Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean
-
摘要: 原特提斯洋的俯冲时限以及俯冲极性还存在较大争议,对位于东昆仑造山带东端的昆南亚带中敖洼得花岗闪长岩体开展详细的LA-ICP-MS锆石U-Pb年代学、元素地球化学和同位素地球化学研究.结果表明,其单颗粒锆石LA-ICP-MS U-Pb定年结果为454±2 Ma,指示侵位时代为晚奥陶世.岩石Na2O/K2O比值为0.92~2.68,Mg#为39~43,A/CNK为1.00~1.03,属准铝质钙碱性-高钾钙碱性系列.岩石稀土元素标准化图显示右倾,(La/Yb)N介于17~46,具有明显的轻重稀土分异及中等-弱的Eu负异常(0.48~0.96).花岗闪长岩富集大离子亲石元素(Rb、Ba、K、La、Sr),亏损高场强元素(Nb、Ta、P、Ti),Cr、Ni含量较低,Sr/Y均值为55.全岩(87Sr/86Sr)i较为均一(0.705 9~0.706 3),εNd(t)变化范围为-4.1~-1.9,对应的二阶段模式年龄为1.3~1.5 Ga,锆石εHf(t)变化范围为+5.4~+9.2.敖洼得花岗闪长岩具有低镁埃达克质岩的特征,为俯冲洋壳部分熔融的产物,熔融后的洋壳残留应为含石榴子石角闪岩,岩浆演化过程中经历了角闪石和斜长石的分离结晶.微量元素组成特征指示岩体形成于火山弧环境,结合昆中断裂带内蛇绿岩及其两侧相关变质岩、弧花岗岩、弧后盆地火山岩等的综合对比,笔者认为昆中缝合带原特提斯洋(昆中洋)在晚奥陶世存在双向俯冲,敖洼得岩体形成于原特提斯洋的南向俯冲消减过程.Abstract: The Aowade granodiorited in the east-end of Kunnan terrain, a part of Kunlun Orogenic belt, belongs to Proto-Tethyan tectonic domain. Detailed study of the granodiorite can offer important information to constrain the evolution of the Proto-Tethys Ocean. Detailer study of the granodiorite can offer important information to constrain the evolution of the Proto-Tethys Ocean. In this study, LA-ICP-MS zircon U-Pb dating yields a weighted mean age of 454±2 Ma for the intrusion. It is characterized by low K2O/Na2O (0.92-2.68) and Mg# (39-43), and the A/CNK is between 1.00 and 1.03. The REE exhibits right-dipping patterns with negative anomalies of Eu/Eu*(0.48-0.96) and high (La/Yb)N ratios. LILE(Rb, Ba, K, La, Sr) is enriched in this intrusion, while HFSE(Nb, Ta, P, Ti) is depleted relative to the primitive mantle, and the concentrations of transition elements such as Cr and Ni are low. The ratios of Sr/Y (average of 55) are relatively high. All the samples have high initial 87Sr/86Sr values (0.705 9-0.706 3) and εHf(t) (+5.4 to +9.2), but with relatively low εNd(t)(-4.1 to -1.9) and old two stage model age (T2DMNd=1.3-1.5 Ga). In combination with the lithology, geochemical signature and isotopic compositions of the intrusion, we propose that the Aowade granodiorite was derived from melting of the subducted oceanic crust with minor involvement of continent crust. The possible residual of the source region is garnet amphibolite. Fractional crystallization of pyroxene, amphibole and plagioclase may have also occurred during the evolution of magma. Integrating evidences from the geodynamic setting of the Aowade granodiorite, the ophiolites in the Kunzhong structure zone, and the metamorphic rocks, arc-related igneous rocks on either side of the Kunzhong structure zone, it is concluded that the Aowade granodiorite was formed during the subduction of Proto-Tethys Ocean, which further reveals the nature of bidirectional subduction of the Proto-Tethys in the Late Ordovician.
-
图 1 (a)东昆仑构造位置、(b)沟里地区地质简图和(c)敖洼得岩体地质简图
图中年龄均为锆石U-Pb年龄,数据据殷鸿福等(2000)及本文测试;a.据Xu et al.(2001);b.修编自殷鸿福等(2000)
Fig. 1. Geotectonic framework of the East Kunlun orogenic belt (a), geological map of the Gouli area (b) and simplified geological map of the Aowade pluton (c)
图 4 敖洼得花岗闪长岩样品(B1045-1) U-Pb协和图(a)和锆石稀土元素球粒陨石标准化配分图(b)
球粒陨石数据据Sun and McDonough(1989)
Fig. 4. Zircon U-Pb concordia diagram of sample B1045-1 of Aowade granodiorite (a) and chondrite normalized REE patterns for zircons (b)
图 5 沟里地区敖洼得花岗闪长岩(a)TAS图解、(b)K2O-SiO2关系、(c)A/NK-A/CNK关系和(La/Yb)N-YbN关系
数据来源:东昆仑陆壳重熔型花岗岩(441 Ma; 王晓霞等, 2012), 东昆仑正常岛弧花岗岩(437 Ma)和板片熔融埃达克质花岗岩(436 Ma; Li et al., 2015);a图据Wison(1989); b图据Rollinson(1993); c图据Maniar and Piccoli(1989); d图据Defant and Drummond(1990), 图中带小短线的虚线为部分熔融曲线
Fig. 5. Major-element plots for the Aowade granodiorite from Gouli area (a) total alkalis vs. silica (TAS) diagram, (b) K2O vs. SiO2 diagram, (c) A/NK vs. A/CNK diagram, (d) (La/Yb)N vs. YbN diagram
图 6 沟里地区敖洼得花岗闪长岩哈克图解
数据来源同图 5
Fig. 6. Harker variation diagrams showing the concentrations of major elements for the Aowade granodiorite from Gouli area and other related rocks in the East Kunlun orogenic belt
图 7 沟里地区敖洼得花岗闪长岩稀土元素配分图(a)和微量元素原始地幔标准化蛛网图(b)
数据来源同图 5;球粒陨石和原始地幔标准化数据据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spider diagram (b) for Aowade granodiorite from Gouli area
图 8 沟里地区敖洼得花岗闪长岩Sr-Nd同位素组成图解(a)和锆石Hf同位素组成图解(b)
数据来源:a图数据来源同图 5, t=454 Ma;b图洋中脊玄武岩(Workman and Hart, 2005);麻粒岩(龙晓平, 2004);富集地幔熔融或其混染地壳花岗岩类(刘彬, 2011; 贾儒雅, 2013);基底或基底熔融花岗岩类(余能等, 2005; 贾儒雅, 2013).b图带小短线曲线为洋中脊玄武岩同化混染麻粒岩伴随分离结晶(AFC)曲线,图中r表示同化混染与结晶速率之比
Fig. 8. Plots of initial 87Sr/86Sr vs. εNd(t) (a) and Hf isotopic compositions of zircons (b) from the Aowade granodiorite
图 9 沟里地区敖洼得花岗闪长岩矿物分离结晶图解
Opx.斜方辉石;Cpx.单斜辉石;Hb.角闪石;Kf.黑云母;Pl.斜长石;Zr.锆石;Ap.磷灰石;Sph.榍石;Allan.褐帘石.图中”+”所标数值为1-F,F为剩余岩浆占原始岩浆的比例
