• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义

    杨凤超 孙景贵 宋运红 张朋 毕中伟

    杨凤超, 孙景贵, 宋运红, 张朋, 毕中伟, 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义. 地球科学, 41(12): 2008-2018. doi: 10.3799/dqkx.2016.140
    引用本文: 杨凤超, 孙景贵, 宋运红, 张朋, 毕中伟, 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义. 地球科学, 41(12): 2008-2018. doi: 10.3799/dqkx.2016.140
    Yang Fengchao, Sun Jinggui, Song Yunhong, Zhang Peng, Bi Zhongwei, 2016. SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China. Earth Science, 41(12): 2008-2018. doi: 10.3799/dqkx.2016.140
    Citation: Yang Fengchao, Sun Jinggui, Song Yunhong, Zhang Peng, Bi Zhongwei, 2016. SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China. Earth Science, 41(12): 2008-2018. doi: 10.3799/dqkx.2016.140

    辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义

    doi: 10.3799/dqkx.2016.140
    基金项目: 

    中国地质调查局地质资源大调查项目 12120113058800

    国家自然科学基金青年基金项目 41501093

    详细信息
      作者简介:

      杨凤超(1982-),男,博士研究生,主要从事矿产地质调查及研究工作.E-mail: yangfc123@163.com

    • 中图分类号: P588.121;P597.3

    SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China

    • 摘要: 辽东本溪连山关花岗杂岩岩体的精细年代学和地球化学的研究匮乏,区域上辽东地区新太古代岩浆活动较少,研究也相对较弱.辽东本溪连山关地区处于铀矿集中区,是内生铀矿床的有利成矿地区.区内铀矿主要赋存于连山关花岗杂岩体与辽河群浪子山组或鞍山群的接触带附近,表明了岩体与铀矿化关系密切.连山关地区浅肉红色正长花岗岩SHRIMP U-Pb年龄为2 512±14 Ma,灰白色条痕状二长花岗岩SHRIMP U-Pb年龄为2 510±15 Ma,花岗杂岩侵位时代为新太古代.正长花岗岩SiO2含量为69.28%~72.70%,K2O含量为6.24%~7.12%,Na2O含量为2.77%~3.09%,Al2O3含量为13.68%~15.92%;二长花岗岩SiO2含量为65.53%~71.01%,K2O含量为2.95%~3.90%,Na2O含量为3.57%~4.23%,Al2O3含量为14.13%~14.90%;连山关花岗杂岩含白云母,A/CNK为1.09~1.16(平均1.12),刚玉(C)为1.37~2.28,P2O5和SiO2无负相关关系,表现为高钾的S型花岗岩.稀土总量较高,轻重稀土元素之间强烈分馏,从正铕异常到负铕异常(δEu=3.55~0.36),亏损Nb、Ta、P、Ti等高场强元素,富集Rb、Th、K等大离子亲石元素.锆石εHf(t)值为-15.19~-0.47,对应的单阶段Hf模式年龄TDM为2 826~3 400 Ma,两阶段Hf模式年龄TDMC为2 931~3 650 Ma.辽东连山关花岗杂岩可能是在高温中压条件下由中太古代和古太古代地壳物质(以变质泥岩和杂砂岩为主)发生深熔作用形成的,可能发生在后碰撞环境,指示华北克拉通各微陆块拼贴完成.

       

    • 图  1  中国东北构造地质简图(a)和辽东连山关地区花岗杂岩地质简图(b)

      Fig.  1.  Geological sketch of eastern China, showing major tectonic units (a) and geological sketch of granitic complex in the Liaodong Lianshanguan area (b)

      图  2  辽东连山关地区肉红色正长花岗岩(a、b、c)和灰白色条痕状二长花岗岩(d、e、f)照片

      a.岩石标本照片;b.显微镜下正交偏光照片(25×);c.显微镜下单偏光照片(25×);d.岩石标本照片;e.显微镜下正交偏光照片(25×);f.显微镜下单偏光照片(25×)

      Fig.  2.  Images of flesh red syenogranite (a, b, c) and white streaks shape monzonitic granite (d, e, f) from Lianshanguan area in Liaodong Peninsula

      图  3  辽东连山关地区正长花岗岩(TW6-1) 和条痕状二长花岗岩(TW6-2) 的锆石阴极发光(CL)图像

      Fig.  3.  Zircon CL image of syenogranite (TW6-1) and streaks shape monzonitic granite from Lianshanguan area in Liaodong Peninsula

      图  4  辽东连山关地区花岗杂岩SHRIMP U-Pb年龄

      Fig.  4.  SHRIMP zircon U-Pb concordia diagram and average age of the granitic complex from Lianshanguan area in Liaodong Peninsula

