Heat Flow Detection Technology and Methods of Seafloor Fluid-Seep Area
-
摘要: 海底流体渗漏区往往伴随着丰富的海底资源,但具有区域较小、流体渗漏比较活跃、地质背景复杂等特点.为了更好地研究流体流动特征和富集资源等复杂问题,需要精细测量海底流体渗漏区的热流.通过总结各种热流探针的技术特点及海底流体渗漏区的热流特征,并结合最新的海洋地质调查发现,由机械手操控的热流探针,可以快速、准确地测量地质背景复杂的海底流体渗漏区的热状态.
-
关键词:
- 海底热流测量 /
- 机械手操控的热流探针 /
- 常规热流探针 /
- 海底流体渗漏区 /
- 海洋地质
Abstract: A seafloor fluid-seep area is generally small, and is characterized by rich mineral resources, active fluid seep and complex geological background. In order to reveal fluid flowing features and to explore mineral resources in fluid-seep areas, precise measurement of heat flow in fluid seep areas is important. This paper describes technical parameters of common heat flow probes and general characteristics of heat flow in seafloor fluid-seep areas. Recent marine geological survey has proved that a heat flow probe operated by a robot has been successfully applied for quick and precise measurement of the heat flow in the seafloor fluid-seep area.-
Key words:
- heat flow measurement /
- robot operating probe /
- common probe /
- seafloor fluid-seep area /
- marine geology
-
图 3 SHF14、15和16站位的地热及水文模型
Fig. 3. Thermal and hydrological model across SHF14, 15 and 16
图 4 原位沉积物温度测线
a.由机械手操控的热流探针进行测量;b、c.由常规探热流针测量;据Feseker et al.(2008)
Fig. 4. In-situ sediment temperature profiles
图 5 沿穿过DMV中心AB和CD样线深度-温度关系
a.海底水温;b.水深;c.沉积物地温梯度;据Feseker et al.(2009)
Fig. 5. Relation of depth and temperature along transect lines AB and CD across the center of the DMV
-
[1] Blinova, Ⅴ., Ivanov, M., Bohrmann, G., 2003.Hydrocarbon Gases in Deposits from Mud Volcanoes in the Sorokin Trough, North-Eastern Black Sea.Geo-Marine Letters,23(3-4):250-257.doi: 10.1007/s00367-003-0148-8 [2] Bredehoeft, J., Papaopulos, Ⅰ., 1965.Rates of Vertical Groundwater Movement Estimated from the Earth s Thermal Profile.Water Resources Research,1(2):325-328.doi: 10.1029/WR001i002p00325 [3] Bullard, E, 1954.The Flow of Heat through the Floor of the Atlantic Ocean.Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,222(1150):408-429.doi: 10.1111/j.1365-246X.1937.tb07120.x [4] Campbell, K., Farmer, J., Des Marais, D., 2002.Ancient Hydrocarbon Seeps from the Mesozoic Convergent Margin of California:Carbonate Geochemistry, Fluids and Palaeoenvironments.Geofluids,2(2):63-94.doi: 10.1046/j.1468-8123.2002.00022.x [5] Campbell, K.A., 2006.Hydrocarbon Seep and Hydrothermal Vent Paleoenvironments and Paleontology:Past Developments and Future Research Directions.Palaeogeography, Palaeoclimatology, Palaeoecology,232(2):362-407.doi: 10.1016/j.palaeo.2005.06.018 [6] Chen, D.F., Chen, X.P., Chen, G.Q., 2002.Geology and Geochemistry of Cold Seepage and Venting Related Carbonates.Acta Sedimentologica Sinica,20(1):34-40(in Chinese with English abstract). https://www.researchgate.net/publication/283358599_Geology_and_geochemistry_of_cold_seepage_and_venting-related_carbonates [7] De Beer, D., Sauter, E., Niemann, H., et al., 2006.In Situ Fluxes and Zonation of Microbial Activity in Surface Sediments of the Håkon Mosby Mud Volcano.Limnology and Oceanography,51(3):1315-1331. doi: 10.4319/lo.2006.51.3.1315 [8] Feseker, T., Foucher, J.P., Harmegnies, F., 2008.Fluid Flow or Mud Eruptions?Sediment Temperature Distributions on Håkon Mosby Mud Volcano, SW Barents Sea Slope.Marine Geology,247(3):194-207.doi: 10.1016/j.margeo.2007.09.005 [9] Feseker, T., Pape, T., Wallmann, K., et al., 2009.The Thermal Structure of the Dvurechenskii Mud Volcano and Its Implications for Gas Hydrate Stability and Eruption Dynamics.Marine and Petroleum Geology,26(9):1812-1823.doi: 10.1016/j.marpetgeo.2009.01.021 [10] Fisher, A., Davis, E., Hutnak, M., et al., 2003.Hydrothermal Recharge and Discharge across 50 km Guided by Seamounts on a Young Ridge Flank.Nature,421(6923):618-621.doi: 10.1038/nature01352 [11] Fu, W., Zhou, Y.Z., Yang, Z.J., et al., 2005.Modern Seafloor Hydrothermal System and Its