20}{c}} {可能性较大} & W & { < 1, 2 > }\\ {} & J & { < 50, 75 > }\\ {} & Y & { < 100, 150 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性较大} & W & { < 1, 2 > }\\ {} & J & { < 30, 60 > }\\ {} & Y & { < 80, 120 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性较大} & W & { < 1, 2 > }\\ {} & J & { < 10, 150 > }\\ {} & Y & { < 100, 150 > } \end{array}} \right] $ 可能性大 $ \left[ {\begin{array}{*{20}{c}} {可能性大} & W & { < 2, 3 > }\\ {} & J & { < 75, 100 > }\\ {} & Y & { < 150, 200 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性大} & W & { < 2, 3 > }\\ {} & J & { < 60, 100 > }\\ {} & Y & { < 120, 150 > } \end{array}} \right] $ $\left[ {\begin{array}{*{20}{c}} {可能性大} & W & { < 2, 3 > }\\ {} & J & { < 150, 200 > }\\ {} & Y & { < 150, 200 > } \end{array}} \right] $ 可能性很大 $ \left[ {\begin{array}{*{20}{c}} {可能性很大} & W & { < 3, 4 > }\\ {} & J & { < 100, 150 > }\\ {} & Y & { < 200, 300 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性很大} & W & { < 3, 4 > }\\ {} & J & { < 100, 250 > }\\ {} & Y & { < 150, 250 > } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {可能性很大} & W & { < 3, 4 > }\\ {} & J & { < 200, 500 > }\\ {} & Y & { < 200, 500 > } \end{array}} \right] $ *注:HX区.华夏古陆区;YZ区.扬子地台区;台汛期不分区,整个浙江省范围统一考虑. 表 2 采用灾害强度指标R检验预测结果
Table 2. Verification of the debris flow forecasting model using hazardintensity, R
分区等级 分区面积占总面积比例(%) 分区内发生灾害点占总灾害点比例(%) 灾害强度R 2006年梅汛期 “云娜”台风 2006年梅汛期 “云娜”台风 2006年梅汛期 “云娜”台风 可能性小 71.4 80.9 0.0 5.6 0.00 0.01 可能性较大 24.3 14.4 20.0 16.7 0.82 0.21 可能性大 3.2 2.2 30.0 5.6 9.35 0.46 可能性很大 1.1 2.5 50.0 72.2 45.38 5.10 -
[1] Bai, L.P., Wang, Y.Y., Gong, B., et al., 2009.Development of the Debris Flow Forecasting System Based on Extension Theory:A Case Study of Beijing.Geoscience, 23(1):157-163(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200901025.htm [2] Bai, L.P., Sun, J.L., Nan, Y., 2008.Analysis of the Critical Rainfall Thresholds for Mudflow in Beijing, China.Geological Bulletin of China, 27(5):674-680(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200805014.htm [3] Cai, W., 1999.Extension Theory and Its Application.Chinese Science Bulletin, 44(7):673-682(in Chinese). https://www.researchgate.net/publication/227050484_Extension_Theory_and_Its_Application [4] Caine, N., 1980.The Rainfall Intensity:Duration Control of Shallow Landslides and Debris Flows.Geografiska Annaler (Series A), 62(1/2):23-27.doi: 10.2307/520449 [5] Casadei, M., Dietrich, W.E., Miller, N.L., 2003.Testing a Model for Predicting the Timing and Location of Shallow Landslide Initiation in Soil-Mantled Landscapes.Earth Surface Processes and Landforms, 28(9):925-950.doi: 10.1002/esp.470 [6] Cong, W.Q., Pan, M., Ren, Q.Z., et al., 2006.Building and Application of the Debris Flow Warning System Based on Multi-Information.Acta Scientiarum Naturalium Universitatis Pekinensis, 42(4):446-450(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDXP200601009.htm [7] Cui, P., Gao, K.C., Wei, F.Q., 2005.The Forecasting of Debris Flow.Bulletin of Chinese Academy of Sciences, 20(5):363-369(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX200505006.htm [8] Dowling, C.A., Santi, P.M., 2013.Debris Flows and Their Toll on Human Life:A Global Analysis of Debris-Flow Fatalities from 1950 to 2011.Natural Hazards, 71(1):203-227.doi: 10.1007/s11069-013-0907-4 [9] Du, H.L., Niu, X.X., Yin, K.L., et al., 2006.Study of Meteorological Forecasting and Warning for Landslide and