      图  5  辽东连山关地区花岗杂岩的SiO2-K2O相关图解和QAP图解

      图b中:1a.硅英岩(石英岩);1b.富石英花岗岩类;2.碱长花岗岩;3a.花岗岩(正长花岗岩);3b.花岗岩(二长花岗岩);4.花岗闪长岩;5.英云闪长岩;6*.石英碱长正长岩;6.碱长正长岩;7*.石英正长岩;7.正长岩;8*.石英二长岩;8.二长岩;9*.石英二长闪长岩、石英二长辉长岩;9.二长闪长岩、二长辉长岩;10*.石英闪长岩、石英辉长岩、石英斜长岩;10.闪长岩、辉长岩、斜长岩.图a据Rickwood(1989),图b据Streckeisen(1976)Le Maitre et al.(1989)

      Fig.  5.  SiO2-K2O (a) and QAP (b) of the granitic complex from Lianshanguan area in Liaodong Peninsula

      图  6  辽东连山关地区花岗杂岩的稀土配分曲线(a)和微量蛛网图(b)

      标准值据Sun and Mcdonough(1989)

      Fig.  6.  Rare earth element distribution curves (a) and trace element spider diagram (b) for granitic complex sampled from Lianshanguan area in Liaodong Peninsula

      图  7  辽东连山关地区花岗杂岩的ACF图解(a)和A/MF-C/MF图解(b)

      图b据Altherr et al.(2000)

      Fig.  7.  ACF (a) and A/MF-C/MF (b) of the granitic complex from Lianshanguan area in Liaodong Peninsula

      图  8  辽东连山关地区花岗杂岩的锆石Lu-Hf同位素特征图解

      图a和b据Yang et al.(2006)

      Fig.  8.  Zircon Lu-Hf isotope characteristics diagram of the granitic complex from Lianshanguan area in Liaodong Peninsula

      附表 1  辽东连山关地区花岗杂岩锆石SHRIMP U-Pb年龄数据

      附表 1.   SHRIMP zircon U-Pb dating of the the granitic complex sampled from Lianshanguan area in Liaodong Peninsula

