Curve-Fitting Analysis of Micro FT-IR and Its Application on Individual Oil Inclusion and Micro-Area Bitumens
-
摘要: 针对单个油包裹体和储层沥青等结构复杂样品傅里叶变换显微红外光谱吸收峰严重重叠的问题,基于高斯、洛伦茨函数或其组合(高斯-洛伦茨)模型理论,采用显微红外分峰拟合技术,对塔中北坡顺托果勒地区单个油包裹体成熟度和储层沥青成因进行了系统分析,并取得了4点认识:(1) 通过与Pironon对合成油包裹体的峰位坐标区域化划分吸收峰对比,认为分峰拟合技术更为真实地反映各子峰的面积,而且能够识别重叠区“隐蔽”的吸收峰,有助于准确判别有机质的结构组成;(2) 高斯、洛伦茨函数或其组合(高斯-洛伦茨)模型拟合子峰时,高斯-洛伦茨函数分布拟合的吸收峰与实测光谱吻合度较高,噪音目标越低拟合效果越好,但计算耗时越长,故优选噪音目标在1~10高斯-洛伦茨函数分布拟合各子峰;(3) 结合流体包裹体系统分析和均一温度-埋藏史投影法,单个油包裹体显微红外参数(CH2a/CH3a、Xinc、Xstd等)揭示塔中北坡顺托果勒地区存在3期油充注,分别为加里东晚期、晚海西期和喜山期;(4) 显微红外光谱定量化分析是研究储层沥青多成因化和多期次油气充注叠加作用的有效手段,分析结果说明塔中北坡顺托果勒地区储层沥青经历了生物降解、氧化降解和水洗淋滤作用.Abstract: Curve-fitting analysis of micro FT-IR, in the theory of Gaussian, Lorentz function or their combination (Gaussian-Lorentz) model, can break through the limit of overlapping spectra resulting from complicated structures of samples (e.g. individual oil inclusion and bitumens). Hence, curve-fitting analysis of micro FT-IR was used for analyzing maturity of individual oil inclusion and the origin of bitumens in Shuntuoguole area of Tazhong northeastern slope systematically, and four conclusions have been obtained: firstly, curve-fitting analysis of micro FT-IR may be more accurate for calculating absorption peaks, and some easily neglected peaks can be detected by this method in contrast with the method of interval oriented by Pironon. Secondly, Gaussian-Lorentz fitting is more approaching to actual spectra and the lower noise level is corresponding to better fit but requiring longer computation time. As a result, Gaussian-Lorentz fitting with 1~10 noise level is preferred. Thirdly, based on inclusion system analysis and burial history projection with homogenization temperature, infrared parameters (e.g. CH2a/CH3a, Xinc and Xstd) reveal three hydrocarbon charging events occurred, including Late Caledonian, Late Hercynian and the Himalaya. Finally, micro FT-IR is an effective means for analyzing multi-hydrocarbon charging events and complicated origin of bitumens undergoing biodegradation, oxidative degradation and water eluviation quantitatively in study area.
-
Key words:
- micro FT-IR /
- curve-fitting analysis /
- individual oil inclusion /
- micro-area bitumen /
- the Silurian /
- Tarim basin /
- petroleum geology
-
图 1 单个油包裹体显微红外光谱重叠吸收峰处理方法
Fig. 1. Processing method of micro FT-IR overlapping absorptive peaks for individual oil inclusion
图 2 塔里木盆地顺9井区志留系柯坪塔格组油包裹体及其红外光谱特征
a1.顺901井,5 301.44 m,柯坪塔格组,石英颗粒内裂纹中见油包裹体,透射光;a2.顺901井,5 301.44 m,柯坪塔格组,石英颗粒内裂纹中见油包裹体,荧光;a3.顺901井,5 301.44 m,柯坪塔格组,石英颗粒内裂纹中油包裹体荧光光谱;a4.顺901井,5 301.44 m,柯坪塔格组,石英颗粒内裂纹中油包裹体显微红外光谱,A所示2 947 cm-1处并非为波谷,B区域内并无吸收峰;b1.顺904H井,5 369.06 m,柯坪塔格组,穿石英颗粒裂纹中见油包裹体,透射光;b2.顺904H井,5 369.06 m,柯坪塔格组,穿石英颗粒裂纹中见油包裹体,荧光;b3.顺904H井,5 369.06 m,柯坪塔格组,穿石英颗粒裂纹中油包裹体荧光光谱;b4.顺904H井,5 369.06 m,柯坪塔格组,穿石英颗粒裂纹中油包裹体显微红外光谱,A所示2 947 cm-1处并非为波谷,C处显示图 1原则所忽略的“隐蔽”吸收峰