Debris Flow in Zhejiang Province.Plateau Meteorology, 25(1):151-158(in Chinese with English abstract). https://www.researchgate.net/publication/287675153_Meteorological_early_warning_of_geo-hazards_in_China_based_on_raining_forecast [10] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract). https://www.researchgate.net/publication/311861276_A_comparative_study_of_logistic_model_tree_random_forest_and_classification_and_regression_tree_models_for_spatial_prediction_of_landslide_susceptibility [11] Feng, H.J., Tang, X.M., Zhou, A.G., 2013.Study on Relationship between Rainfall Duration and Occurrence of Debris Flow in Zhejiang Province and Its Application Examination.Journal of Natural Disasters, 22(1):159-168(in Chinese with English abstract). https://www.researchgate.net/publication/292307413_Forecast_models_of_storm_debris [12] Gariano, S.L., Brunetti, M.T., Iovine, G., et al., 2015.Calibration and Validation of Rainfall Thresholds for Shallow Landslide Forecasting in Sicily, Southern Italy.Geomorphology, 228(1):653-665.doi: 10.1016/j.geomorph.2014.10.019 [13] Gu, F.G., Wang, Q., Zhang, C., 2010.Debris Flow Risk Assessment by PPC and Extenics.Journal of Jilin University (Earth Science Edition), 40(2):373-377(in Chinese with English abstract). https://www.researchgate.net/publication/290741508_Debris_flow_risk_assessment_by_PPC_and_extenics [14] Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2007.Rainfall Thresholds for the Initiation of Landslides in Central and Southern Europe.Meteorology and Atmospheric Physics, 98(3-4):239-267.doi: 10.1007/s00703-007-0262-7 [15] Hou, S.S., Li, A., Zhou, P.G., 2007.Preliminary Study of the Geohazard Warning System Based on Weather Forecasting and Precipitation Monitoring of Yucheng District, Ya'an City, Sichuan Province.Earth Science Frontiers, 14(6):160-165(in Chinese with English abstract). https://www.researchgate.net/publication/284772488_Study_on_soil_infiltration_characteristics_of_different_orchards_in_Yucheng_District_of_Ya'an_in_Sichuan [16] Jin, H.C., Zhong D.L., Xie, H., et al., 2004.Debris Flow of Beijing Mountains Area.The Commercial Press, Beijing, 150(in Chinese). [17] Jibson, R.W., 1989.Debris Flows in Southern Puerto Rico.Geological Society of America Special Papers, 29-56. https://www.researchgate.net/publication/288065360_Precipitation_threshold_study_of_gulley_debris_flow_in_earthquake-influenced_area_based_on_physical_model_experiment [18] Keefer, D.K., Wilson, R.C., Mark, R.K., et al., 1987.Real-Time Landslide Warning during Heavy Rainfall.Science, 238(4829):921-925. doi: 10.1126/science.238.4829.921 [19] Kuang, L.H., Liu, B.C., Yao, J.C., 2006.Research on Regionalization of Debris Flow Risk Degree with Fuzzy and Extension Method.Journal of Catastrophology, 21(1):68-72(in Chinese with English abstract). doi: 10.1007/s11859-006-0325-5 [20] Larsen, M.C., Simon, A., 1993.A Rainfall Intensity-Duration Threshold for Landslides in a Humid-Tropical Environment, Puerto Rico.Geografiska Annaler (Series A), 75(1/2):13.doi: 10.2307/521049 [21] Li, C.J., Ma, T.H., Sun, L.L., et al., 2012.Application and Verification of Fractal Approach to Landslide Susceptibility Mapping.Natural Hazards, 61(1):169-185. doi: 10.1007/s11069-011-9804-x [22] Li, C.J., Ma, T.H., Zhu, X.S., 2010.AiNet-and GIS-Based Regional Prediction System for the Spatial and Temporal Probability of Rainfall-Triggered Landslides.Natural