Scientific Implications.Advances in Earth Science,20(1):81-88(in Chinese with English abstract). [12] Hartmann, A., Villinger, H., 2002.Inversion of Marine Heat Flow Measurements by Expansion of the Temperature Decay Function.Geophysical Journal International,148(3):628-636.doi: 10.1046/j.1365-246X.2002.01600.x [13] He, J.X., Zhu, Y.H., Weng, J.N., et al., 2010.Characters of North-West Mud Diapirs Volcanoes in South China Sea and Relationship between Them and Accumulation and Migration of Oil and Gas.Earth Science,35(1):75-86(in Chinese with English abstract). https://www.researchgate.net/publication/264204315_Structural_characteristics_and_genesis_of_pockmarks_in_the_northwest_of_the_South_China_Sea_derived_from_reflective_seismic_and_multibeam_data [14] Kaul, N., Foucher, J.P., Heesemann, M., 2006.Estimating Mud Expulsion Rates from Temperature Measurements on Håkon Mosby Mud Volcano, SW Barents Sea.Marine Geology,229(1-2):1-14.doi: 10.1016/j.margeo.2006.02.004 [15] Kinoshita, M., Gomado, M., Kawada, Y., et al., 2005.Hydrothermal Regime of the Suiyo Seamount Caldera Inferred from Detailed Heat Flow Data.Oceanogr.Jpn,14:165-175.doi: 10.5928/kaiyou.14.165 [16] Kinoshita, M., Kawada, Y., Tanaka, A., et al., 2006.Recharge/Discharge Interface of a Secondary Hydrothermal Circulation in the Suiyo Seamount of the Izu-Bonin arc, Identified by Submersible-Operated Heat Flow Measurements.Earth and Planetary Science Letters,245(3):498-508.doi: 10.1016/j.epsl.2006.02.006 [17] Jin, C.S., Wang, J.Y., Wang, Y.X, et al., 2004.Geothermal Field Characteristics in the Areas of Gas Hydrates Distribution.Chinese Journal of Geology,39(3):416-423 (in Chinese with English abstract). https://www.researchgate.net/publication/290005571_Geothermal_field_characteristics_in_the_areas_of_gas_hydrates_distribution [18] Krastel, S., Spiess, Ⅴ., Ivanov, M., et al., 2003.Acoustic Investigations of Mud Volcanoes in the Sorokin Trough, Black Sea.Geo-Marine Letters,23(3-4):230-238.doi: 10.1007/s00367-003-0143-0 [19] Li, Y.M., Luo, X.H., Xu, X., et al., 2012.Seafloor In-Situ Heat Flow Measurements in the Deep-Water Area of the Northern Slop, South China Sea.Chinese Journal of Geophysics,53(9):1-10(in Chinese with English abstract). https://www.researchgate.net/publication/264328451_Seafloor_In-Situ_Heat_Flow_Measurements_in_the_Deep-Water_Areas_of_the_Northern_Slope_South_China_Sea [20] Lister, C., Sclater, J, Davis, E., et al., 1990.Heat Flow Maintained in Ocean Basins of Great Age:Investigations in the North-Equatorial West Pacific.Geophys.J.Int,102(3):603-630.doi: 10.1111/j.1365-246X.1990.tb04586.x [21] Lu, H.F., Chen, F., Liu, J., et al., 2006.Chrarcteristics of Authigenic Carbonate Chimneys in Shenhu Area, Northern South China Sea:Recorders of Hydrocarbon-Enriched.Geological Review,52(3):352-357(in Chinese with English abstract). https://www.researchgate.net/publication/284983099_Characteristics_of_authigenic_carbonate_chimneys_in_Shenhu_area_northern_South_China_Sea_recorders_of_hydrocarbon-enriched_fluid_activity [22] Luan, X.W., Zhai, S.Q., Gan, X.Q., 2001.Tectonophysical Features of the Hydrothermal Fields in the Middle Okinawa Trough.Acta Sedimentologica Sinica,19(01):43-47(in Chinese with English abstract). https://www.researchgate.net/publication/282527171_Clay_Minerals_in_an_Active_Hydrothermal_Field_at_Iheya-North-Knoll_Okinawa_Trough [23] Shi, X.B., Qiu, X.L., Xia, K.Y., et al., 2003.Characteristics of Surface Heat Flow in the South China Sea.Journal of Asian Earth Sciences,22(3):265-277.doi: 10.1016/S1367-9120(03)00059-2 [24] Urabe, T., Ishibashi, J., Maruyama, A., et al., 2002.Influence of Magmatic Volatiles to Hydrothermal Activity at Suiyo Seamount, Izu-Ogasawara Arc, Western Pacific, AGU Fall Meeting Abstracts, Volume V11C-03, California. [25] Vanneste, M., Poort, J., Batist, M.D., et al., 2002.Atypical Heat-Flow near Gas Hydrate