Fig. 2. Oil inclusions and their micro FT-IR spectra of the Silurian Kepingtage Formation in well Shun 9 area, Tarim basin
图 3 利用高斯-洛伦茨函数分布拟合的各个子峰及拟合效果
a.顺901井,5 301.44 m,柯坪塔格组,石英颗粒内裂纹中油包裹体显微红外光谱拟合效果图;b.顺904H井,5 369.06 m,柯坪塔格组,穿石英颗粒裂纹中油包裹体显微红外光谱.绿色线为拟合的子峰,红色线和蓝色线分别为实测光谱和合成光谱,两者几乎重合说明拟合效果较好,黄色线为实测光谱的二阶导数,理论上其波谷位置为吸收峰的波峰,紫色线为实测光谱与合成光谱的差值(差减光谱)
Fig. 3. Curve-fitting analysis by Gaussian-Lorentz function and its fitting effect
表 1 不同类型函数分布的子峰属性统计
Table 1. Statistic corresponding parameters of different fitting functions
谱峰类型 中心(cm-1) 峰高 半峰宽(cm-1) 峰面积 噪音目标 残差 相对误差 高斯 2 849.345 0.053 8 37.949 2.173 1 1 0.002 2 0.005 0 2 864.613 0.101 1 38.167 4.107 6 1 -0.000 2 -0.000 5 2 902.960 0.143 8 34.013 5.206 2 1 -0.000 3 -0.000 5 2 924.208 0.170 4 24.540 4.452 2 1 -0.000 2 -0.000 2 2 950.833 0.198 2 41.090 8.667 2 1 0.000 4 0.000 7 3 030.408 0.022 2 59.478 1.407 1 1 -0.002 4 -0.006 4 2 850.535 0.059 5 35.360 2.239 4 10 0.000 7 0.001 5 2 864.172 0.090 5 36.723 3.539 4 10 0.000 8 0.001 8 2 898.597 0.113 1 33.366 4.017 4 10 0.001 9 0.003 9 2 924.064 0.226 7 30.055 7.253 7 10 0.002 6 0.004 2 2 954.583 0.177 1 36.173 6.818 6 10 0.002 8 0.005 1 3 032.623 0.016 6 40.071 0.706 5 10 -0.003 5 -0.009 2 2 844.340 0.022 7 52.497 1.269 7 15 -0.001 0 -0.044 1 2 857.752 0.112 3 35.932 4.295 7 15 -0.003 2 -0.028 5 2 905.953 0.024 5 63.609 1.659 2 15 -0.009 7 -0.395 9 2 927.919 0.238 0 67.572 17.122 5 15 0.020 9 0.087 8 2 957.805 0.034 6 58.145 2.144 1 15 0.016 8 0.485 5 3 042.629 0.034 0 66.783 2.415 4 15 -0.002 3 -0.067 7 2 818.355 0.010 9 58.472 0.675 9 20 -0.000 2 -0.018 3 2 858.814 0.133 9 40.093 5.712 7 20 -0.001 2 -0.008 9 2 908.349 0.056 4 53.174 3.191 3 20 -0.007 5 -0.133 0 2 932.459 0.231 1 65.023 15.994 4 20 -0.009 8 -0.042 4 2 964.186 0.021 2 51.444 1.161 2 20 0.014 0 0.660 3 3 041.014 0.032 5 59.539 2.062 7 20 -0.003 4 -0.104 6 洛伦茨 2 849.805 0.076 6 29.283 3.515 6 1 -0.001 1 -0.002 5 2 865.159 0.081 5 31.716 4.049 3 1 -0.000 3 -0.000 6 2 897.928 0.054 6 38.640 3.301 0 1 -0.000 6 -0.001 3 2 924.770 0.253 6 42.096 16.709 0 1 -0.000 1 -0.000 2 2 956.152 0.134 1 31.142 6.543 2 1 -0.004 6 -0.008 6 3 049.290 0.043 8 71.914 4.920 4 1 -0.002 6 -0.006 8 2 852.791 0.085 8 35.911 4.815 2 10 0.000 5 0.001 2 2 865.871 0.061 2 37.799 3.615 5 10 0.001 8 0.004 0 2 900.611 0.060 8 38.531 3.663 1 10 -0.001 4 -0.002 9 2 925.281 0.241 3 39.417 14.860 0 10 -0.001 4 -0.002 3 2 955.602 0.134 8 30.679 6.466 5 10 -0.004 9 -0.009 2 3 045.140 0.027 8 42.574 1.848 4 10 -0.004 4 -0.011 4 2 850.675 0.074 4 27.932 3.251 2 15 -0.001 2 -0.016 1 2 865.696 0.077 8 33.403 4.064 6 15 0.000 9 0.011 5 2 900.234 0.058 9 39.518 3.637 1 15 -0.000 8 -0.013 6 2 925.178 0.243 9 39.925 15.218 6 15 -0.001 9 -0.007 8 2 956.139 0.132 7 30.050 6.241 9 15 -0.005 2 -0.039 2 3 047.280 0.030 5 48.747 2.324 5 15 -0.004 0 -0.131 2 2 855.444 0.108 4 34.913 5.917 2 20 -0.003 3 -0.030 2 2 871.141 0.034 3 39.132 2.098 2 20 0.003 2 0.094 7 2 900.667 0.056 5 38.976 