      Spot 206Pbc
      (%)
      10-6 232Th/
      238U
      206Pb*
      (10-6)
      207Pb*/
      206Pb*
      1σ
      (%)
      207Pb*/
      235U
      1σ
      (%)
      206Pb*/
      238U
      1σ
      (%)
      Err
      corr
      206Pb/238U 207Pb/206Pb Disc.
      (%)
      U Th (Ma) (Ma)
      TW6-1-1.1 0.01 1 363 731 0.55 332 0.135 61 0.47 5.31 1.5 0.283 8 1.4 0.948 1 610 ±20 2 171.9 ±8.1 26
      TW6-1-2.1 0.71 982 467 0.49 345 0.158 05 0.59 8.85 1.5 0.405 9 1.4 0.924 2 196 ±27 2 434.9 ±10.0 10
      TW6-1-3.1 0.11 643 576 0.93 252 0.164 61 0.53 10.34 1.6 0.455 5 1.5 0.945 2 420 ±31 2 503.6 ±8.9 3
      TW6-1-4.1 0.02 1 491 70 0.05 443 0.148 80 0.51 7.09 1.7 0.345 5 1.6 0.955 1 913 ±27 2 332.2 ±8.7 18
      TW6-1-5.1 0.18 834 831 1.03 289 0.157 61 0.60 8.75 1.8 0.402 8 1.7 0.942 2 182 ±31 2 430.0 ±10.0 10
      TW6-1-6.1 0.91 990 88 0.09 220 0.132 00 0.85 4.67 1.8 0.256 7 1.6 0.881 1 473 ±21 2 124.0 ±15.0 31
      TW6-1-7.1 0.03 1 070 213 0.21 400 0.162 67 0.45 9.75 1.5 0.434 6 1.4 0.955 2 326 ±28 2 483.7 ±7.5 6
      TW6-1-8.1 0.06 361 296 0.85 144 0.164 12 0.56 10.53 1.6 0.465 2 1.4 0.932 2 462 ±30 2 498.5 ±9.5 1
      TW6-1-9.1 0.40 1 447 72 0.05 398 0.144 71 0.58 6.36 1.5 0.318 7 1.4 0.920 1 783 ±21 2 284.4 ±10.0 22
      TW6-1-10.1 - 1 540 87 0.06 426 0.143 08 0.42 6.35 1.4 0.321 9 1.3 0.954 1 799 ±21 2 264.8 ±7.3 21
      TW6-1-11.1 0.70 773 485 0.65 294 0.201 00 0.60 12.17 1.5 0.439 2 1.4 0.915 2 347 ±27 2 834.3 ±9.8 17
      TW6-1-12.1 2.98 272 98 0.37 89 0.153 00 1.80 7.75 2.3 0.367 3 1.4 0.617 2 017 ±25 2 380.0 ±31.0 15
      TW6-1-13.1 0.71 1 485 179 0.12 300 0.127 63 0.63 4.11 1.5 0.233 3 1.3 0.903 1 352 ±16 2 066.0 ±11.0 35
      TW6-1-14.1 0.71 944 72 0.08 176 0.130 69 0.70 3.88 1.5 0.215 4 1.3 0.884 1 257 ±15 2 107.0 ±12.0 40
      TW6-1-15.1 0.15 400 127 0.33 149 0.161 70 0.67 9.64 1.5 0.432 4 1.4 0.898 2 316 ±27 2 474.0 ±11.0 6
      TW6-1-16.1 0.06 2 081 207 0.10 366 0.097 96 0.62 2.76 1.5 0.204 4 1.3 0.907 1 199 ±15 1 586.0 ±12.0 24
      TW6-1-17.1 0.30 1 628 140 0.09 357 0.129 80 0.50 4.55 1.4 0.254 2 1.3 0.936 1 460 ±17 2 095.2 ±8.8 30
      TW6-1-18.1 0.33 1 600 871 0.56 316 0.120 47 0.53 3.81 1.4 0.229 1 1.3 0.929 1 330 ±16 1 963.2 ±9.5 32
      TW6-2-1.1 0.23 149 247 1.71 59 0.165 60 0.97 10.52 1.8 0.461 0 1.6 0.852 2 444 ±32 2 513.0 ±16.0 3
      TW6-2-2.1 0.87 544 82 0.16 115 0.140 40 0.86 4.73 1.6 0.244 3 1.4 0.851 1 409 ±18 2 232.0 ±15.0 37
      TW6-2-3.1 1.70 389 66 0.17 102 0.149 30 1.30 6.18 2.0 0.300 3 1.5 0.762 1 693 ±22 2 338.0 ±22.0 28
      TW6-2-4.1 0.45 426 146 0.35 109 0.151 10 0.78 6.20 1.7 0.297 8 1.5 0.888 1 680 ±22 2 358.0 ±13.0 29
      TW6-2-5.1 0.05 311 103 0.34 110 0.160 50 0.65 9.10 1.7 0.411 4 1.6 0.921 2 221 ±29 2 461.0 ±11.0 10
      TW6-2-6.1 0.19 483 305 0.65 151 0.156 47 0.61 7.84 1.6 0.363 5 1.4 0.920 1 999 ±25 2 418.0 ±10.0 17
      TW6-2-7.1 0.24 468 94 0.21 136 0.155 20 0.66 7.24 1.6 0.338 3 1.4 0.909 1 878 ±24 2 404.0 ±11.0 22
      TW6-2-8.1 0.25 344 291 0.88 139 0.165 60 0.62 10.71 1.6 0.469 2 1.5 0.921 2 480 ±30 2 514.0 ±10.0 1
      TW6-2-9.1 0.33 560 358 0.66 194 0.159 88 0.58 8.87 1.5 0.402 5 1.4 0.925 2 180 ±26 2 454.4 ±9.9 11
      TW6-2-10.1 0.73 241 60 0.26 84 0.159 10 1.10 8.87 1.9 0.404 4 1.5 0.797 2 189 ±27 2 446.0 ±19.0 11
      TW6-2-8.2 0.02 523 88 0.17 147 0.153 16 0.54 6.93 1.5 0.328 3 1.4 0.932 1 830 ±22 2 381.5 ±9.2 23
      TW6-2-10.2 0.06 400 73 0.19 126 0.157 53 0.59 7.95 1.5 0.366 1 1.4 0.922 2 011 ±24 2 429.0 ±10.0 17
      TW6-2-11.1 0.49 645 98 0.16 155 0.145 96 0.65 5.58 1.5 0.277 4 1.4 0.902 1 578 ±19 2 299.0 ±11.0 31
      TW6-2-12.1 0.06 491 180 0.38 141 0.153 34 0.56 7.05 1.5 0.333 4 1.4 0.926 1 855 ±22 2 383.5 ±9.6 22
      TW6-2-13.1 0.05 251 123 0.51 99 0.164 60 1.10 10.39 1.8 0.457 8 1.4 0.799 2 430 ±29 2 503.0 ±18.0 3
      TW6-2-14.1 0.01 465 103 0.23 166 0.159 58 0.53 9.11 1.5 0.414 1 1.4 0.933 2 234 ±26 2 451.2 ±8.9 9
      TW6-2-15.1 0.14 226 164 0.75 87 0.164 90 0.66 10.17 1.6 0.447 2 1.4 0.907 2 383 ±28 2 506.0 ±11.0 5
      TW6-2-16.1 - 825 77 0.10 254 0.151 02 0.46 7.47 1.4 0.359 0 1.3 0.944 1 977 ±22 2 357.5 ±7.9 16
      TW6-2-15.2 - 776 71 0.09 238 0.153 21 0.47 7.55 1.4 0.357 6 1.3 0.941 1 971 ±22 2 382.1 ±8.0 17
      下载: 导出CSV