Irregularities and Cold Seeps in the Baikal Rift Zone.Marine and Petroleum Geology,19(10):1257-1274.doi: 10.1016/S0264-8172(03)00019-9 [26] Vogt, P., Cherkashev, G., Ginsburg, G., et al., 1997.Haakon Mosby Mud Volcano Provides Unusual Example of Venting.EOS, Transactions American Geophysical Union,78(48):549-557.doi: 10.1029/97EO00326 [27] Vogt, P.R., Sundvor, E., 1996.Heat Flow Highs on the Norwegian‐Barents‐Svalbard Continental Slope:Deep Crustal Fractures, Dewatering, or "Memory in the Mud"? Geophysical Research Letters,23(24):3571-3574.doi: 10.1029/96GL03259 [28] Woodside, J., Ivanov, M., Limonov, A., 1997.Neotectonics and Fluid Flow through Seafloor Sediments in the Eastern Mediterranean and Black Seas, Part Ⅱ:Black Sea.IOC Technical Series, 48. doi: 10.3103/S0145875209010013 [29] Xu, X., Li, Y.M., Luo, X.H., et al., 2012.Comparison of Different-Type Heat Flows at Typical Sites in Natural Gas Hydrate Exploration Area on the Northern Slope of the South China Sea.Chinese Journal of Geophysics,55(3):998-1006(in Chinese with English abstract). https://www.researchgate.net/profile/Xiaoqiu_Yang/publications [30] Xu, X., Lu, J.A., Luo, X.H., et al., 2005.The Marine Heat Flow Survey and the Result Discussion in the Northern Part of South China Sea.Progress in Geophysics,20(2):562-565(in Chinese with English abstract). http://www.nature.com/articles/srep14524 [31] Xu, X., Shi, X.B., Luo, X.H., et al., 2006a.Date Processing Methods of Marine Geothermal Measurement on the Northern Marine of the South China Sea.Geoscience,20(3):454-464(in chinese with English abstract). doi: 10.1007/978-90-481-9858-0_4 [32] Xu, X., Shi, X.B., Luo, X.H., et al., 2006b.Heat Flow Measurements in the Xisha trough of the South China Sea.Marine Geology and Quateranry Geology,26(4):51-58(in Chinese with English abstract). https://www.researchgate.net/publication/254754157_Disparity_between_measured_and_BSR_heat_flow_in_the_Xisha_Trough_of_the_South_China_Sea_and_its_implications_for_the_methane_hydrate [33] Yang, S.Y., Wang, Q., 2011.Hydrothermal Activity in Middle Okinawa Trough and Perliminary Results of Integrated Ocean Drilling Program Expedition 331.Advances in Earth Science,26(12):1282-1289(in chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract9398.shtml [34] 陈多福, 陈先沛, 陈光谦, 2002.冷泉流体沉积碳酸盐岩的地质地球化学特征.沉积学报, 20(1):34-40. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201006.htm [35] 付伟, 周永章, 杨志军, 等, 2005.现代海底热水活动的系统性研究及其科学意义.地球科学进展, 20(1):81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200501013.htm [36] 何家雄, 祝有海, 翁荣南, 等, 2010.南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系.地球科学, 35(1):75-86. http://earth-science.net/WebPage/qk.aspx?id=96# [37] 金春爽, 汪集旸, 王永新, 等, 2004.天燃气水合物地热场分布特征.地质科学, 39(3):416-423. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200403011.htm [38] 李亚敏, 罗贤虎, 徐行, 等, 2010.南海北部陆坡深水区的海底原位热流测量.地球物理学报, 53(9):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201009017.htm [39] 陆红锋, 陈芳, 刘坚, 等, 2006.南海北部神狐海区的自生碳酸盐岩烟囱——海底富烃流体活动的记录.地质论评, 52(3):352-357. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200603010.htm [40] 栾锡武, 翟世奎, 干晓群, 2001.冲绳海槽中部热液活动区构造地球物理特征分析.沉积学报, 19(1):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200101007.htm [41] 徐行, 陆敬安, 罗贤虎, 等, 2005.南海北部海底热流测量及分析.地球物理学进展, 20(2):562-565. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200502057.htm [42] 徐行, 施小斌, 罗贤虎, 等, 2006a.南海北部海底地热测量的数据处理方法.现代地质, 20(3):454-464. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200603013.htm [43] 徐行, 施小斌, 罗贤虎, 等, 2006b.南海西沙海槽地区的海底热流测量.海洋地质与第四纪地质, 26(4):51-58. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200604010.htm [44] 徐行, 李亚敏, 罗贤虎, 等, 2012.南海北部陆坡水合物勘探区典型站位不同类型热流对比.地球物理学报, 55(3):998-1006. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201203029.htm [45] 杨守业, 王权, 2011.冲绳海槽中部热液活动与IODP 331航次初步成果.地球科学进展, 26(12):1282-1289. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201112007.htm