Using Hydrochemical Geothermometers Calculate Exchange Temperature of Deep Geothermal System in West Coastal Area of Guangdong Province
-
摘要: 在实际案例分析中,采用传统地球化学温标计算的温度与实测温度往往有一定的差距,研究系统中矿物-流体的平衡状态、判断作为估算热交换温度的地热温标是否使用、选出最合适的计算结果非常重要.在讨论热水与矿物的平衡状态时,采用Na-K-Mg三角图解法和PHREEQCI程度模拟计算矿物饱和指数的方法进行研究,结果表明:(1) 粤西沿海地热系统采集的23组水样的分析发现其热水水化学特征为热水呈中低温弱碱性、氟含量较高源于热水与花岗岩的水岩相互作用、由内陆至沿海地区水化学类型由HCO3·Cl-Ca·Na型向Cl-Na型转化;(2) 浅层水的混合使得硅温标的估算值低于实测温度;只有21号水样适合用阳离子温标,其热交换平衡温度为150~170 ℃;1号和19号样可用K-Mg温标计算其热交换温度下限值,分别为136.2和151.6 ℃,其余水样则适合用log(Q/K)-T平衡法估算,深部热水在经历深循环后上升至地表,在浅层受到冷水混合.Abstract: The estimated temperatures by traditional geochemical geothermometers and borehole temperatures are always different in practice. It is important to decide the equilibrium between minerals and fluids, determine the application of geothermometers for calculating heat exchanging temperatures, and choose the most suitable results. In this study, both Na-K-Mg triangular diagram and PHREEQCI code that simulate minerals saturation indexes were used to judge the equilibrium state between hot waters and minerals. The results show that: (1) the 23 water samples collected from the deep geothermal system in west coastal area of Guangdong Province are characterized by middle-low temperatures with weak alkalinity, high content of fluoride derived from the water-rock interaction between underground water and granite, and the transition of hydrochemical type from HCO3·Cl-Ca·Na to Cl-Na in groundwater from inland to coastal area; (2) Hydrochemical geothermometer temperature estimations show that the mixture of shallow water with deep water leads to the lower silica geothermometer temperatures than the actual ones. Only sample 21 with a subsurface equilibrium temperature at 150-170 ℃ can be calculated by cation geothermometers. K-Mg geothermometers yield minimum temperatures of heat exchange for samples 1 and 19 at 136.2 and 151.6 ℃, respectively. log(Q/K)-T plot proves better for other samples. The mixing (with cold water) process occurs when thermal waters ascend to the surface after a deep circle.
-
表 1 水样信息及宏量组分分析结果
Table 1. Sampling information and analysis results of major components of water samples
编号 水样来源 T
(℃)pH Ec
(μs/cm)TDS K+ Na+ Ca2+ Mg2+ SO42- Cl- F- HCO3- SiO2 (mg/L) 1 钻孔 92.7 7.19 5 170.0 2 532 176.08 860.62 16.14 18.36 112.09 1 576.82 2.05 44.8 51.623 2 钻孔 72.0 8.01 868.0 426 14.46 141.05 6.72 5.44 37.86 152.05 11.67 132.0 4.773 3 温泉 42.0 9.16 255.6 125 1.39 27.43 2.30 0.78 8.64 49.36 9.48 44.8 13.442 4 温泉 63.7 8.64 246.5 121 1.63 24.45 2.56 0.30 7.35 56.41 7.81 40.2 17.143 5 井 25.2 6.61 196.5 - 1.27 4.69 33.30 1.24 3.97 5.06 0 127.6 - 6 井 28.0 4.95 29.8 - 4.66 5.08 2.27 1.18 2.31 8.02 0 13.1 - 7 井 28.5 6.42 249.9 - 3.37 4.76 35.42 4.44 14.30 7.58 0 127.6 - 8 井 25.5 6.18 248.9 - 7.76 9.93 21.07 5.36 27.49 15.42 0 65.4 - 9 井 27.0 6.20 199.3 - 1.51 6.05 20.94 4.34 11.19 10.00 0 42.5 - 10 井 25.0 7.17 40.3 - 1.26 4.58 1.43 0.79 2.50 4.82 0 21.6 - 11 河流 26.8 6.80 30.0 - 1.67 3.76 1.48 0.33 3.13 5.76 0 13.1 - 12 井 26.0 6.10 290.8 - 2.12 14.26 15.35 6.02 13.41 18.72 0 94.9 - 13 河流 28.5 6.95 53.7 - 1.31 5.57 2.96 1.11 2.77 6.10 0 30.7 - 14 海水 26.0 7.85 35 300.0 - 4.95 131.50 5.21 15.12 