      附表 2  辽东连山关地区花岗杂岩的主量元素含量(%)

      附表 2.   Major elements (%) data for the granitic complex from Lianshanguan area in Liaodong Peninsula

      样品号 Ls611 Ls612 Ls613 Ls614 Fj621 Fj622 Fj623 Fj624
      SiO2 72.70 72.06 72.32 69.28 71.01 65.90 66.03 65.53
      TiO2 0.23 0.22 0.24 0.24 0.33 0.67 0.68 0.62
      Al2O3 13.68 14.08 14.33 15.92 14.13 14.49 14.63 14.90
      Fe2O3 2.27 2.05 2.11 2.21 3.76 6.56 6.42 6.42
      MnO 0.033 0.029 0.039 0.040 0.051 0.074 0.075 0.076
      MgO 0.53 0.47 0.50 0.58 1.26 2.56 2.47 2.37
      CaO 0.52 0.50 0.59 0.63 1.32 1.53 1.67 1.77
      Na2O 2.96 2.94 2.77 3.09 3.57 3.95 4.23 3.62
      K2O 6.25 6.68 6.24 7.12 3.90 3.38 2.95 3.71
      P2O5 0.120 0.120 0.100 0.120 0.071 0.067 0.075 0.110
      FeO 1.26 1.03 1.03 0.99 2.70 4.67 4.45 4.58
      LOI 0.56 0.71 0.63 0.67 0.46 1.18 1.13 1.24
      A/CNK 1.089 1.085 1.158 1.143 1.131 1.121 1.110 1.129
      σ43 2.86 3.19 2.77 3.96 2.01 2.43 2.31 2.47
      Q 29.18 27.31 29.93 21.65 28.51 19.27 19.38 19.47
      An 1.79 1.72 2.24 2.33 5.98 6.88 7.52 7.83
      Ab 24.88 24.86 23.38 26.08 29.58 32.21 34.59 29.61
      Or 36.75 39.45 36.79 41.99 22.60 19.28 16.83 21.15
      下载: 导出CSV

      附表 3  辽东连山关地区花岗杂岩的微量元素含量(10-6)

      附表 3.   Major trace and rare-earth elements (10-6) data for the granitic complex from Lianshanguan area in Liaodong Peninsula