3.437 8 20 0.000 1 0.001 2 2 924.752 0.238 7 38.300 14.283 4 20 -0.002 2 -0.009 2 2 955.416 0.138 1 31.657 6.839 0 20 -0.004 6 -0.033 5 3 046.063 0.029 2 42.134 1.918 5 20 -0.004 7 -0.160 6 高斯-洛伦茨 2 850.190 0.076 3 32.728 3.3079 1 0.000 7 0.001 6 2 865.969 0.081 5 33.737 3.647 7 1 0.000 6 0.001 3 2 897.078 0.079 5 33.947 3.584 3 1 -0.000 7 -0.001 4 2 924.370 0.243 5 35.523 11.462 2 1 0.000 2 0.000 4 2 955.941 0.154 0 33.739 6.779 7 1 -0.001 2 -0.002 1 3 039.386 0.023 7 55.219 1.719 9 1 -0.002 7 -0.007 1 2 851.754 0.070 1 35.011 3.249 6 10 0.000 9 0.002 0 2 864.191 0.074 7 37.471 3.704 4 10 0.000 8 0.001 8 2 897.165 0.075 4 36.992 3.697 1 10 0.000 3 0.000 7 2 924.793 0.241 0 36.565 11.672 7 10 0.001 0 0.001 7 2 956.296 0.147 7 32.532 6.362 0 10 -0.001 9 -0.003 6 3 038.757 0.019 6 40.722 1.054 2 10 -0.003 5 -0.009 1 2 853.303 0.088 8 34.023 4.036 5 15 0.002 0 0.022 5 2 868.599 0.059 9 40.111 3.213 4 15 0.003 3 0.055 1 2 899.733 0.068 7 38.528 3.541 3 15 0.003 0 0.043 7 2 924.922 0.236 1 37.191 11.797 3 15 0.001 8 0.007 6 2 956.573 0.146 3 33.145 6.508 0 15 -0.001 9 -0.012 9 3 044.623 0.024 3 41.216 1.338 8 15 -0.004 3 -0.176 9 2 856.648 0.130 5 38.052 6.883 2 20 -0.007 6 -0.058 2 2 914.059 0.056 4 59.676 4.715 7 20 -0.003 8 -0.067 3 2 930.042 0.223 7 65.995 19.618 0 20 -0.008 0 -0.035 7 2 960.401 0.034 6 57.355 2.779 9 20 0.022 3 0.644 5 3 053.415 0.041 2 65.631 3.769 4 20 -0.002 7 -0.065 5 表 2 两种拟合方法对红外参数结果的影响
Table 2. The differences of calculation results from above two fitting methods
υCH3a υCH2a υCH3s υCH2s CH2a/CH3a Xinc Xstd 分峰拟合 1.36 2.55 0.32 1.27 1.88 16.38 8.79 区域面积 0.56 1.31 0.10 0.45 2.34 10.67 10.25 表 3 顺托果勒地区柯坪塔格组(S1k)单个油包裹体显微红外光谱参数
Table 3. Micro FT-IR parameters of individual oil inclusion of Kepingtage Formation in Shuntuoguole area(S1k)
井号 深度(m) 产状 Xinc Xstd CH2a/CH3a 油包裹体均一温度(℃) 同期盐水包裹体均一温度(℃) 充注年龄(Ma) 时期 顺9 5 600.46 石英颗粒内裂纹 3.16 4.39 0.99 26.9 58.8 410.0 加里东晚期 顺9 5 599.59 石英颗粒内裂纹 3.61 4.54 1.02 23.5 61.7 403.3 顺10 5 694.27 石英颗粒内裂纹 3.60 4.53 1.29 16.4 55.3 418.2 顺10 5 693.11 石英颗粒内裂纹 3.74 4.58 1.23 16.0 54.2 415.6 顺10 5 693.11 石英颗粒内裂纹 3.98 4.66 1.20 15.6 44.8 416.9 顺10 5 693.11 石英颗粒内裂纹 4.11 4.70 1.22 19.8 70.6 408.4 顺9 5 597.27 石英颗粒内裂纹 8.31 6.10 2.15 77.8 92.5 265.1 晚海西期 顺9 5 600.46 石英颗粒内裂纹 10.64 6.88 1.62 75.9 93.8 264.7 顺9 5 600.46 穿石英颗粒裂纹 10.00 6.67 1.45 75.6 110.3 253.8 顺9 5 600.46 穿石英颗粒裂纹 10.21 6.74 1.86 82.5 108.2 256.2 顺9 5 597.95 石英颗粒内裂纹 12.15 7.38 1.78 65.6 90.6 272.3 顺10 5 694.27 石英颗粒内裂纹 9.59 6.53 1.63 79.5 102.3 270.5 顺10 5 694.27 穿石英颗粒裂纹 10.40 6.80 1.63 83.8 106.7 254.8 顺901 5 497.00 石英颗粒内裂纹 7.17 5.72 1.67 79.1 102.4 260.0 顺901 5 497.00 穿石英颗粒裂纹 10.50 6.83 1.93 84.6 112.5 252.0 顺901 5 497.00 穿石英颗粒裂纹 11.46 7.15 1.71 83.9 110.3 253.1 顺902H 5 301.62 石英颗粒内裂纹 9.94 6.65 1.62 75.4 96.5 265.4 顺902H 5 301.62 石英颗粒内裂纹 11.97 7.32 1.78 68.7 89.4 268.7 顺9 5 600.46 穿石英颗粒裂纹 14.85 8.28 1.66 97.3 126.2 10.2 喜山期 顺9 5 597.95 穿石英颗粒裂纹 16.36 8.79 2.04 99.0 130.0 8.4 顺9 5 599.59 穿石英颗粒裂纹 17.79 9.26 2.00 101.5 127.7 9.6 顺9 5 600.46 石英颗粒内裂纹 18.72 9.57 2.39 96.5 125.4 9.9 表 4 顺托果勒地区志留系柯坪塔格组(S1k)沥青显微红外光谱数据