Fig. 9. Ba vs. Rb (a), Rb/Sr vs. Sr (b), Ba vs. Eu/Eu* (c) and (La/Yb)N vs. La (d) diagrams for the Aowade intrusion illustrating fractional crystallization of apatite, biotite and minor hornblende and plagioclase
图 10 沟里地区敖洼得花岗闪长岩Rb-(Yb+Nb)(a)和Rb-(Yb+Ta)(b)构造环境判别图解
syn-COLG.同碰撞花岗岩; WPG.板内花岗岩; VAG.岛弧花岗岩; ORG.洋中脊花岗岩.底图据Pearce et al.(1984)
Fig. 10. Rb vs. Yb+Nb (a) and Rb vs. Yb+Ta (b) discrimination diagrams for Aowade granodiorite from Gouli area
表 1 沟里地区敖洼得花岗闪长岩(B1045) 锆石LA-ICP-MS U-Pb定年分析数据
Table 1. Zircon LA-ICP-MS U-Pb data of the Aowade granodiorite sample (B1045) from Gouli area
点号
232Th
(10-6)
238U
(10-6)Th/U 同位素比值 年龄(Ma) 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ 208Pb/232Th ±σ 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ 208Pb/232Th ±σ B1045-1-1 840 880 0.95 0.056 5 0.001 3 0.565 2 0.012 7 0.072 2 0.000 5 0.022 0 0.000 3 472 50 455 8 449 3 440 7 B1045-1-2 396 540 0.73 0.056 0 0.001 3 0.566 0 0.013 1 0.073 1 0.000 5 0.022 2 0.000 4 454 54 455 8 455 3 445 8 B1045-1-3 470 630 0.75 0.056 4 0.001 5 0.576 8 0.016 8 0.073 7 0.000 8 0.024 4 0.000 6 478 61 462 11 458 5 488 11 B1045-1-4 149 342 0.44 0.060 9 0.001 7 0.616 9 0.018 0 0.073 3 0.000 7 0.023 6 0.000 6 635 61 488 11 456 5 471 12 B1045-1-5 277 545 0.51 0.055 5 0.001 5 0.562 9 0.014 9 0.073 3 0.000 8 0.023 0 0.000 5 435 64 453 10 456 5 459 11 B1045-1-6 76 203 0.37 0.053 6 0.002 1 0.545 5 0.021 7 0.073 2 0.000 8 0.021 2 0.000 6 354 87 442 14 456 5 425 12 B1045-1-7 511 629 0.81 0.066 0 0.001 8 0.657 3 0.018 9 0.071 8 0.000 7 0.022 5 0.000 5 806 59 513 12 447 4 450 10 B1045-1-8 47 374 0.13 0.054 7 0.001 6 0.555 6 0.016 4 0.073 2 0.000 7 0.025 8 0.000 9 467 60 449 11 455 4 514 18 B1045-1-9 375 545 0.69 0.066 9 0.001 5 0.680 5 0.016 5 0.073 2 0.000 7 0.025 5 0.000 5 835 46 527 10 455 4 508 10 B1045-1-10 351 565 0.62 0.058 4 0.001 3 0.591 1 0.012 9 0.073 2 0.000 6 0.023 3 0.000 4 546 48 472 8 455 4 466 9 B1045-1-11 190 362 0.53 0.055 7 0.001 5 0.563 5 0.015 3 0.073 1 0.000 6 0.022 7 0.000 5 443 56 454 10 455 4 453 10 B1045-1-12 121 238 0.51 0.055 5 0.001 9 0.559 9 0.019 2 0.073 2 0.000 9 0.025 2 0.000 7 432 78 451 13 456 5 503 14 B1045-1-13 309 527 0.59 0.059 5 0.001 5 0.603 2 0.015 2 0.073 2 0.000 6 0.023 2 0.000 5 587 54 479 10 455 4 463 9 B1045-1-14 183 413 0.44 0.056 6 0.001 5 0.575 0 0.015 5 0.073 4 0.000 8 0.023 4 0.000 5 476 57 461 10 456 5 467 10 B1045-1-15 192 428 0.45 0.061 7 0.001 9 0.633 2 0.022 2 0.073 7 0.001 0 0.024 9 0.000 8 665 67 498 14 458 6 498 16 B1045-1-16 218 408 0.53 0.056 7 0.001 6 0.572 7 0.015 6 0.073 2 0.001 0 0.022 7 0.000 5 480 61 460 10 455 6 453 10 B1045-1-17 191 393 0.49 0.060 9 0.001 7 0.616 1 0.017 5 0.073 2 0.000 7 0.024 9 0.000 6 635 62 487 11 455 4 497 11 B1045-1-18 215 469 0.46 0.054 8 0.001 3 0.557 5 0.014 1 0.073 3 0.000 8 0.022 6 0.000 5 467 54 450 9 456 5 452 11 表 2 沟里地区敖洼得花岗闪长岩(B1045) 锆石微量元素分析数据(10-6)
Table 2. Zircon LA-ICP-MS trace elements (10-6) data of the Aowade granodiorite sample (B1045) from Gouli area
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Hf Ta Ti Nb Eu/Eu* B1045-1-1 0.76 217.9 0.83 11.66 25.8 7.13 155.5 49.0 568 196 837 160 1 572 267 6 358 25 580 4.50 11.8 21.11 0.27 B1045-1-2 5.24 82.6 1.30 9.22 12.9 4.20 67.3 23.2 275 100 468 97 1 019 188 3 475 26 759 2.41 3.7 8.99 0.35 B1045-1-3 11.84 81.7 3.57 17.59 8.6 2.69 41.0 13.2 158 55 260 55 585 109 1 905 30 811 2.56 6.8 6.55 0.36 B1045-1-4 1.15 37.5 0.52 2.73 4.0 1.73 24.7 9.0 102 39 191 41 444 85 1 368 30 358 1.66 13.0 4.39 0.41 B1045-1-5 0.66 72.0 0.63 6.56 8.7 2.98 56.9 19.3 235 87 420 87 941 173 3 004 30 301 3.51 6.1 11.37 0.31 B1045-1-6 0.14 27.4 0.00 0.87 2.7 0.72 17.3 6.5 85 33 169 38 429 85 1 192 39 140 1.36 4.9 3.24 0.24 B1045-1-7 4.48 118.4 3.65 28.41 22.7 4.67 75.1 23.8 279 104 494 101 1 096 202 3 587 29 690 3.57 20.5 14.78 0.31 B1045-1-8 0.02 22.9 0.05 0.53 1.7 0.88 16.3 5.3 81 36 200 46 541 107 1 317 31 009 2.37 10.7 6.02 0.34 B1045-1-9 27.79 172.1 16.53 99.35 44.7 8.34 71.8 15.9 175 61 285 59 631 116 2 096 30 022 2.75 1.9 8.27 0.45 B1045-1-10 51.58 207.6 20.16 112.57 35.0 8.12 79.2 20.8 233 84 390 81 871 158 2 846 29 790 3.04 11.5 10.62 0.46 B1045-1-11 1.24 49.3 0.51 4.16 7.1 2.51 38.5 13.5 168 63 308 65 725 136 2 204 27 639 1.90 8.3 6.30 0.37 B1045-1-12 1.71 53.5 0.40 3.75 4.9 2.41 36.3 12.0 152 58 281 61 680 128 2 012 27 165 2.92 26.4 8.71 0.40 B1045-1-13 26.26 139.8 9.71 51.73 21.5 4.40 66.7 19.4 237 86 409 85 900 163 2 968 32 423 3.30 111.1 14.28 0.33 B1045-1-14 9.26 89.0 5.17 32.60 18.4 3.67 48.7 14.0 174 66 321 67 734 138 2 281 30 574 2.46 5.3 9.00 0.35 B1045-1-15 12.59 70.0 3.33 16.08 7.1 1.83 33.4 10.5 136 50 242 52 566 105 1 727 30 786 2.73 12.1 8.55 0.30 B1045-1-16 18.81 95.9 5.61 26.27 11.1 2.73 41.4 12.4 154 55 255 53 573 105 1 897 28 803 2.39 10.1 7.51 0.34 B1045-1-17 4.59 60.8 1.64 8.44 7.7 2.05 45.2 15.0 186 68 327 69 737 137 2 375 29 591 2.56 3123.0 14.72 0.26 B1045-1-18 3.31 56.5 1.10 5.25 6.1 1.80 34.7 12.3 156 61 297 64 713 137 2 127 33 711 2.97 13.6 9.46 0.30 表 3 沟里地区敖洼得花岗闪长岩主量元素(%)、微量元素和稀土元素(10-6)分析结果