      样品号 Ls611 Ls612 Ls613 Ls614 Fj621 Fj622 Fj623 Fj624
      Cr 3 3 7 2 62 131 128 110
      Ni 2.72 2.41 1.91 2.07 21.90 49.10 49.90 45.50
      Rb 283 299 285 334 145 175 175 191
      Sr 85.7 88.2 87.5 94.6 258.0 234.0 232.0 272.0
      Zr 222 207 224 240 69 228 158 150
      Nb 11.1 11.4 11.5 13.4 12.2 13.3 18.8 18.1
      Ba 702 723 689 801 870 596 430 615
      Hf 6.09 5.52 5.07 4.75 1.82 5.79 3.77 4.25
      Ta 1.82 2.15 1.94 1.12 1.13 1.23 1.13 0.95
      Th 20.0 19.4 21.5 17.8 4.7 18.9 13.8 9.7
      U 7.94 7.82 8.49 7.47 0.50 1.15 1.77 0.76
      Li 5.94 5.83 5.86 5.52 16.10 26.80 25.90 25.50
      Be 1.69 1.78 1.70 2.14 1.81 2.38 2.26 2.21
      Co 2.68 2.50 2.74 2.92 10.70 16.20 16.90 15.70
      V 17.9 19.1 18.8 16.4 46.6 90.7 83.9 83.9
      Ga 18.0 18.2 17.6 19.1 16.4 22.0 21.0 21.1
      Y 22.5 20.2 19.7 19.5 4.7 6.5 5.2 7.1
      La 61.7 54.8 74.7 65.1 13.3 160.0 94.1 58.0
      Ce 126 114 147 141 18 207 122 77
      Pr 11.9 10.4 14.5 12.5 1.9 19.5 11.6 7.2
      Nd 39.3 33.7 47.9 40.3 6.4 57.8 34.9 21.6
      Sm 7.01 6.02 8.37 6.82 1.07 6.17 3.69 2.80
      Eu 0.82 0.81 0.91 0.90 1.20 1.35 0.96 1.04
      Gd 5.91 5.00 6.99 5.78 0.97 6.44 4.01 2.76
      Tb 0.81 0.68 0.91 0.78 0.14 0.52 0.34 0.29
      Dy 4.36 3.68 4.68 3.92 0.80 1.53 1.12 1.28
      Ho 0.79 0.67 0.83 0.70 0.16 0.23 0.18 0.24
      Er 1.95 1.68 2.15 1.72 0.39 0.65 0.55 0.61
      Tm 0.36 0.30 0.38 0.32 0.08 0.08 0.07 0.11
      Yb 2.01 1.69 2.05 1.72 0.41 0.49 0.46 0.61
      Lu 0.27 0.22 0.28 0.24 0.06 0.08 0.07 0.10
      ∑REE 263.1 233.2 311.8 281.9 45.3 461.7 274.2 173.1
      LREE 246.6 219.3 293.5 266.8 42.3 451.6 267.4 167.1
      HREE 16.45 13.93 18.29 15.17 3.00 10.03 6.80 5.99
      LREE/HREE 14.99 15.75 16.05 17.59 14.10 45.01 39.33 27.89
      LaN/YbN 22.06 23.23 26.12 27.15 23.35 233.19 148.02 68.23
      δEu 0.38 0.43 0.36 0.43 3.55 0.65 0.76 1.13
      下载: 导出CSV

      附表 4  辽东连山关地区花岗杂岩的锆石Hf同位素含量

      附表 4.   Hf isotope data of the granitic complex from Lianshanguan area in Liaodong Peninsula