33.36 284.92 0 121.0 - 15 温泉 54.5 8.82 494.0 242 3.45 50.87 2.02 7.62 35.34 59.11 19.63 103.3 15.877 16 温泉 55.4 8.74 512.0 250 3.63 51.33 2.36 9.07 41.94 65.05 20.20 102.2 17.727 17 钻孔 25.3 5.67 40.2 20 0.83 0.84 4.33 0.24 4.32 7.42 0.40 19.5 4.870 18 温泉 63.2 8.63 422.0 207 2.54 42.53 2.35 6.56 31.86 43.13 16.01 97.6 13.490 19 钻孔 79.2 6.80 13 620.0 6 666 166.19 1 362.73 1 643.71 6.65 255.96 5 026.07 0.00 33.3 18.117 20 温泉 77.5 8.61 379.0 186 2.89 36.65 2.14 2.14 13.69 61.02 13.49 89.5 22.792 21 温泉 84.0 8.88 928.0 453 9.15 139.89 20.53 0.01 22.75 253.98 6.40 31.0 11.883 22 钻孔 45.0 8.96 405.0 198 2.44 41.25 2.96 5.04 27.27 55.67 19.74 97.6 19.675 23 钻孔 42.2 8.92 413.0 202 2.92 42.14 3.00 5.42 28.91 72.38 20.27 82.6 22.305 表 2 阳离子温标计算结果(℃)
Table 2. Results of geothermal reservoirs calculated by various cation geothermometers (℃)
样品编号 实测温度 TNa-K TK-Mg TNa-K-Ca(β=4/3) TNa-K-Ca(β=1/3) 2TNa-K-Ca(β=4/3) 2TNa-K-Ca(β=1/3) 1 92.7 281.5 136.2 -9 493.2 492.1 315.5 263.5 2 72.0 197.6 82.1 1 527.2 348.2 150.1 188.6 3 42.0 134.5 50.9 612.7 255.3 67.4 135.2 4 63.7 156.8 64.7 622.9 271.8 68.9 145.0 15 54.5 158.5 46.3 959.0 296.7 108.7 159.5 16 55.4 162.2 45.5 939.3 298.3 106.8 160.4 17 25.3 662.3 52.6 321.1 420.0 13.4 227.0 18 63.2 147.8 41.7 797.1 279.1 91.6 149.3 19 79.2 216.2 151.6 1 199.4 349.5 129.0 189.3 20 77.5 171.8 55.7 840.6 299.2 96.5 160.9 21 84.0 155.4 167.6 872.0 289.4 99.9 155.3 22 45.0 146.9 43.5 738.1 274.3 84.5 146.5 23 42.2 160.2 46.3 788.6 287.5 90.6 154.2 平均值 58.9 211.7 75.7 851.5 320.1 109.5 171.9 表 3 二氧化硅温标计算结果
Table 3. Results of geothermal reservoirs calculated by silica geothermometers
样品编号 实测温度(℃) 溶解SiO2(mg/L) lg(SiO2) T1(℃) T2(℃) T3(℃) T4(℃) T5(℃) 1 92.7 51.62 1.71 103.3 103.8 52.9 74.7 104.3 2 72.0 4.77 0.68 17.0 27.0 -29.3 -10.3 10.9 3 42.0 13.44 1.13 49.1 56.2 0.7 20.9 48.7 4 63.7 17.14 1.23 57.7 63.9 8.9 29.4 57.9 15 54.5 15.88 1.20 55.0 61.4 6.2 26.6 55.0 16 55.4 17.73 1.25 59.0 65.0 10.0 30.6 59.2 17 25.3 4.87 0.69 17.6 27.5 -28.8 -9.8 11.6 18 63.2 13.49 1.13 49.3 56.3 0.8 21.0 48.8 19 79.2 18.12 1.26 59.8 65.7 10.8 31.3 60.1 20 77.5 22.79 1.36 68.4 73.4 19.1 39.9 69.1 21 84.0 11.88 1.07 44.9 52.4 -3.2 16.8 44.0 22 45.0 19.68 1.29 62.8 68.4 13.7 34.4 63.3 23 42.2 22.31 1.35 67.6 72.6 18.3 39.1 68.3 -
[1] Arnórsson, S., 1983.Chemical Equilibria in Icelandic Geothermal Systems-Implications for Chemical Geothermometry Investigations.Geothermics, 12(2-3):119-128.doi: 10.1016/0375-6505(83)90022-6 [2] Chai, R., 2010.Selection of Geothermometers and Estimate of the Temperature of Geothermal Reservior in Pingdingshan 8th Mine.Coal Geology & Exploration, 38(1):58-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201001017.htm [3] Chandrajith, R., Barth, J.A.C., Subasinghe, N.D., et al., 2013.Geochemical and Isotope Characterization of Geothermal Spring Waters in Sri Lanka:Evidence for Steeper than Expected Geothermal Gradients.Journal of Hydrology, 476:360-369.doi: 10.1016/j.jhydrol.2012.11.004 [4] d'Amore, F., Fancelli, R., Caboi, R., 1987.Observations on the Application of Chemical Geothermometers to Some Hydrothermal Systems in Sardinia.Geothermics, 16(3):271-282.doi: 10.1016/0375-6505(87)90006-x [5] Fournier, R.O., 