Table 4. Micro FT-IR parameters of bitumens in Kepingtage Formation (S1k)
井号 深度(m) 沥青产状 ARH3000-3100/AL2800-3000 Xinc Xstd CH2a/CH3a 顺9 5 336.56 块状沥青 0.00 17.10 9.03 1.98 顺9 5 336.56 块状沥青 0.00 14.37 8.12 1.89 顺901 5 516.19 块状沥青 0.00 22.31 10.77 3.89 顺901 5 298.56 块状沥青 0.00 12.94 7.65 1.70 顺901 5 294.78 顺层理分布 0.16 0.88 3.63 3.04 顺901 5 294.78 顺层理分布 0.05 12.24 7.41 2.19 顺902H 5 517.07 块状沥青 0.02 13.61 7.87 2.05 顺902H 5 527.28 块状沥青 0.05 13.15 7.72 2.00 顺902H 5 527.28 块状沥青 0.04 9.22 6.41 1.65 顺902H 5 527.28 块状沥青 0.07 7.54 5.85 1.69 顺902H 5 517.07 块状沥青 0.04 6.78 5.59 1.71 顺902H 5 543.05 块状沥青 0.05 5.84 5.28 1.73 顺902H 5 527.28 块状沥青 0.07 4.90 4.97 1.48 顺902H 5 543.05 块状沥青 0.05 4.82 4.94 1.66 顺902H 5 543.05 块状沥青 0.08 4.71 4.90 1.71 顺902H 5 527.28 块状沥青 0.08 4.54 4.85 1.33 顺903H 5 590.88 块状沥青 0.04 15.17 8.39 2.17 顺903H 5 590.88 块状沥青 0.05 12.95 7.65 2.43 顺903H 5 590.88 块状沥青 0.07 8.78 6.26 1.63 顺903H 5 590.88 块状沥青 0.00 19.58 9.86 2.51 顺903H 5 590.88 块状沥青 0.00 17.02 9.01 2.34 顺904H 5 372.18 斑点状沥青 0.00 20.36 10.12 2.00 顺904H 5 577.10 块状沥青 0.00 15.81 8.60 1.77 顺10 5 694.87 顺层理分布 0.11 7.25 5.75 1.66 顺10 5 689.00 顺层理分布 0.07 2.34 4.11 1.45 -
[1] Adebiyi, F.M., Odunlami, A., Thoss, V., 2015.Chemical Studies of High Molecular Weight Fractions of Nigerian Bitumen.Journal of Unconventional Oil and Gas Resources, 9:84-93.doi: 10.1016/j.juogr.2014.11.002 [2] Carbognani, L., Orea, M., Fonseca, M., 1999.Complex Nature of Separated Solid Phases from Crude Oils.Energy & Fuels, 13(2):351-358.doi: 10.1021/ef9801975 [3] Chen, Y., Mastalerz, M., Schimmelmann, A., 2012.Characterization of Chemical Functional Groups in Macerals Across Different Coal Ranks Via Micro-FTIR Spectroscopy.International Journal of Coal Geology, 104:22-33.doi: 10.1016/j.coal.2012.09.001 [4] Domke, C.H., Davison, R.R., Glover, C.J., 1999.Effect of Asphaltenes on SHRP Superpave Specifications.Energy & Fuels, 13(2):340-345.doi: 10.1021/ef980194s [5] Fan, X.Y., Wu, X.L., Meng, D.W., et al., 2007.Water in UHP Jadeite-Quartzites of Dabie Mountains: Evidence from Micro-FTIR.Earth Science, 32(2):167-174 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200702002.htm [6] Ferket, H., Guilhaumou, N., Roure, F., et al., 2011.Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Córdoba Petroleum System (NE Mexico).Marine and Petroleum Geology, 28(4):936-958.doi: 10.1016/j.marpetgeo.2010.01.020 [7] Fu, M.Y., Liu, F., Deng, H.C., et al., 2015.Hydrocarbon Charging Period of Cretaceous Reservoirs in AHDEB Oil Field:Evidence from Fluid Inclusions.Earth Science, 40(7):1187-1196(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507007.htm [8] Ganz, H., Kalkreuth, W., 1987.Application of Infrared Spectroscopy to the Classification of Kerogen Types and the Evaluation