      No. Age
      (Ma)
      176Yb/
      177Hf
      176Lu/
      177Hf
      176Hf/
      177Hf
      2σ 176Hf/
      177Hfi
      εHf(0) εHf(t) TDM
      (Ma)
      TDMC
      (Ma)
      fLu/Hf
      TW6-1-1.1.xls 2 171.9 0.038 034 0.001 359 0.280 934 0.000 013 0.280 892 -65.81 -19.30 3 283 3 585 -0.96
      TW6-1-2.1.xls 2 434.9 0.035 446 0.001 226 0.280 858 0.000 013 0.280 806 -68.50 -15.99 3 375 3 634 -0.96
      TW6-1-3.1.xls 2 503.6 0.030 484 0.001 124 0.280 833 0.000 013 0.280 781 -69.38 -15.19 3 400 3 650 -0.97
      TW6-1-4.1.xls 2 332.2 0.028 424 0.001 082 0.280 923 0.000 010 0.280 884 -66.20 -15.73 3 274 3 539 -0.97
      TW6-1-5.1.xls 2 430.0 0.029 336 0.001 003 0.280 890 0.000 014 0.280 848 -67.36 -14.60 3 312 3 562 -0.97
      TW6-1-6.1.xls 2 124.0 0.016 900 0.000 723 0.281 229 0.000 012 0.281 209 -55.38 -8.96 2 833 3 041 -0.98
      TW6-1-7.1.xls 2 483.7 0.041 605 0.001 479 0.280 941 0.000 015 0.280 876 -65.56 -12.39 3 284 3 498 -0.96
      TW6-1-8.1.xls 2 498.5 0.028 721 0.001 028 0.280 910 0.000 014 0.280 861 -66.66 -12.40 3 287 3 511 -0.97
      TW6-1-9.1.xls 2 284.4 0.051 533 0.001 798 0.280 905 0.000 014 0.280 844 -66.83 -18.54 3 361 3 638 -0.95
      TW6-1-10.1.xls 2 264.8 0.036 996 0.001 306 0.280 889 0.000 012 0.280 845 -67.40 -18.78 3 340 3 634 -0.96
      TW6-1-11.1.xls 2 834.3 0.036 636 0.001 298 0.280 742 0.000 013 0.280 684 -72.60 -11.36 3 538 3 731 -0.96
      TW6-1-12.1.xls 2 380.0 0.021 860 0.000 874 0.281 212 0.000 015 0.281 179 -55.98 -4.06 2 867 3 007 -0.97
      TW6-1-13.1.xls 2 066.0 0.044 025 0.001 570 0.280 946 0.000 020 0.280 906 -65.38 -21.49 3 285 3 607 -0.95
      TW6-1-14.1.xls 2 107.0 0.019 938 0.000 789 0.281 218 0.000 011 0.281 199 -55.77 -9.83 2 852 3 069 -0.98
      TW6-1-15.1.xls 2 474.0 0.008 544 0.000 378 0.281 215 0.000 013 0.281 199 -55.87 -1.01 2 826 2 934 -0.99
      TW6-1-16.1.xls 1 586.0 0.040 046 0.001 541 0.280 931 0.000 012 0.280 897 -65.91 -32.38 3 303 3 759 -0.95
      TW6-1-17.1.xls 2 095.2 0.035 355 0.001 313 0.280 886 0.000 014 0.280 850 -67.51 -22.63 3 344 3 686 -0.96
      TW6-1-18.1.xls 1 963.2 0.049 566 0.001 621 0.280 925 0.000 012 0.280 884 -66.13 -24.54 3 318 3 674 -0.95
      TW6-2-1.1.xls 2 513.0 0.028 634 0.001 059 0.281 216 0.000 013 0.281 167 -55.84 -1.24 2 875 2 977 -0.97
      TW6-2-2.1.xls 2 232.0 0.014 738 0.000 604 0.281 255 0.000 012 0.281 239 -54.46 -5.43 2 789 2 955 -0.98
      TW6-2-3.1.xls 2 338.0 0.013 644 0.000 513 0.281 194 0.000 015 0.281 178 -56.61 -5.07 2 864 3 022 -0.98
      TW6-2-4.1.xls 2 358.0 0.018 299 0.000 716 0.281 287 0.000 014 0.281 264 -53.33 -1.63 2 754 2 870 -0.98
      TW6-2-5.1.xls 2 461.0 0.015 519 0.000 707 0.281 234 0.000 012 0.281 204 -55.20 -1.18 2 825 2 932 -0.98
      TW6-2-6.1.xls 2 418.0 0.029 412 0.001 194 0.281 306 0.000 015 0.281 261 -52.65 -0.39 2 762 2 858 -0.96
      TW6-2-7.1.xls 2 404.0 0.018 161 0.000 736 0.281 186 0.000 012 0.281 160 -56.90 -4.22 2 892 3 034 -0.98
      TW6-2-8.1.xls 2 514.0 0.014 043 0.000 559 0.281 091 0.000 013 0.281 065 -60.26 -4.81 3 006 3 153 -0.98
      TW6-2-8.2.xls 2 454.4 0.016 513 0.000 673 0.281 141 0.000 013 0.281 117 -58.49 -4.58 2 947 3 093 -0.98
      TW6-2-9.1.xls 2 446.0 0.021 671 0.000 864 0.281 263 0.000 015 0.281 227 -54.17 -0.75 2 797 2 898 -0.97
      TW6-2-10.1.xls 2 381.5 0.022 637 0.000 906 0.281 218 0.000 015 0.281 180 -55.77 -3.86 2 861 2 999 -0.97
      TW6-2-10.2.xls 2 429.0 0.024 513 0.001 003 0.281 225 0.000 012 0.281 187 -55.52 -2.71 2 859 2 981 -0.97
      TW6-2-11.1.xls 2 299.0 0.011 155 0.000 499 0.281 222 0.000 011 0.281 208 -55.62 -4.93 2 826 2 984 -0.98
      TW6-2-12.1.xls 2 383.5 0.016 915 0.000 717 0.281 239 0.000 015 0.281 213 -55.02 -2.77 2 819 2 946 -0.98
      TW6-2-13.1.xls 2 503.0 0.013 808 0.000 575 0.281 221 0.000 011 0.281 195 -55.66 -0.47 2 833 2 931 -0.98
      TW6-2-14.1.xls 2 451.2 0.016 008 0.000 663 0.281 243 0.000 012 0.281 215 -54.88 -1.01 2 809 2 915 -0.98
      TW6-2-15.1.xls 2 506.0 0.020 869 0.000 835 0.281 190 0.000 014 0.281 152 -56.76 -1.94 2 894 3 006 -0.97
      TW6-2-15.2.xls 2 357.5 0.016 722 0.000 688 0.281 204 0.000 012 0.281 178 -56.26 -4.55 2 864 3 013 -0.98
      TW6-2-16.1.xls 2 382.1 0.011 910 0.000 473 0.281 191 0.000 011 0.281 173 -56.72 -4.11 2 865 3 011 -0.99
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73.doi: 10.1016/s0024-4937(99)00052-3
      [2] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7
      [3] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.doi:10.1016/s0012-821x (97)00040-x
