• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于包络的汶川大地震高频地震波辐射区域反演及近场加速度合成

    尹得余 刘启方

    尹得余, 刘启方, 2016. 基于包络的汶川大地震高频地震波辐射区域反演及近场加速度合成. 地球科学, 41(10): 1781-1793. doi: 10.3799/dqkx.2016.125
    引用本文: 尹得余, 刘启方, 2016. 基于包络的汶川大地震高频地震波辐射区域反演及近场加速度合成. 地球科学, 41(10): 1781-1793. doi: 10.3799/dqkx.2016.125
    Yin Deyu, Liu Qifang, 2016. Estimation of High-Frequency Wave Radiation Areas of Wenchuan Earthquake by the Envelope Inversion of Acceleration Seismograms and Synthesis of Near-Field Accelerograms. Earth Science, 41(10): 1781-1793. doi: 10.3799/dqkx.2016.125
    Citation: Yin Deyu, Liu Qifang, 2016. Estimation of High-Frequency Wave Radiation Areas of Wenchuan Earthquake by the Envelope Inversion of Acceleration Seismograms and Synthesis of Near-Field Accelerograms. Earth Science, 41(10): 1781-1793. doi: 10.3799/dqkx.2016.125

    基于包络的汶川大地震高频地震波辐射区域反演及近场加速度合成

    doi: 10.3799/dqkx.2016.125
    基金项目: 

    国家自然科学基金项目 Nos.51378479

    黑龙江省留学归国科学基金项目 No.LC201403

    国家自然科学基金项目 Nos.91315301-10

    详细信息
      作者简介:

      尹得余 (1987-),男,博士研究生,主要从事震源破裂过程反演研究

      通讯作者:

      刘启方, Email:qifang_liu@126.com

    • 中图分类号: P315

    Estimation of High-Frequency Wave Radiation Areas of Wenchuan Earthquake by the Envelope Inversion of Acceleration Seismograms and Synthesis of Near-Field Accelerograms

    • 摘要: 合理地估计汶川破坏区域的地震动有助于地震灾害的研究.通过利用芦山地震记录建立的加速度包络衰减关系和汶川地震近场30个台站的加速度包络,基于线源模型,采用差分进化方法反演了汶川地震断层面上高频 (>1 Hz) 辐射区域分布.结果表明:断层面上高频辐射分布很不均匀,辐射较强的区域主要位于:(1) 产生较大地表破裂的映秀、北川和南坝区域;(2) 映秀和北川等凹凸体的周边区域,包括震中东北侧60~90 km区域、北川和南坝东北侧30 km处;(3) 断层破裂停止的东北端约30 km长的区域.其中,破裂贯穿到地表的映秀、北川和南坝是低频和高频辐射都很强的区域.对于无观测记录场点,选择其临近且场地条件类似的台站加速度提取平稳随机过程,结合高频辐射分布和衰减关系得到的包络,合成了加速度时程,可为汶川地震结构震害分析提供地震动输入.

       

    • 图  1  (a) 线源模型示意图;(b)51AXT台的东西向加速度包络

      a.红色五角星表示震中,蓝色圆表示子断层,倒三角表示子震;b.右上图为线源模型中每个子断层在51AXT产生的包络,右下图为51AXT台观测包络及合成包络

      Fig.  1.  (a) Schematic diagram of the line source model. (b) Acceleration envelope of EW component at the station 51AXT

      图  2  包络函数模型示意图

      Fig.  2.  Schematic diagram of the envelope function model

      图  3  本文震中距与包络参数t1tsC的关系与霍俊荣 (1989)肖亮 (2011)相应结果的对比

      黑色表示霍俊荣的结果,褐色表示肖亮的结果,红色表示本文南北向结果,蓝色表示本文东西向结果

      Fig.  3.  Comparison about the relation of envelope parameters t1, ts and C to epicentral distance in the article, Huo (1989) and Xiao (2011)

      图  4  汶川地震线源模型及所用30个近场台站分布

      Fig.  4.  Line source model of Wenchuan earthquake and the distribution of 30 near-filed stations