of Source Rock and Oil Shale Potentials.Fuel, 66(5):708-711.doi: 10.1016/0016-2361(87)90285-7 [9] George, S.C., Llorca, S.M., Hamilton, P.J., 1994.An Integrated Analytical Approach for Determining the Origin of Solid Bitumens in the McArthur Basin, Northern Australia.Organic Geochemistry, 21(3-4):235-248.doi: 10.1016/0146-6380(94)90187-2 [10] Goodarzi, F., Williams, P.F.V., 1986.Composition of Natural Bitumens and Asphalts from Iran:2.Bitumens from the Posteh Ghear Valley, South-West Iran.Fuel, 65(1):17-27.doi: 10.1016/0016-2361(86)90136-5 [11] Gui, L.L., Liu, K.Y., Liu, S.B., et al., 2015.Hydrocarbon Charge History of Yingdong Oilfield, Western Qaidam Basin.Earth Science, 40(5):890-899 (in Chinese with English abstract). https://www.researchgate.net/publication/282059958_Hydrocarbon_charge_history_of_Yingdong_Oilfield_Western_Qaidam_Basin [12] Han, F., Zhang, Y.G., Meng, A.H., et al., 2014.FTIR Analysis of Yunnan Lignite.Journal of China Coal Society, 39(11):2293-2299(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201411024.htm [13] Hu, Y.G., Zhang, X.X., Zhao, Z.Y., et al., 2012.Strategy and Implementation of Resolve Overlapping Spectra Based on Curve Fitting.Journal of Chongqing University, 35(5):76-82(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FIVE201205012.htm [14] Ignasiak, T., Kemp-Jones, A.V., Strausz, O.P., 1977.The Molecular Structure of Athabasca Asphaltene.Cleavage of the Carbon-Sulfur Bonds by Radical Ion Electron Transfer Reactions.The Journal of Organic Chemistry, 42(2):312-320.doi: 10.1021/jo00422a031 [15] Karakaplan, M., 2007.Fitting Lorentzian Peaks with Evolutionary Genetic Algorithm Based on Stochastic Search Procedure.Analytica Chimica Acta, 587(2):235-239.doi: 10.1016/j.aca.2007.01.058 [16] Khorasani, G.K., 1987.Novel Development in Fluorescence Microscopy of Complex Organic Mixtures:Application in Petroleum Geochemistry.Organic Geochemistry, 11(3):157-168.doi: 10.1016/0146-6380(87)90019-2 [17] Kim, D., Philp, R.P., Sorenson, R.P., 2010.Geochemical Characterization of Solid Bitumen in the Chesterian (Mississippian) Sandstone Reservoir of the Hitch Field, Southwest Kansas.AAPG Bulletin, 94(7):1031-1057.doi: 10.1306/12090909096 [18] Kuehn, D.W., Snyder, R.W., Davis, A., et al., 1982.Characterization of Vitrinite Concentrates.1.Fourier Transform Infrared Studies.Fuel, 61(8):682-694.doi: 10.1016/0016-2361(82)90240-x [19] Landais, P., 1995.Statistical Determination of Geochemical Parameters of Coal and Kerogen Macerals from Transmission Micro-Infrared Spectroscopy Data.Organic Geochemistry, 23(8):711-720.doi: 10.1016/0146-6380(95)00070-u [20] Li, W.G., Duan, Y.H., Yan, L.K., et al., 2012.Study on Measuring Method of Asphalt Using Infrared Spectrum Characteristic of Petroleum Pitch.Petroleum Asphalt, 26(4):9-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-OILE201204006.htm [21] Lis, G.P., Mastalerz, M., Schimmelmann, A., et