Table 3. Major elements (%), trace elements and rare earth elements (10-6) data of Aowade granodiorite from Gouli area
样号 B1042-1 B1043-1 B1044-1 B1045-1 B1046-1 SiO2 70.40 68.30 67.80 68.80 69.10 Al2O3 14.85 15.45 16.45 15.95 15.50 Fe2O3 2.57 2.85 3.01 2.71 2.73 MgO 0.83 0.98 1.12 1.00 1.02 CaO 2.41 3.04 3.46 3.39 3.07 Na2O 3.61 3.98 4.67 4.61 4.29 K2O 3.92 3.11 2.10 1.72 2.24 TiO2 0.35 0.41 0.43 0.37 0.39 P2O5 0.10 0.13 0.16 0.13 0.13 MnO 0.04 0.05 0.05 0.04 0.04 BaO 0.11 0.08 0.08 0.08 0.14 Total 100.00 99.38 100.20 99.74 99.81 LOI 0.70 0.91 0.78 0.82 1.05 Na2O/K2O 0.92 1.28 2.22 2.68 1.92 Na2O+K2O 7.53 7.09 6.77 6.33 6.53 A/CNK 1.02 1.00 1.01 1.02 1.03 Mg# 39.00 41.00 43.00 42.00 43.00 Li 29.81 17.58 10.23 7.40 20.33 Be 1.37 1.39 1.30 1.17 1.07 Sc 4.83 6.54 1.62 2.30 3.34 V 32.20 43.79 38.44 34.91 36.56 Cr 6.59 5.17 6.09 6.60 7.51 Co 54.26 78.37 20.28 51.59 37.80 Ni 2.86 2.69 3.56 4.39 4.50 Cu 2.65 1.72 2.73 4.00 1.19 Zn 50.97 51.07 55.44 52.81 57.53 Ga 17.44 17.42 16.05 16.50 16.44 Rb 119.89 96.02 40.69 45.65 70.36 Sr 291.96 339.82 509.43 560.59 536.89 Y 18.68 15.21 5.48 6.68 9.19 Zr 179.94 186.81 169.19 141.07 196.52 Nb 18.45 15.46 10.51 9.74 10.47 Sn 1.86 1.64 0.81 0.78 1.25 Cs 1.57 1.50 1.71 1.10 2.64 Ba 952.01 735.43 668.52 712.45 1194.43 La 49.35 33.49 31.34 25.23 40.54 Ce 89.05 60.50 50.98 44.81 67.90 Pr 8.95 6.21 5.24 4.45 6.67 Nd 31.36 22.74 17.98 15.78 23.02 Sm 5.61 4.20 2.71 2.65 3.88 Eu 0.79 0.75 0.72 0.71 0.92 Gd 4.20 3.29 1.68 1.91 2.73 Tb 0.60 0.49 0.22 0.25 0.37 Dy 3.43 2.89 1.15 1.35 1.87 Ho 0.65 0.56 0.20 0.23 0.33 Er 1.84 1.48 0.49 0.60 0.88 Tm 0.26 0.21 0.07 0.09 0.12 Yb 1.65 1.38 0.49 0.58 0.75 Lu 0.24 0.21 0.08 0.08 0.10 Hf 4.63 4.74 4.04 3.40 4.65 Ta 1.25 1.21 0.57 0.75 0.83 Tl 0.73 0.64 0.41 0.32 0.45 Pb 25.52 23.40 17.80 15.14 15.54 Th 13.18 8.79 7.40 7.13 9.54 U 1.61 1.65 1.50 0.95 1.27 REE 197.99 138.40 113.35 98.72 150.08 (La/Yb)N 21.52 17.36 45.97 31.40 38.63 δEu 0.48 0.60 0.96 0.92 0.82 注:LOI.烧失量; Mg#=mole[Mg/(Ma+Fe)×100];A/CNK=mole[Al2O3/(CaO+Na2O+K2O)]. 表 4 沟里地区敖洼得花岗闪长岩全岩Sr-Nd同位素分析结果
Table 4. Sr-Nd isotopic compositions of Aowade granodiorite from Gouli area
样品号 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) T2DMNd(Ma) B1042-1 1.188 8 0.713 960 0.000 006 0.706 264 0.108 1 0.512 166 0.000 003 -4.07 1 518 B1043-1 0.817 8 0.711 533 0.000 007 0.706 239 0.111 6 0.512 243 0.000 002 -2.77 1 412 B1045-1 0.235 6 0.707 565 0.000 006 0.706 040 0.101 4 0.512 259 0.000 004 -1.86 1 339 B1046-1 0.379 2 0.708 343 0.000 006 0.705 889 0.101 8 0.512 239 0.000 003 -2.28 1 373 注:εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7;(143Nd/144Nd)CHUR=0.512 638;t代表成岩年龄(454 Ma); 同位素亏损地幔模式年龄(T2DM)计算采用(147Sm/144Nd)DM=0.213 7;(143Nd/144Nd)DM=0.513 15. 表 5 敖洼得花岗闪长岩(B1045-1) 锆石Hf同位素分析结果
Table 5. Hf isotopic data for zircon of sample B1045-1 from Aowade granodiorite
点号 176Lu/177Hf 176Yb/177Hf 176Hf/177Hf 1σ 年龄(Ma) εHf(0) εHf(t) TDM T2DMHf fLu/Hf 01 0.000 808 0.018 803 0.282 720 0.000 011 458 -1.8 8.0 750 867 -0.98 02 0.000 583 0.013 502 0.282 706 0.000 012 455 -2.3 7.5 765 892 -0.98 03 0.000 797 0.018 284 0.282 735 0.000 014 456 -1.3 8.5 728 838 -0.98 04 0.000 976 0.022 795 0.282 749 0.000 014 455 -0.8 8.9 712 814 -0.97 05 0.000 836 0.019 386 0.282 734 0.000 012 455 -1.3 8.4 730 841 -0.97 06 0.000 855 0.019 291 0.282 692 0.000 016 456 -2.8 6.9 791 925 -0.97 07 0.000 859 0.019 370 0.282 724 0.000 017 455 -1.7 8.1 746 862 -0.97 08 0.000 844 0.019 281 0.282 755 0.000 011 455 -0.6 9.2 701 800 -0.97 09 0.000 843 0.019 255 0.282 723 0.000 014 455 -1.7 8.0 747 863 -0.97 10 0.000 818 0.018 019 0.282 697 0.000 011 455 -2.6 7.1 782 913 -0.98 11 0.001 055 0.024 713 0.282 703 0.000 016 447 -2.4 7.1 779 909 -0.97 12 0.000 531 0.012 156 0.282 645 0.000 021 456 -4.5 5.4 849 1 010 -0.98 13 0.000 827 0.018 996 0.282 725 0.000 015 456 -1.7 8.1 743 858 -0.98 14 0.000 687 0.015 422 0.282 710 0.000 015 449 -2.2 7.5 761 888 -0.98 15 0.000 805 0.018 406 0.282 728 0.000 015 458 -1.6 8.3 739 852 -0.98 16 0.000 975 0.022 486 0.282 739 0.000 016 455 -1.2 8.6 726 834 -0.97 注:εHf(0)=10 000×[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1;fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;εHf(t)=10 000× {[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};TDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM; T2DM=TDMHf-(TDMHf-t)×[(fCC-fS)/(fCC-fDM)]; (176Lu/177Hf)CHUR=0.033 2, (176Hf/177Hf)CHUR, 0=0.282 772( Blichert-Toft et al., 1997 ), (176Lu/177Hf)DM=0.033 2, (176Hf/177Hf)DM=0.282 772(Griffin et al., 2000), fCC=0.015, fDM=-0.548, λ=1.867×10-11yr-1(Söderlund et al., 2004 ). -