Hazards, 52(1):57-78.doi: 10.1007/s11069-009-9351-x [23] Li, C.J., Ma, T.H., Zhu, X.S., et al., 2011.The Power-Law Relationship between Landslide Occurrence and Rainfall Level.Geomorphology, 130(3):221-229.doi: 10.1016/j.geomorph.2011.03.018 [24] Liu, C.Z., Wen, M.S., Tang, C., 2004.Meteorological Early Warning of Geo-Hazards in China Based on Raining Forecast.Geological Bulletin of China, 23(4):303-309(in Chinese with English abstract). https://www.researchgate.net/publication/283070676_Early_Warning_and_Prevention_of_Geo-Hazards_in_China [25] Ma, T.H., Li, C.J., Lu, Z.M., et al., 2014.An Effective Antecedent Precipitation Model Derived from the Power-Law Relationship between Landslide Occurrence and Rainfall Level.Geomorphology, 216:187-192.doi: 10.1016/j.geomorph.2014.03.033 [26] Ma, T.H., Li, C.J., Lu, Z.M., et al., 2015.Rainfall Intensity-Duration Thresholds for the Initiation of Landslides in Zhejiang Province, China.Geomorphology, 245:193-206.doi: 10.1016/j.geomorph.2015.05.016 [27] Ma, Y., Li, S.Z., Xia, Z., et al., 2014.Characteristics of Hazardous Geological Factors on Shenhu Continental Slope in the Northern South China Sea. Earth Science, 39(9):1364-1372(in Chinese with English abstract). https://www.researchgate.net/publication/287910409_Characteristics_and_mechanism_of_submarine_landslides_in_the_Qiongdongnan_Basin_Northern_South_China_Sea [28] Pradhan, B., Lee, S., 2010.Landslide Susceptibility Assessment and Factor Effect Analysis:Back Propagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modeling.Environmental Modeling Software, 25(6):747-759. doi: 10.1016/j.envsoft.2009.10.016 [29] Qiu, H.J., Cui P., Hu S., et al., 2016.Size-Frequency Distribution of Landslides in Different Landforms on the Loess Plateau of Northern Shaanxi.Earth Science, 41(2):343-350(in Chinese with English abstract). https://www.researchgate.net/publication/236615531_Relationships_between_Landslide_Types_and_Topographic_Attributes_in_a_Loess_Catchment_China [30] Shahabi, H., Khezri, S., Ahmad, B.B., et al., 2014.Landslide Susceptibility Mapping at Central Zab Basin, Iran:A Comparison between Analytical Hierarchy Process, Frequency Ratio and Logistic Regression Models.Catena, 115:55-70. doi: 10.1016/j.catena.2013.11.014 [31] Tan, B.Y., 1994.Results of Study on the Prediction of Rainstorm Debris Flow along Montane Railways.China Railway Science, 15(4):67-74, 77-78(in Chinese with English abstract). https://www.researchgate.net/publication/271999054_Spatial_hazard_analysis_and_prediction_on_rainfall-induced_landslide_using_GIS [32] Tan, B.Y., Yang, D.W., Shi, S.G., 1992.The Study of Prediction for Debris Flow Caused by Rainstorm.Journal of the China Railway Society, 14(3):92-101(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDXB199203013.htm [33] Tan, W.P., Luo, X.M., Wang, C.H., 2000.Forecast Models of Rainstorm Debris Flows.Journal of Natural Disasters, 9(3):106-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200003015.htm [34] Tang, C., 2010.Activity Tendency Prediction of Rainfall Induced Landslides and Debris Flows in the Wenchuan Earthquake Areas.Journal of Mountain Science, 38(3):341-349(in Chinese with English abstract). https://www.researchgate.net/publication/296938748_Activity_evaluation_of_debris_flow_disasters_in_NiuMiangou_valley_the_epicentre_of_Wenchuan_earthquake [35] van Westen, C.J., Rengers, N., Soeters, R., 2003.Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment.Natural Hazards, 30(3):399-419. doi: 10.1023/B:NHAZ.0000007097.42735.9e [36] Wei, F.Q., Hu, K.H., Chen, J., 2005.Determination of Effective Antecedent Rainfall for Debris Flow Forecast.Journal of Mountain Science, 23(4):453-457(in Chinese with English abstract). https://www.researchgate.net/publication/284534694_Determination_of_effective_antecedent_rainfall_for_debris_flow_forecast [37] Wei, F.Q., Tang, J.F., Xie, H., et al., 2004.Debris Flow Forecast Combined Regions and Valleys and Its Application.Journal of Mountain Science, 22(3):321-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA200403011.htm [38] Wieczorek, G.F., Morgan, B.A., Campbell, R.H., 2000.Debris-Flow Hazards in the Blue Ridge of Central Virginia.Environmental & Engineering Geoscience, 6(1):3-23. https://www.researchgate.net/publication/283159172_Debris-flow_hazards_in_the_Blue_Ridge_of_Central_Virginia [39] Wu, Y.P., Chen, L.X., Cheng, C., et al., 2014.GIS-Based Landslide Hazard Predicting System and Its Real-Time Test during a Typhoon, Zhejiang Province, Southeast China.Engineering Geology, 175(12):9-21.doi: 10.1016/j.enggeo.2014.03.005 [40] Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014.Landslide Hazard Warning Based on Effective Rainfall Intensity.Earth Science, 39(7):889-895(in Chinese with English abstract). https://www.researchgate.net/publication/288065460_Landslide_hazard_warning_based_on_effective_rainfall_intensity [41] Yin, K.L., Chen, L.X., Zhang, G.R., 2007.Regional Landslide Hazard Warning and Risk Assessment.Earth Science Frontiers, 14(6):85-97(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60005-6 [42] You, S.Y., Tang, X.M., Feng, H.J., et al., 2013.The Characteristics and Prevention Countermeasures of Small-Water-Basin Debris Flow in Zhejiang Province.Bulletin of Science and Technology, 29(11):45-51(in Chinese with English abstract). https://www.researchgate.net/publication/251316672_Debris_flow_formation_conditions_and_optimal_characteristics_of_drainage_canal_following_Wenchuan_earthquake [43] Yue, L.X., Wang, Y., Yu, S.J., et al., 2012.Debris Flow Types and Their Distribution in Zhejiang Province.Bulletin of Soil and Water Conservation, 30(6):185-189(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sttb201006041.htm [44] Zhang, J.H., Wei, F.Q., Deng, B., et al., 2008.Imminent and Short-Term Forecast of Regional Debris Flow and Its Application:A Forecasting System Based on Doppler Weather Radar Technology.Journal of Natural Disasters, 17(2):71-77(in Chinese with English abstract). https://www.researchgate.net/publication/294744146_Imminent_and_short-term_forecast_of_regional_debris_flow_and_its_application_A_forecasting_system_based_on_Doppler_weather_radar_technology [45] Zhou, P.G., Mao, J.G., Hou, S.S., et al., 2007.The Design and Construction of Landslide Warning System Based on WebGIS.Earth Science Frontiers, 14(6):38-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200706006.htm [46] Zhou, W., Tang, C., 2013.Rainfall Thresholds for Debris Flows Occurrence in the Wenchuan Earthquake Area.Advances in Water Science, 24(6):786-793(in Chinese with English abstract). https://www.researchgate.net/publication/279706513_Rainfall_thresholds_for_debris_flows_occurrence_in_the_Wenchuan_earthquake_area [47] 白利平, 王业耀, 龚斌, 等, 2009.基于可拓理论的泥石流灾害预警预报系统开发:以北京市为例.现代地质, 23(1): 157-163. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200901025.htm [48] 白利平, 孙佳丽, 南赟, 2008.北京地区泥石流灾害临界雨量阈值分析.地质通报, 27(5): 674-680. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200805014.htm [49] 蔡文, 1999.可拓论及其应用.科学通报, 44(7): 673-682. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199907000.htm [50] 丛威青, 潘懋, 任群智, 等, 2006.泥石流灾害多元信息耦合预警系统建设及其应用.北京大学学报:自然科学版, 42(4): 446-450. http://www.cnki.com.cn/Article/CJFDTOTAL-BDXP200601009.htm [51] 崔鹏, 高克昌, 韦方强, 2005.泥石流预测预报研究进展.中国科学院院刊, 20(5): 363-369. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX200505006.htm [52] 杜惠良, 钮学新, 殷坤龙, 等, 2006.浙江省滑波、泥石流多发区气象预警研究.高原气象, 25(1): 151-158. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200601020.htm [53] 冯杭建, 周爱国, 俞剑君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3): 403-415. http://earth-science.net/WebPage/Article.aspx?id=3259 [54] 冯杭建, 唐小明, 周爱国, 2013.浙江省泥石流与降雨历时关系研究及应用检验.自然灾害学报, 22(1): 159-168. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201301022.htm [55] 谷复光, 王清, 张晨, 2010.基于投影寻踪与可拓学方法的泥石流危险度评价.吉林大学学报:地球科学版, 40(2): 373-377. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002020.htm [56] 侯圣山, 李昂, 周平根, 2007.四川雅安市雨城区地质灾害预警系统研究.地学前缘, 14(6): 160-165. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200706020.htm [57] 靳怀成, 钟敦伦, 谢洪, 等, 2004.北京山区泥石流.北京:商务印书馆, 150. [58] 匡乐红, 刘宝琛, 姚京成, 2006.基于模糊可拓方法的泥石流危险度区划研究.灾害学, 21(1): 68-72. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200601014.htm [59] 刘传正, 温铭生, 唐灿, 2004.中国地质灾害气象预警初步研究.地质通报, 23(4): 303-309. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200404000.htm [60] 马云, 李三忠, 夏真, 等, 2014.南海北部神狐陆坡区灾害地质因素特征.地球科学, 39(9): 1364-1372. http://earth-science.net/WebPage/Article.aspx?id=2934 [61] 邱海军, 崔鹏, 胡胜, 等, 2016.陕北黄土高原不同地貌类型区黄土滑坡频率分布.地球科学, 41(2): 343-350. http://earth-science.net/WebPage/Article.aspx?id=3251 [62] 谭炳炎, 1994.山区铁路沿线暴雨泥石流预报的研究.中国铁道科学, 15(4): 67-74, 77-78. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199502008.htm [63] 谭炳炎, 杨大文, 石胜国, 1992.暴雨泥石流预报的研究.铁道学报, 14(3): 92-101. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199502008.htm [64] 谭万沛, 罗晓梅, 王成华, 2000.暴雨泥石流预报程式.自然灾害学报, 9(3): 106-111. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200003015.htm [65] 唐川, 2010.汶川地震区暴雨滑坡泥石流活动趋势预测.山地学报, 28(3): 341-349. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201003014.htm [66] 韦方强, 胡凯衡, 陈杰, 2005.泥石流预报中前期有效降水量的确定.山地学报, 23(4): 453-457. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201501005.htm [67] 韦方强, 汤家法, 谢洪, 等, 2004.区域和沟谷相结合的泥石流预报及其应用.山地学报, 22(3): 321-325. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200403011.htm [68] 吴益平, 张秋霞, 唐辉明, 等, 2014.基于有效降雨强度的滑坡灾害危险性预警.地球科学, 39(7): 889-895. http://earth-science.net/WebPage/Article.aspx?id=2892 [69] 殷坤龙, 陈丽霞, 张桂荣, 2007.区域滑坡灾害预测预警与风险评价.地学前缘, 14(6): 85-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200706012.htm [70] 游省易, 唐小明, 冯杭建, 等, 2013.浙江省小流域泥石流发育特征及防治对策.科技通报, (11): 45-51. doi: 10.3969/j.issn.1001-7119.2013.11.011 [71] 岳丽霞, 王永, 余淑姣, 等, 2010.浙江省泥石流类型及分布特征研究.水土保持通报.30(6): 185-189. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB201006041.htm [72] 张京红, 韦方强, 邓波, 等, 2008.区域泥石流短临预报及其应用--基于多普勒天气雷达技术的预报系统.自然灾害学报, 17(2): 71-77. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200802014.htm [73] 周平根, 毛继国, 侯圣山, 等, 2007.基于WebGIS的地质灾害预警预报信息系统的设计与实现.地学前缘, 14(6): 38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200706006.htm [74] 周伟, 唐川, 2013.汶川震区暴雨泥石流发生的降雨阈值.水科学进展, 24(6): 786-793. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201306005.htm