al., 2005.FTIR Absorption Indices for Thermal Maturity in Comparison with Vitrinite Reflectance R0 in Type-Ⅱ Kerogens from Devonian Black Shales.Organic Geochemistry, 36(11):1533-1552.doi: 10.1016/j.orggeochem.2005.07.001 [22] Liu, D.M., Jin, K.L., Wang, L.Z., 1999.Characteristics and Genesis of Silurian Bituminous Sandstone in the Tarim Basin.Geoscience, 13(2):169-175(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ902.008.htm [23] Liu, D.M., Yang, Q., Tang, D.Z., 1998.Micro-FTIR Analysis of Macerals in Coals from the Ordos Basin.Earth Science, 23(1):79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX801.017.htm [24] Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2000.Genetic Types and Characteristics of the Silurian Asphaltic Sandstones in Tarim Basin.Acta Petrolei Sinica, 21(6):12-17 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2000/V21/I6/12 [25] Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2001.The Depositional and Structural Settings and the Bituminous Sandstone Distribution Characters of the Silurian in Tarim Basin.Acta Petrolei Sinica, 22(6):11-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200106002.htm [26] Liu, Z.F., Colin, C., Trentesaux, A., 2005.Application of Fourier Transform Infrared (FTIR) Spectroscopy in Quantitative.Earth Science, 30(1):25-29 (in Chinese with English abstract). https://zh.scribd.com/document/183374455/Application-of-Fourier-Transform-Infrared-Spectroscopy-FTIR [27] Lórenz-Fonfría, V.A., Padrós, E., 2004.Curve-Fitting of Fourier Manipulated Spectra Comprising Apodization, Smoothing, Derivation and Deconvolution.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 60(12):2703-2710.doi: 10.1016/j.saa.2004.01.008 [28] Mastalerz, M., Glikson, M., 2000.In-Situ Analysis of Solid Bitumen in Coal:Examples from the Bowen Basin and the Illinois Basin.International Journal of Coal Geology, 42(2-3):207-220.doi: 10.1016/s0166-5162(99)00040-3 [29] Nieuwoudt, M.K., Simpson, M.P., Tobin, M., et al., 2014.Synchrotron FTIR Microscopy of Synthetic and Natural CO2-H2O Fluid Inclusions.Vibrational Spectroscopy, 75:136-148.doi: 10.1016/j.vibspec.2014.08.003 [30] Okolo, G.N., Neomagus, H.W.J.P., Everson, R.C., et al., 2015.Chemical-Structural Properties of South African Bituminous Coals:Insights from Wide Angle XRD-Carbon Fraction Analysis, ATR-FTIR, Solid State 13C NMR, and HRTEM Techniques.Fuel, 158:779-792.doi: 10.1016/j.fuel.2015.06.027 [31] Painter, P.C., Snyder, R.W., Starsinic, M., et al., 1981.Concerning the Application of FT-IR to the Study of Coal:A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs.Applied Spectroscopy, 35(5):475-485.doi: 10.1366/0003702814732256 [32] Parente, M., Makarewicz, H.D., Bishop, J.L., 2011.Decomposition of Mineral Absorption Bands Using Nonlinear Least Squares Curve Fitting:Application to Martian Meteorites and CRISM Data.Planetary and Space