[1] Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146.doi: 10.1038/362144a0 [2] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278 [3] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999.Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting.Contributions to Mineralogy and Petrology, 134(1):33-51.doi: 10.1007/s004100050467 [4] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe along Quartz Diorites Body from the Hongshuichuan Area in East Kunlun.Acta Geologica Sinica, 87(2):178-196(in Chinese with English abstract). [5] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2006.SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications.Acta Petrologica et Mineralogica, 25(1):25-32(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSKW200601002.htm [6] Chen, L., Sun, Y., Pei, X.Z., et al., 2001.Northernmost Paleo-Tethyan Oceanic Basin in Tibet:Geochronological Evidence from 40Ar/39Ar Age Dating of Dur'ngoi Ophiolite.Chinese Science Bulletin, 46(14):1203-1205.doi: 10.1007/bf02900603 [7] Chen, L., Sun, Y., Pei, X.Z., et al., 2003.Comprehensive Comparison of Paleo-Tethys Ophiolite and Its Geodynamic Significance—An Example from Dur'ngoi Ophiolite.Science in China (Series D), 33(12):1136-1142 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200312001&dbname=CJFD&dbcode=CJFQ [8] Chen, N.S., Sun, M., He, L., et al., 2002.Precise Timing of the Early Paleozoic Metamorphism and Thrust Deformation in the Eastern Kunlun Orogen.Chinese Science Bulletin, 47(13):1130-1133.doi: 10.1360/02tb9253 [9] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2008.U-Pb Dating of Zircon from the Central Zone of the East Kunlun Orogen and Its Implications for Tectonic Evolution.Science in China (Series D), 51(7):929-938.doi: 10.1007/s11430-008-0072-x [10] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2013.Zircon U-Pb Age, Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group, East Section of East Kunlun.Earth Science Frontiers, 20(6):240-254 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201306032.htm [11] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2014.Geochemical Characteristics and Tectonic Significance of Meta-Sedimentary Rocks from Naij Tal Group, Eastern Section of East Kunlun.Geoscience, 28(3):489-500 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201403005.htm [12] Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021.doi: 10.1130/g19796.1 [13] Crawford, A.J., Fall, T.J., Green, D.H., et al., 1989.Classification, Petrogenesis and Tectonic Setting of Boninites.Academic Division of Unwin Hyman Ltd., London. [14] Cui, M.H., Meng, F.C., Wu, X.K., 2011.Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun:Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Petrologica Sinica, 27(11):3365-3379 (in Chinese with English abstract). http://www.oalib.com/paper/1476111 [15] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665.doi: 10.1038/347662a0 [16] Elburg, M.A., van Bergen, M.V., Hoogewerff, J., et al., 2002.Geochemical Trends across an Arc-Continent Collision Zone:Magma Sources and Slab-Wedge Transfer Processes below the Pantar Strait Volcanoes, Indonesia.Geochimica et Cosmochimica Acta, 66(15):2771-2789.doi: 10.1016/s0016-7037(02)00868-2 [17] Feng, J.Y., Pei, X.Z., Yu, S.L., et al., 2010.The Discovery of the Mafic-Ultramafic Melange in Kekesha Area of Dulan County, East Kunlun Region, and Its LA-ICP-MS Zircon U-Pb Age.Geology in China, 37(1):28-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201001006.htm [18] Foley, S., Tiepolo, M., Vannucci, R., 2002.Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones.Nature, 417(6891):837-840.doi: 10.1038/nature00799 [19] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897.doi: 10.1038/nature03162 [20] Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China.Geological Bulletin of China, 29(7):1001-1008 (in Chinese with English abstract). https://www.researchgate.net/publication/289317698_Zircon_LA-ICP-MS_U-Pb_dating_and_geological_significance_of_Bashierxi_granite_in_the_eastern_kimlun_area_China [21] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011 [22] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314.doi: 10.1016/0012-821x(88)90132-x [23] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.doi: 10.1039/c2ja30078h [24] Jia, L.H., Meng, F.C., Feng, H.B., 2014.Fluid Activity during Eclogite-Facies Peak