1977.Chemical Geothermometers and Mixing Models for Geothermal Systems.Geothermics, 5(1-4):41-50.doi: 10.1016/0375-6505(77)90007-4 [6] Fournier, R.O., Rowe, J.J., 1966.Estimation of Underground Temperatures from the Silica Content of Water from Hot Springs and Wet-Steam Wells.American Journal of Science, 264(9):685-697.doi: 10.2475/ajs.264.9.685 [7] Fournier, R.O., Truesdell, A.H., 1973.An Empirical Na-K-Ca Geothermometer for Natural Waters.Geochimica et Cosmochimica Acta, 37(5):1255-1275.doi: 10.1016/0016-7037(73)90060-4 [8] Giggenbach, W.F., 1988.Geothermal Solute Equilibria.Derivation of Na-K-Mg-Ca Geoindicators.Geochimica et Cosmochimica Acta, 52(12):2749-2765.doi: 10.1016/0016-7037(88)90143-3 [9] Guo, Q.H., 2012.Hydrogeochemistry of High-Temperature Geothermal Systems in China:A Review.Applied Geochemistry, 27(10):1887-1898.doi: 10.1016/j.apgeochem.2012.07.006 [10] Guo, Q.H., Wang, Y.X., 2012.Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China.Journal of Volcanology and Geothermal Research, 215-216:61-73.doi: 10.1016/j.jvolgeores.2011.12.003 [11] Hemley, J.J., 1967.Aqueous Na/K Ratios in the System K2O-Na2O-Al2O3-SiO2-H2O.Geol.Soc.Ann.Abstr.Progr.New Orleans Mtg., 94-45. http://www.academia.edu/10064922/PLEASE_SCROLL_DOWN_FOR_ARTICLE [12] Hu, H., Zhu, J.L., Zhao, J.C., 2003.Na-K Geothermometers Study on Springs in KUIRAU Park, ROTORUA.Journal of Heilongjiang Institute of Science & Technology, 13(4):45-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HLJI200304013.htm [13] Kennedy, G.C., 1950.A Portion of the System Silica-Water.Economic Geology, 45(7):629-653.doi: 10.2113/gsecongeo.45.7.629 [14] Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Dry Rock Geothermal Energy.Earth Science, 40(11):1858-1869(in Chinese with English abstract). http://www.researchgate.net/publication/288228635_Major_issues_of_research_and_development_of_hot_dry_rock_geothermal_energy [15] Li, J.X., Guo, Q.H., Wang, Y.X., 2015.Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface:A Case Study in Rehai Geothermal Field, Tengchong.Earth Science, 40(9):1576-1584(in Chinese with English abstract). https://www.researchgate.net/publication/257266086_Hydrogeochemistry_of_high-temperature_geothermal_systems_in_China_A_review [16] Liang, C., Su, C.L., Wu, Y., et al., 2014.Distribution and Geochemical Processes for the Formation of High Fluoride Groundwater in Datong Basin.Geological Science and Technology Information, 33(2):154-159(in Chinese with English abstract). https://www.researchgate.net/profile/Huaming_Guo/publication/222526433_Geochemical_Characteristics_of_Shallow_Groundwater_in_Datong_Basin_Northwestern_China/links/0912f50ee62781f9f6000000.pdf [17] Lin, B.H., Yang, S.Z., Zhu, B.S., et al., 2006.Geological Structure and Basic Geotechnical Characteristics in Guangdong Province.Chinese Journal of Rock Mechanics and Engineering, 25(Suppl.2):3337-3346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2006S2000.htm [18] Liu, J.Q., 2014.Application of Geothermometer to Calculation of Temperature of Geothermal Reservoirs:Using Chongren Hot Springs of Shengzhou as Example.West-China Exploration Engineering, 26(5):129-132(in Chinese). [19] Orville, P.M., 