      [4] Gao, Y.B., Li, W.Y., Qian, B., et al., 2014.Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China.Acta Petrologica Sinica, 30(6):1647-1665(in Chinese with English abstract). https://www.researchgate.net/publication/285649605_Geochronology_geochemistry_and_Hf_isotopic_compositions_of_the_granitic_rocks_related_with_iron_mineralization_in_Yemaquan_deposit_East_Kunlun_NW_China
      [5] Geng, Y.S., Liu, D.Y., Song, B., 1997.Chronological Framework of the Early Precambrian Important Events of the Northwestern Hebei Granulite Terrain.Acta Geologica Sinica, 71(4):316-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199704003.htm
      [6] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359.doi: 10.1016/0009-2541(94)00145-x
      [7] Han, J., Xia, Y.L., 2009.Discussion on Zircon LA-ICP-MS Ages of Lianshanguan-Gaojiagou Granites and Its Significance.Uranium Geology, 25(4):214-221(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200904005.htm
      [8] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
      [9] Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989.A Classification of Igneous Rocks and Glossary of Terms.Blackwell, Oxford.10:4-8.
      [10] Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201601001.htm
      [11] Li, C.N., 1992.Trace Elements of Igneous Petrology.Geological Publishing House, Beijing (in Chinese).
      [12] Li, J.C., Luo, C.W., Tong, C.H., et al., 1986.Geochemistry of REE in Lianshanguan Uranium Deposit, Northern China.Journal of Chengdu College of Geology, 13(4):1-10(in Chinese with English abstract). http://www.researchgate.net/publication/312610396_Geochemistry_of_REE_in_Lianshanguan_Uranium_Deposit_Northern_China
      [13] Li, J.H., 1998.Supercontinent Cycle in the Precambrian and Its Implication for the Plate Tectonics.Earth Science Frontiers, 5(Suppl.1):141-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY8S1.018.htm
      [14] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Element Geochemistry.Science Press, Beijing (in Chinese).
      [15] Pidgeon, R.T., 1992.Recrystallisation of Oscillatory Zoned Zircon:Some Geochronological and Petrological Implications.Contributions to Mineralogy and Petrology, 110(4):463-472.doi: 10.1007/bf00344081
      [16] Pidgeon, R.T., Nemchin, A.A., Hitchen, G.J., 1998.Internal Structures of Zircons from Archaean Granites from the Darling Range Batholith:Implications for Zircon Stability and the Interpretation of Zircon U-Pb Ages.Contributions to Mineralogy and Petrology, 132(3):288-299.doi: 10.1007/s004100050422
      [17] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5
      [18] Rollison, H.R., 1993.Using Geochemical Data:Evaluation, Pre-Sentation, Interpretation.Longman Group UK, London.
      [19] Scherer, E., Munker, C.Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293:683-687. doi: 10.1126/science.1061372
      [20] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54(in Chinese with English abstract).
      [21] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30(in Chinese with English abstract).
      [22] Streckeisen, A., 1976.To Each Plutonic Rock Its Proper Name.Earth-Science Reviews, 12(1):1-33.doi: 10.1016/0012-8252(76)90052-0
      [23] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [24] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.doi: 10.1016/s0024-4937(98)00024-3
      [25] Tong, G.Y., Liu, X.C., Shen, B.W., 2012.Uranium Mineralization Geological Conditions and Prospecting Direction of Liaoning Lianshanguan Area.Science and Technology Innovation Herald, 1:11-13(in Chinese).
      [26] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2015.Some Progress in the Study of Archean Basement of the North China Craton.Acta Geoscientica Sinica, 36(6):685-700(in Chinese with English abstract). https://www.researchgate.net/publication/287520905_Some_progress_in_the_study_of_archean_basement_of_the_North_China_Craton
      [27] Wang, Q., 2012.Breakup of China-Korea Platform and Establishment of North China and Huatai Cratons.Acta Geologica Sinica, 86(10):1553-1568(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201210002.htm
      [28] Wang, S., Zhang, D., Zhao, H.S., et al., 2016.Geochemistry, Zircon U-Pb Dating and Hf Isotope Composition of Granite in Fanshan Area, Pinghe County, Fujian Province, and Its Geological Significance.Earth Science, 41(1):67-83(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201601006.htm