Metamorphism:Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China.Acta Petrologica Sinica, 30(8):2339-2350 (in Chinese with English abstract). https://www.researchgate.net/publication/286130156_Eclogite-facies_peak_fluid_activity_Evidence_from_the_British_East_Kunlun_eclogite_rock_veins [25] Jia, Y.R., 2013.Petrogenesis and Tectonic Implications of Qiukesu Granite Pluton and Its Enclaves in the Western Kunlun Orogen Belt, NW China (Dissertation).Nanjing University, Nanjing (in Chinese with English abstract). https://www.researchgate.net/publication/287527260_Discovery_of_the_Middle_Devonian_A-type_granite_from_the_Eastern_Kunlun_Orogen_and_its_tectonic_implications [26] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015.Geochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution.Journal of Asian Earth Sciences, 105:374-389.doi: 10.1016/j.jseaes.2015.02.004 [27] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015.Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen.Earth Science, 40(7):1148-1162(in Chinese with English abstract). https://www.researchgate.net/publication/282730051_Geological_and_geochemical_features_of_delisitannan_basalts_and_their_petrogenesis_in_Buqingshan_tectonic_Melange_belt_southern_margin_of_East_Kunlun_Orogen [28] Li, X., Yuan, W.M., Hao, N.N., et al., 2014.Characteristics and Tectonic Setting of Granite in Wulonggou Area, East Kunlun Mountains.Globle Geology, 33(2):275-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201402004.htm [29] Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013.Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications.Acta Geologica Sinica, 87(8):1089-1103(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201308006.htm [30] Liu, B., 2011.Petrology, Zircon U-Pb Geochronology, and Petrogenesis of Early Devonian Yuejinshan Intrusive Complex in the Eastern Kunlun Orogen(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). https://www.researchgate.net/publication/287527260_Discovery_of_the_Middle_Devonian_A-type_granite_from_the_Eastern_Kunlun_Orogen_and_its_tectonic_implications [31] Liu, B, Ma, C.Q., Guo, P., et al., 2013a.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201305005.htm [32] Liu, B, Ma, C.Q., Jiang, H.A., et al., 2013b.Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region:Evidence from Huxiaoqin Mafic Rocks.Acta Petrologica Sinica, 29(6):2093-2106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306018.htm [33] Liu, J.L., Sun, F.Y, Li, L., et al., 2015.Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). https://www.researchgate.net/publication/282233403_Geochronology_geochemistry_and_Hf_isotopes_of_gerizhuotuo_complex_intrusion_in_west_of_anyemaqen_suture_zone [34] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004 [35] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4 [36] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102005.htm [37] Long, X.P., 2004.The Research of Zircon Chronology in Orogenic Belts—A Case Study in Jinshuikou Zone(Dissertation).Jilin University, Changchun (in Chinese with English abstract). [38] Lu, S.N., Yu, H.F., Zhao, F.Q., 2002.Cambrian Geology in the Northern Part of the Tibetan Plateau.Geological Press, Beijing (in Chinese). [39] Ludwig, K.R., 2012.User's Manual for Isoplot 3.75—A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley. [40] Maniar, P., D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [41] Matte, P., Tapponnier, P., Arnaud, N., et al., 1996.Tectonics of Western Tibet, between the Tarim and the Indus.Earth and Planetary Science Letters, 142(3-4):311-330.doi: 10.1016/0012-821x(96)00086-6 [42] Mattern, F., Schneider, W., Li, Y., et al., 1996.A Traverse through the Western Kunlun (Xinjiang, China):Tentative Geodynamic Implications for the Paleozoic and Mesozoic.Geologische Rundschau, 85(4):705-722.doi: 10.1007/bf02440106 [43] Meng, F.C., Cui, M.H., Wu, X.K., et al., 2013.Magmatic and Metamorphic Events Recorded in Granitic Gneisses From the Qimantag, East Kunlun Mountains, Northwest China.Acta Petrologica Sinica, 29(6):2107-2122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306019.htm [44] Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836.doi: 10.1016/j.gr.2012.06.007 [45] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm [46] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 [47] Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation.Longman Group UK Ltd., New York. [48] Rapp, R.P., Shimizu, N., Norman, M.D., 2003.Growth of Early Continental Crust by Partial Melting of Eclogite.Nature, 425(6958):605-609.doi: 10.1038/nature02031 [49] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction Between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356.doi: 10.1016/S0009-2541(99)00106-0 [50] Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract). http://www.oalib.com/paper/1471628 [51] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In:Rudnick, R.L., ed., The Crust.Elsevier-Pergamon, Oxford. [52] Salters, V.J.M., Hart, S.R., 1989.The Hafnium Paradox and the Role of Garnet in the Source of Mid-Ocean-Ridge Basalts.Nature, 342(6248):420-422.doi: 10.1038/342420a0 [53] Schmitz, M.D., Vervoort, J.D., Bowring, S.A., et al., 2004.Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust Beneath Southern Africa.Geology, 32(5):405.doi: 10.1130/g20241.1 [54] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3 [55] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalt:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins.Geological Society Special Publications, London, 42:313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [56] Sun, Y., Pei, X.Z., Ding, S.P., et al., 2009.Halagatu Magma Mixing Granite in the East Kunlun Mountains—Evidence from Zircon U-Pb Dating.Acta Geologica Sinica, 83(7):1000-1010(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200907009.htm [57] Tatsumi, Y., 1995.Subduction Zone Magmatism.Blackwell Publishing House, Boston. [58] Tatsumi, Y., 2001.Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction:Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan.Geology, 29(4):323.doi:10.1130/0091-7613(2001)029<0323:gmopmo>2.0.co;2 [59] Tatsumi, Y., Hanyu, T., 2003.Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan.Geochemistry, Geophysics, Geosystems, 4(9):1-19.doi: 10.1029/2003gc000530 [60] Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., et al., 1999.Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System.Earth and Planetary Science Letters, 168(1-2):79-99. doi: 10.1016/s0012-821x(99)00047-3 [61] Wang, G., Sun, F.Y., Li, B.Y., et al., 2014.Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 44(3):876-891 (in Chinese with English abstract). https://www.researchgate.net/publication/286738911_Zircon_U-Pb_geochronology_and_geochemistry_of_diorite_in_Xiarihamu_ore_district_from_east_Kunlun_and_its_geological_significance [62] Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2001.The Petrogenesis and Geodynamic Significances of HREE Depleted Granitoids during Yanshan Period in the Dabie Mountains.Acta Petrologica Sinica, 17(4):551-564 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200104005.htm [63] Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2008.Tectonic Setting and Associated Rock Suites of Adakitic Rocks.Bulletin of Mineralogy Petrology & Geochemistry, 27(4):344-350 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-kydh200804005.htm [64] Wang, X.X., Hu, N.G., Wang, T., et al., 2012.Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin:Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry.Acta Petrologica Sinica, 28(9):2950-2962 (in Chinese with English abstract). http://www.oalib.com/paper/1474273 [65] Wison, M., 1989.Igneous Petrogenesis.Unwim Hyman, London. [66] Workman, R.K., Hart, S.R., 2005.Major and Trace Element Composition of the Depleted MORB Mantle (DMM).Earth and Planetary Science Letters, 231(1-2):53-72.doi: 10.1016/j.epsl.2004.12.005 [67] Xia, R., Qing, M., Wang, C.M., 2014.The Genesis of the Ore-Bearing Porphyry of the Tuoketuo Porphyry Cu-Au(Mo) Deposit in the East Kunlun, Qinghai Province:Constraints from Zircon U-Pb Geochronological and Geochemistry.Journal of Jilin University(Earth Science Edition), 44(5):1502-1524 (in Chinese with English abstract). https://www.researchgate.net/publication/286654334_The_genesis_of_the_ore-bearing_porphyry_of_the_Tuoketuo_porphyry_Cu-AuMo_deposit_in_the_East_Kunlun_Qinghai_Province_Constraints_from_zircon_U-Pb_geochronological_and_geochemistry [68] Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2016.Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China:Juvenile Lower Crustal Melting during Post-Collisional Extension.Journal of Earth Science, 26(3):474-490. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy201603012&dbname=CJFD&dbcode=CJFQ [69] Xiong, F.H., 2014.Spatial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment)(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [70] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://www.oalib.com/paper/1476006 [71] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012.The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere.Mineralogy and Petrology, 104(3-4):211-224. doi: 10.1007/s00710-011-0187-1 [72] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002.Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China:Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12):1111.doi:10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 [73] Xu, Q.L., Sun, F.Y., Li, B.Y., et al., 2014.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-Porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia, 38(2):421-433 (in Chinese with English abstract). http://www.researchgate.net/publication/290762194_Geochronological_dating_geochemical_characteristics_and_tectonic_setting_of_the_granite-porphyry_in_the_Mohexiala_silver_polymetallic_deposit_eastern_Kunlun_Orogenic_belt [74] Xu, Z.Q., Yang, J.S., Jiang, M., et al., 2001.Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau.Science in China (Series D), 44(S1):1-9.doi: 10.1007/bf02911965 [75] Xu, Z.Q., 2007.The Mechanism of Collage, Collision and Uplift of the Qinghai-Tibet Plateau, an Orogenic Plateau.Geology Publishing House, Beijing (in Chinese). [76] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231.doi: 10.1016/0040-1951(95)00199-9 [77] Yin, H.F., Zhang, K.X., Chen, N.S., et al., 2000.The Report on the Regional Geological Survey of Donggeicuonahu.China University of Geosciences Press, Wuhan (in Chinese). [78] Yu, N., Jin, W., Ge, W.C., et al., 2005.Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun.Global Geology, 24(2):123-128 (in Chinese with English abstract). https://www.researchgate.net/publication/285330320_Geochemical_study_on_peraluminous_granite_from_Jinshuikou_in_East_Kunlun [79] Zhang, G., 2012.Research on Geological Characteristics, Ages and Geological Significance of the Halagatu Granitic Rocks in East Segment of the East Kunlun Orogen (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). doi: 10.1007%2Fs11430-015-5151-1 [80] Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003.Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam:Zircon U-Pb SHRIMP Age Evidence.Geological Bulletin of China, 22(6):397-404(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200306003.htm [81] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014.Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China:Response to Continental Collision and Slab Break-Off.Lithos, 210-211:129-146.doi: 10.1016/j.lithos.2014.10.003 [82] Zhang, Y.L., Zhang, X.J., Hu, D.G., et al., 2010.SHRIMP Zircon U-Pb Ages of Rhyolite from the Nachitai Group in the East Kulun Orogenic Belt.Journal of Geomechanics, 16(1):21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201001004.htm [83] Zhao, K.D., Jiang, S.Y., Sun, T., et al., 2006.The Hf-Nd Isotopes Decoupling of Indosinian Granite and Its Implication on Petrogenesis, Western of Nanling.National Symposium on Petrology and Geodynamics.Nanjing (in Chinese). [84] Zhao, Z.M., Ma, H.D., Wang, B.Z., et al., 2008.The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area.Geological Review, 54(1):47-56 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200801007.htm [85] Zhao, T.Y., Qian, X., Feng, Q.L., 2016.Geochemistry, Zircon U-Pb Age and Hf Isotopic Constraints on the Petrogenesis of the Silurian Rhyolites in the Loei Fold Belt and Their Tectonic Implications.Journal of Earth Science, 26(3):391-402. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy201603005&dbname=CJFD&dbcode=CJFQ [86] Zhu, Y.H., Lin, Q.X., Jia, C.X., et al., 2006.SHRIMP Zircon U-Pb Age and Significance of Early Paleozoic Volcanic Rocks in East Kunlun Orogenic Belt, Qinghai Province, China.Science in China (Series D), 49(1):88-96.doi: 10.1007/s11430-004-5317-8 [87] Zhu, Y.H., Zhang, K.X., Chen, N.S., et al., 1999.Determination of Different Ophiolitic Belts in Eastern Kunlun Orogenic Belt and Its Tectonic Significance.Earth Science, 24(2):26-30 (in Chinese with English abstract). [88] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 87(2):178-196. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302006.htm [89] 谌宏伟, 罗照华, 莫宣学, 等, 2006.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义.岩石矿物学杂志, 25(1):25-32. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200601002.htm [90] 陈亮, 孙勇, 裴先治, 等, 2003.古特提斯蛇绿岩的综合对比及其动力学意义——以德尔尼蛇绿岩为例.中国科学(D辑), 33(12):1136-1142. doi: 10.3321/j.issn:1006-9267.2003.12.002 [91] 陈有炘, 裴先治, 李瑞保, 等, 2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义.地学前缘, 20(6):240-254. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm [92] 陈有炘, 裴先治, 李瑞保, 等, 2014.东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义.现代地质, 28(3):489-500. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201403005.htm [93] 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报27(11):3365-3379. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm [94] 冯建赟, 裴先治, 于书伦, 等, 2010.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄.中国地质, 37(1):28-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001006.htm [95] 高晓峰, 校培喜, 谢从瑞, 等, 2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报, 29(7):1001-1008. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201007007.htm [96] 贾丽辉, 孟繁聪, 冯惠彬, 2014.榴辉岩相峰期流体活动:来自东昆仑榴辉岩石英脉的证据.岩石学报, 30(8):2339-2350. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408016.htm [97] 贾儒雅, 2013. 西昆仑造山带丘克苏花岗岩与暗色微粒包体岩石成因及其构造意义(硕士学位论文). 南京: 南京大学. http://cdmd.cnki.com.cn/Article/CDMD-10284-1013191626.htm [98] 李瑞保, 裴先治, 李佐臣, 等, 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40 (7):1148-1162. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507004.htm [99] 李希, 袁万明, 郝娜娜, 等, 2014.东昆仑五龙沟花岗岩特征及其构造背景.世界地质, 33(2):275-288. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201402004.htm [100] 李佐臣, 裴先治, 刘战庆, 等, 2013.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义.地质学报, 87(8):1089-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201308006.htm [101] 刘彬, 2011. 东昆仑跃进山早泥盆世侵入杂岩体岩石学、锆石U-Pb年代学及岩石成因(硕士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1011175515.htm [102] 刘彬, 马昌前, 郭盼, 等, 2013a.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://earth-science.net/WebPage/Article.aspx?id=2780 [103] 刘彬, 马昌前, 蒋红安, 等, 2013b.东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据.岩石学报, 29(6):2093-2106. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm [104] 刘金龙, 孙丰月, 李良, 等, 2015.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://earth-science.net/WebPage/Article.aspx?id=3101 [105] 刘战庆, 裴先治, 李瑞保, 等, 2011.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm [106] 龙晓平, 2004. 造山带锆石年代学研究——以金水口地区为例(硕士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/article/cdmd-10183-2004100390.htm [107] 陆松年, 于海峰, 赵凤清, 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社. [108] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm [109] 孟繁聪, 崔美慧, 吴祥珂, 等, 2013.东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件.岩石学报, 29(6):2107-2122. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306019.htm [110] 任军虎, 柳益群, 冯乔, 等, 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm [111] 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报, 83(7):1000-1010. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200907009.htm [112] 王冠, 孙丰月, 李碧乐, 等, 2014.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报(地球科学版), 44(3):876-891. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403014.htm [113] 王强, 许继锋, 赵振华, 等, 2001.大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义.岩石学报, 17(4):551-564. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104005.htm [114] 王强, 许继峰, 赵振华, 等, 2008.埃达克质岩的构造背景与岩石组合.矿物岩石地球化学通报, 27(4):344-350. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200804005.htm [115] 王晓霞, 胡能高, 王涛, 等, 2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报, 28(9):2950-2962. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209023.htm [116] 熊富浩, 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340842.htm [117] 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm [118] 夏锐, 卿敏, 王长明, 2014.青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束.吉林大学学报(地球科学版), 44(5):1502-1524. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405011.htm [119] 许庆林, 孙丰月, 李碧乐, 等, 2014.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景.大地构造与成矿学, 38(2):421-433. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402021.htm [120] 许志琴, 2007.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社. [121] 殷鸿福, 张克信, 陈能松, 等, 2000.中华人民共和国区域地质调查报告冬给措纳湖幅.武汉:中国地质大学出版社. [122] 余能, 金巍, 葛文春, 等, 2005.东昆仑金水口过铝花岗岩的地球化学研究.世界地质, 24(2):123-128. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200502004.htm [123] 张刚, 2012. 东昆仑造山带东段哈拉尕吐花岗岩体地质特征、形成时代及地质意义(硕士学位论文). 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017533.htm [124] 张建新, 孟繁聪, 万渝生, 2003.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据.地质通报, 22(6):397-404. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200306003.htm [125] 张耀玲, 张绪教, 胡道功, 等, 2010.东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄.地质力学学报, 16(1):21-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201001004.htm [126] 赵葵东, 蒋少涌, 孙涛, 等, 2006. 南岭西段印支期花岗岩Hf-Nd同位素解耦现象及岩石成因意义. 南京: 2006年全国岩石学与地球动力学研讨会. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200611002253.htm [127] 赵振明, 马华东, 王秉璋, 等, 2008.东昆仑早泥盆世碰撞造山的侵入岩证据.地质论评, 54(1):47-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801007.htm [128] 朱云海, 张克信, 陈能松, 等, 1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学, 24(2):26-30. http://earth-science.net/WebPage/Article.aspx?id=776