1963.Alkali Ion Exchange between Vapor and Feldspar Phases.American Journal of Science, 261(3):201-237.doi: 10.2475/ajs.261.3.201 [20] Pasvanoĝlu, S., Chandrasekharam, D., 2011.Hydrogeochemical and Isotopic Study of Thermal and Mineralized Waters from the Nevşehir (Kozakli) Area, Central Turkey.Journal of Volcanology and Geothermal Research, 202(3-4):241-250.doi: 10.1016/j.jvolgeores.2011.03.003 [21] Pürschel, M., Gloaguen, R., Stadler, S., 2013.Geothermal Activities in the Main Ethiopian Rift:Hydrogeochemical Characterization of Geothermal Waters and Geothermometry Applications (Dofan-Fantale, Gergede-Sodere, Aluto-Langano).Geothermics, 47:1-12.doi: 10.1016/j.geothermics.2013.01.001 [22] Qin, D.J., Turner, J.V., Pang, Z.H., 2005.Hydrogeochemistry and Groundwater Circulation in the Xi'an Geothermal Field, China.Geothermics, 34(4):471-494.doi: 10.1016/j.geothermics.2005.06.004 [23] Reed, M., Spycher, N., 1984.Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution.Geochimica et Cosmochimica Acta, 48(7):1479-1492.doi: 10.1016/0016-7037(84)90404-6 [24] Sanjuan, B., Millot, R., Innocent, C., et al., 2016.Major Geochemical Characteristics of Geothermal Brines from the Upper Rhine Graben Granitic Basement with Constraints on Temperature and Circulation.Chemical Geology, 428:27-47.doi: 10.1016/j.chemgeo.2016.02.021 [25] Sharifi, R., Moore, F., Mohammadi, Z., et al., 2016.Estimation of Deepwater Temperature and Hydrogeochemistry of Springs in the Takab Geothermal Field, West Azerbaijan, Iran.Environmental Monitoring and Assessment, 188(1):1-20.doi: 10.1007/s10661-015-5037-x [26] Verma, S.P., Santoyo, E., 1997.New Improved Equations for SiO2 Geothermometers by Outlier Detection and Rejection.Journal of Volcanology and Geothermal Research, 79(1-2):9-23.doi: 10.1016/s0377-0273(97)00024-3 [27] Wang, C.H., Zuo, L.Q., Jing, H., et al., 2015.Estimation of Geothermal Reservoir Temperature for the Donghai Hot Spring in Jiangsu.Journal of Geology, 39(1):111-115(in Chinese with English abstract). [28] Wang, J.Y., Xiong, L.P., Pang, Z.H., 1993.Low-Medium Temperature Geothermal Systems of Convective Type.Science Press, Beijing, 67-82(in Chinese). [29] Wang, Y., Zhou, X., Yu, Y., et al., 2007.Application of Geothermometers to Calculation of Temperature of Geothermal Reservoirs.Geoscience, 21(4):605-612(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC2010S1140.htm [30] Wu, H.M., Sun, Z.X., 2000.Calculation of the Fluid-Rock Equilibrium State in the Geothermal System.Journal of East China Geological Institute, 23(1):39-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ200001008.htm [31] Wu, H.M., Zhou, L.D., Guo, Y., 2006.Application of Cation Temperature Scale in Medium-Low Temperature Geothermal Resource.Journal of Heilongjiang Institute of Science&Technology, 16(1):27-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HLJI200601007.htm [32] Xia, Y.Z., Wang, F., Yao, J.J., et al., 2014.Evaluation Methodology Discussion on Reservoir Temperature of Geothermal System.Energy and Environment, (2):10-11(in Chinese). [33] Xu, S.G., Guo, Y.S., 2009.Geothermics Basis.Science Press, Beijing, 36-42(in Chinese). [34] Yuan, J.F., 2013.Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation).China University of Geosciences, Wuhan, 16-30(in Chinese with English abstract). [35] Zhao, J.C., Gao, Z.J., 2015.The Application of Water-Rock Equilibrium in Temperature Estimation at Guantao Group Geothermal Reservoir.Ground Water, 37(5):19-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXSU201505007.htm [36] Zheng, X.L., Guo, J.Q., 1996.Silica Geothermometer and Related Methods of Dealing with Problems.Ground Water, 18(2):85-88(in Chinese). [37] Zheng, X.L., Liu, H.J., 1996.Study of the Water-Rock Equilibrium State in the Application of Geothermometer.Journal of Xi'an College of Geology, 18(1):74-79(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX601.014.htm [38] Zhou, W., Dong, X.G., Wu, B., et al., 2014.Study on the Development of Groundwater Hydrochemistry in the County of Shanshan.Yellow River, 36(1):71-74(in Chinese with English abstract). [39] 柴蕊, 2010.平顶山八矿地热温标的选取及热储温度估算.煤田地质与勘探, 38(1):58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201001017.htm [40] 胡弘, 朱家玲, 赵季初, 2003.新西兰ROTORUA市KUIRAU热泉Na-K地球化学温标研究.黑龙江科技学院学报, 13(4):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200304013.htm [41] 李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. http://earth-science.net/WebPage/Article.aspx?id=3192 [42] 李洁祥, 郭清海, 王焰新, 2015.高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例.地球科学, 40(9):1576-1584. http://earth-science.net/WebPage/Article.aspx?id=3161 [43] 梁川, 苏春利, 吴亚, 等, 2014.大同盆地高氟地下水的分布特征及形成过程分析.地质科技情报, 33(2):154-159. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm [44] 林本海, 杨树庄, 朱伯善, 等, 2006.广东省地质构造与岩土工程基本特征.岩石力学与工程学报, 25(增刊2):3337-3346. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2000.htm [45] 刘军强, 2014.应用地热温标估算热储温度--以嵊州崇仁热水为例.西部探矿工程, 26(5):129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201405043.htm [46] 王彩会, 左丽琼, 荆慧, 等, 2015.江苏东海温泉热储温度估算.地质学刊, 39(1):111-115. http://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201501017.htm [47] 汪集旸, 熊亮萍, 庞忠和, 1993.中低温对流地热系统.北京:科学出版社, 67-82. [48] 王莹, 周训, 于湲, 等, 2007.应用地热温标估算地下热储温度.现代地质, 21(4):605-612. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200704003.htm [49] 吴红梅, 孙占学, 2000.地热系统中矿物-流体化学平衡的计算.华东地质学院学报, 23(1):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200001008.htm [50] 吴红梅, 周立岱, 郭宇, 2006.阳离子温标在中低温地热中的应用.黑龙江科技学院学报, 16(1):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200601007.htm [51] 夏跃珍, 王飞, 姚晶娟, 等, 2014.地热系统热储温度评价方法探讨.能源与环境, (2):10-11, 13. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNJ201402005.htm [52] 徐世光, 郭远生, 2009.地热学基础.北京:科学出版社, 36-42. [53] 袁建飞, 2013. 广东沿海地热系统水文地球化学研究(博士学位论文). 武汉: 中国地质大学, 16-30. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014150563.htm [54] 赵季初, 高宗军, 2015.水-岩平衡在馆陶组热储温度估算中的应用.地下水, 37(5):19-21. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201505007.htm [55] 郑西来, 郭建青, 1996.二氧化硅地热温标及其相关问题的处理方法.地下水, 18(2):85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199602022.htm [56] 郑西来, 刘鸿俊, 1996.地热温标中的水-岩平衡状态研究.西安地质学院学报, (1):74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.014.htm [57] 周文, 董新光, 吴彬, 等, 2014.鄯善县地下水化学演变规律研究.人民黄河, 36(1):71-74. http://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201401024.htm