Science, 59(5-6):423-442.doi: 10.1016/j.pss.2011.01.009 [33] Pironon, J., Barres, O., 1990.Semi-Quantitative FT-IR Microanalysis Limits:Evidence from Synthetic Hydrocarbon Fluid Inclusions in Sylvite.Geochimica et Cosmochimica Acta, 54(3):509-518.doi: 10.1016/0016-7037(90)90348-o [34] Pironon, J., Thiéry, R., Teinturier, S., et al., 2000.Water in Petroleum Inclusions:Evidence from Raman and FT-IR Measurements, PVT Consequences.Journal of Geochemical Exploration, 69-70:663-668.doi: 10.1016/s0375-6742(00)00108-4 [35] Qin, Z.H., Chen, H., Yan, Y.J., et al., 2015.FTIR Quantitative Analysis Upon Solubility of Carbon Disulfide/N-Methyl-2-Pyrrolidinone Mixed Solvent to Coal Petrographic Constituents.Fuel Processing Technology, 133:14-19.doi: 10.1016/j.fuproc.2015.01.001 [36] Sobkowiak, M., Painter, P., 1992.Determination of the Aliphatic and Aromatic CH Contents of Coals by FT-I.R.:Studies of Coal Extracts.Fuel, 71(10):1105-1125.doi: 10.1016/0016-2361(92)90092-3 [37] Strausz, O.P., Mojelsky, T.W., Faraji, F., et al., 1999.Additional Structural Details on Athabasca Asphaltene and their Ramifications.Energy & Fuels, 13(2):207-227.doi: 10.1021/ef980274w [38] Walters, C.C., Qian, K.N., Wu, C.P., et al., 2011.Proto-Solid Bitumen in Petroleum Altered by Thermochemical Sulfate Reduction.Organic Geochemistry, 42(9):999-1006.doi: 10.1016/j.orggeochem.2011.08.001 [39] Wang, C.J., Cao, D.Y., Chen, J.M., et al., 2014.Formation Mechanism of Aggregated Type Natural Bitumen with High Evolution Degree:With Vein Anthraxolite in Xiangxi as an Instance.Science & Technology Review, 32(24):40-45. http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB201424018.htm [40] Wang, Q.J., Chen, J.Y., 1988.Petroleum Geochemistry.China University of Geosciences Press, Wuhan, 220-224(in Chinese). [41] Weng, S.F, 2010.Fourier Transform Infrared Spectrum Analysis.Chemical Industry Press, Beijing, 269-272 (in Chinese). [42] Wilhelms, A., Larter, S.R., 1994.Origin of Tar Mats in Petroleum Reservoirs.Part Ⅰ:Introduction and Case Studies.Marine and Petroleum Geology, 11(4):418-441.doi: 10.1016/0264-8172(94)90077-9 [43] Xiong, G., Li, Y.S., Jin, L.J., et al., 2015.In-Situ FT-IR Spectroscopic Studies on Thermal Decomposition of the Weak Covalent Bonds of Brown Coal.Journal of Analytical and Applied Pyrolysis, (115):262-267.doi: 10.1016/j.jaap.2015.08.002 [44] Xu, L., Liu, F., Shen, B.X., et al., 2011.Characterization of Tahe Asphalt.Science & Technology in Chemical Industry, 19(4):44-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JKGH201104012.htm [45] Xu, W., Liu, X.W., Jin, Z.M., 2006.Water in UHP Eclogites at CCSD:FTIR Analysis.Earth Science, 31(6):830-838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200606011.htm [46] Zhang, J.H., Liu, Q., Chen, Y.M., et al., 2012.Determination of Acid Dissociation Constant of Methyl Red by Multi-Peaks Gaussian Fitting Method Based on UV-Visible Absorption Spectrum.Acta Physico-Chimica Sinica, 28(5):1030-1036. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLHX201205005.htm [47] Zhang, J., Pang, X.Q., Liu, L.F., et al., 2004.Distribution Characteristics and Petroleum Gesignificance of the Silurian Asphaltic Sandstones in Tarim Basin.Science in China (Series D), 47(S2):199-208(in Chinese).doi: 10.1360/04zd0039 [48] Zou, Y.L., Yu, X., Li, S.H., et al., 2005.Study on Hydrocarbon Reservoir Formation Period Using Microscope-Infrared Spectroscopy Method.Petroleum Geology & Oilfield Development in Daqing, 24(03):33-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200503014.htm [49] 樊孝玉, 吴秀玲, 孟大维, 等, 2007.大别山超高压硬玉石英岩中的水:来自红外光谱的证据.地球科学, 32(2):167-174. http://earth-science.net/WebPage/Article.aspx?id=3436 [50] 伏美燕, 刘榧, 邓虎成, 等, 2015.AHDEB油田白垩系油藏油气充注期次的流体包裹体证据.地球科学, 40(7):1187-1196. http://earth-science.net/WebPage/Article.aspx?id=3110 [51] 桂丽黎, 刘可禹, 柳少波, 等, 2015.柴达木盆地西部英东地区油气成藏过程.地球科学, 40(5):890-899. http://earth-science.net/WebPage/Article.aspx?id=3081 [52] 韩峰, 张衍国, 蒙爱红, 等, 2014.云南褐煤结构的FTIR分析.煤炭学报, 39(11):2293-2299. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201411024.htm [53] 胡耀垓, 张晓星, 赵正予, 等, 2012.光谱重叠峰的曲线拟合解析策略与实现.重庆大学学报:自然科学版, 35(5):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201205012.htm [54] 李炜光, 段炎红, 颜录科, 等, 2012.利用石油沥青红外光谱图谱特征测定沥青的方法研究.石油沥青, 26(4):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-OILE201204006.htm [55] 刘大锰, 金奎励, 王凌志, 1999.塔里木盆地志留系沥青砂岩的特性及其成因.现代地质, 13(2):169-175. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ902.008.htm [56] 刘大锰, 杨起, 汤达祯, 1998.鄂尔多斯盆地煤显微组分的micro-FTIR研究.地球科学, 23(1):79-84. http://earth-science.net/WebPage/Article.aspx?id=588 [57] 刘洛夫, 赵建章, 张水昌, 等, 2000.塔里木盆地志留系沥青砂岩的成因类型及特征.石油学报, 21(6):12-17. doi: 10.7623/syxb200006002 [58] 刘洛夫, 赵建章, 张水昌, 等, 2001.塔里木盆地志留系沉积构造及沥青砂岩的特征.石油学报, 22(6):11-17. doi: 10.7623/syxb200106003 [59] 刘志飞, Christophe, C., Alain, T., 2005.傅里叶变换红外光谱(FTIR)方法在南海定量矿物学研究中的应用:以MD01-2393孔为例.地球科学, 30(1):25-29. http://earth-science.net/WebPage/Article.aspx?id=1449 [60] 王崇敬, 曹代勇, 陈健明, 等, 2014.聚集型高演化天然固体沥青成因——以湘西脉状碳沥青为例.科技导报, 32(24):40-45. doi: 10.3981/j.issn.1000-7857.2014.24.005 [61] 王启军, 陈建渝, 1988.油气地球化学.武汉:中国地质大学出版社, 220-224. [62] 翁诗甫, 2010.傅里叶变换红外光谱分析.北京:化学工业出版社, 269-272. [63] 徐力, 刘峰, 沈本贤, 等, 2011.塔河沥青表征研究.化工科技, 19(4):44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201104012.htm [64] 徐薇, 刘祥文, 金振民, 2006.CCSD超高压榴辉岩中的水:红外光谱分析.地球科学, 31(6):830-838. http://earth-science.net/WebPage/Article.aspx?id=1646 [65] 张建华, 刘琼, 陈玉苗, 等, 2012.紫外-可见吸收光谱结合高斯多峰拟合技术测定甲基红酸离解常数(英文).物理化学学报, 28(5):1030-1036. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201205005.htm [66] 张俊, 庞雄奇, 刘洛夫, 等, 2004.塔里木盆地志留系沥青砂岩的分布特征与石油地质意义.中国科学(D辑), 34(增刊1):169-176. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1019.htm [67] 邹育良, 俞萱, 李松花, 等, 2005.利用显微-红外光谱法研究油气成藏期次.大庆石油地质与开发, 24(3):33-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200503014.htm