      [29] Wang, X., Huang, X.L., Ma, J.L., et al., 2015.Hf-Nd Isotopes of the Early Precambrian Metamorphic Complexes in the Southern Segment of the Trans-North China Orogen:Implications for Crustal Evolution.Geotectonica et Metallogenia, 39(6):1108-1118(in Chinese with English abstract). https://www.researchgate.net/publication/295861739_Hf-Nd_Isotopes_of_the_Early_Precambrian_Metamorphic_Complexes_in_the_Southern_Segment_of_the_Trans-North_China_Orogen_Implications_for_Crustal_Evolution
      [30] Wu, D., Zhuang, T.X., Liu, X.D., et al., 2013.Petrological and Geochemical Characteristics of Remelting Chorismite in Lianshanguan Area of East Liaoning.World Nuclear Geoscience, 30(4):210-216(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199200003.htm
      [31] Wu, J.S., Geng, Y.S., Shen, Q.H., et al., 1998.Archean Geological Characteristics and Tectonic Evolution of the Ancient Continent of China and the DPRK.Geological Publishing House, Beijing (in Chinese).
      [32] Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029
      [33] Zhai, M.G., Bian, A.G., 2000.Late Neoproterozoic Supercontinent Assemblage and the Paleoproterozoic-Mesoproterozoic Cleavage of the North China Craton.Science in China (Series D), 30(Suppl.):129-137(in Chinese).
      [34] Zhai, M.G., Guo, J.H., Zhao, T.P., 2001.Study Advances of Neoarchaean-Paleoproterozoic Tectonic Evolution in the North China Craton.Progress in Precambrian Research, 24(3):17-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200101003.htm
      [35] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). https://www.researchgate.net/publication/279655758_Granite_classification_on_the_basis_of_Sr_and_Yb_contents_and_its_implications
      [36] Zhang, Q., Zhai, M.G., 2012.What is the Archean TTG?Acta Petrologica Sinica, 28(11):3446-3456(in Chinese with English abstract). https://www.researchgate.net/publication/279707627_What_is_the_Archean_TTG
      [37] 高永宝, 李文渊, 钱兵, 等, 2014.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征.岩石学报, 30(6):1647-1665. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406009.htm
      [38] 耿元生, 刘敦一, 宋彪, 1997.冀西北麻粒岩区早前寒武纪主要地质事件的年代格架.地质学报, 71(4):316-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199704003.htm
      [39] 韩军, 夏毓亮, 2009.连山关-高家沟花岗岩体LA-ICP-MS锆石U-Pb年龄及其地质意义.铀矿地质, 25(4):214-221. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200904005.htm
      [40] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [41] 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001
      [42] 李昌年, 1992.火成岩微量元素岩石学.北京:地质出版社, 97-123.
      [43] 李巨初, 罗朝文, 童纯菡, 等, 1986.连山关铀矿床稀土元素地球化学特征.成都地质学院学报, 13(4):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198604000.htm
      [44] 李江海, 1998.前寒武纪的超大陆旋回及其板块构造演化意义.地学前缘, 5(S1):141-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY8S1.018.htm
      [45] 刘英俊, 曹励明, 李兆麟, 等, 1984.元素地球化学.北京:科学出版社, 6-40.
      [46] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://www.earth-science.net/WebPage/Article.aspx?id=3217
      [47] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
      [48] 佟国元, 刘宪春, 沈步威, 2012.辽宁连山关地区铀成矿地质条件及找矿方向.科技创新导报, 1:11-13. doi: 10.3969/j.issn.1674-098X.2012.01.011
      [49] 万渝生, 董春艳, 颉颃强, 等, 2015.华北克拉通太古宙研究若干进展.地球学报, 36(6):685-700. doi: 10.3975/cagsb.2015.06.01
      [50] 王荃, 2012.中朝古陆的解体与华北、华泰二克拉通的确立.地质学报, 86(10):1553-1568. doi: 10.3969/j.issn.0001-5717.2012.10.001
      [51] 王森, 张达, 赵红松, 等, 2016.福建平和矾山地区花岗岩地球化学、年代学、Hf同位素特征及地质意义.地球科学, 41(1):67-83. http://www.earth-science.net/WebPage/Article.aspx?id=3219
      [52] 王雪, 黄小龙, 马金龙, 等, 2015.华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义.大地构造与成矿学, 39(6):1108-1118. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506013.htm
      [53] 吴迪, 庄廷新, 刘晓东, 等, 2013.辽东连山关地区重熔混合岩岩石地球化学特征.世界核地质科学, 30(4):210-216. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201304006.htm
      [54] 伍家善, 耿元生, 沈其韩, 等, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社.
      [55] 翟明国, 卞爱国, 2000.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑), 30(增刊):129-137. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1016.htm
      [56] 翟明国, 郭敬辉, 赵太平, 2001.新太古-古元古代华北陆块构造演化的研究进展.前寒武纪研究进展, 24(3):17-27. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200101003.htm
      [57] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
      [58] 张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报.28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211004.htm
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  5188
    • HTML全文浏览量:  1791
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-02-26
    • 刊出日期:  2016-12-15

    目录

      /

      返回文章
      返回