      图  5  子断层间隔为10 km, 15 km和20 km时,不加噪声与加10%噪声反演得到的子震个数与输入模型对比

      Fig.  5.  Comparison about subsource number between input model and the inversion result under the condition of noiseless or 10% noise for the subfault interval 10 km, 15 km and 20 km

      图  8  子断层包含子震的分布

      3个红色小三角形分别表示映秀、北川和南坝地区

      Fig.  8.  The distributions of the subsources in the fault plane

      图  6  合成包络与观测包络残差对应迭代次数的变化

      Fig.  6.  The variation of the residue between synthetic and observed envelopes versus iterations

      图  7  观测包络与合成包络对比

      实线表示观测包络,虚线表示合成包络,每幅图的上侧字母表示台站及分量

      Fig.  7.  Comparison of the observed and the synthetic envelopes

      图  9  51AXT台、映秀和北川合成加速度记录及反应谱

      Fig.  9.  The synthetic accelerations and their response spectra at 51AXT station, Yingxiu and Bei chuan

      表  1  芦山地震43个台站位置及震中距

      Table  1.   Locations and epicentral distance of the 43 stations of Lushan earthquake

      台站代码 经度 (E) 纬度 (N) 震中距 (km)
      51BXD 102.81° 30.37° 16.5
      51BXZ 102.89° 30.47° 21.8
      51BXM 102.71° 30.38° 25.7
      51BXY 102.90° 30.53° 27.8
      51YAM 103.11° 30.07° 28.1
      51LSF 102.90° 30.02° 29.8
      51QLY 103.27° 30.41° 32.9
      51YAD 103.01° 29.98° 34.2
      51HYT 103.37° 29.91° 58.1
      51PJW 103.65° 30.30° 67.1
      51KDZ 102.18° 30.12° 77.1
      51XJW 102.64° 30.96° 81.4
      51HYQ 102.62° 29.58° 84.8
      51HYY 102.45° 29.65° 86.0
      51XJD 102.36° 31.00° 97.6
      51LDJ 102.21° 29.69° 98.1
      51KDT 101.96° 30.05° 99.1
      51DJZ 103.59° 31.02° 102.3
      51PXZ 103.76° 30.91° 103.7
      51CDZ 104.09° 30.56° 113.4
      51HYW 102.90° 29.22° 118.2
      51KDG 101.57° 29.96° 137.7
      51DFB 101.48° 30.48° 142.9
      51KDX 101.50° 30.04° 143.1
      51GLQ 102.77° 28.97° 147.8
      51SFB 104.00° 31.28° 149.1
      51MNW 102.28° 28.81° 177.1
      51HSS 103.42° 31.94° 190.0
      51MNC 102.24° 28.64° 195.3
      51MNA 102.17° 28.61° 201.2
      51MNJ 102.18° 28.55° 207.2
      51MNT 102.16° 28.55° 208.3
      51MNH 102.07° 28.46° 220.7
      51LBH 103.79° 28.44° 220.9
      51JYH 104.61° 31.77° 228.6
      51LBD 103.57° 28.26° 232.8
      51MNL 102.19° 28.29° 233.9
      51JYT 104.75° 31.78° 238.4
      51MNM 102.17° 28.20° 243.8
      51MNZ 102.07° 28.20° 246.8
      51JYW 104.78° 31.88° 248.8
      51XCY 102.16° 27.74° 293.8
      51YYJ 101.96° 27.72° 301.9
      下载: 导出CSV

      表  2  包络衰减关系的回归系数

      Table  2.   Regression coefficient of attenuation relationship of envelope

      方向 参数 C1 C2 C3 R0(km) ε
      东西 t1 -1.836 0.234 0.674 10 0.176
      I0 -0.257 0.752 -1.721 10 0.247
      ts -2.036 0.295 0.573 10 0.137
      C 1.361 -0.221 -0.488 10 0.107
      南北 t1 -1.303 0.145 0.730 10 0.101
      I0 -0.396 0.716 -1.523 10 0.211
      ts -2.073 0.334 0.439 10 0.129
      C 1.321 -0.242 -0.405 10 0.104
      下载: 导出CSV

      表  3  汶川地震30个台站位置及震中距、断层距

      Table  3.   The locations of 30 stations and their epicenter and fault distance

      代码 经度 (E) 纬度 (N) 震中距 (km) 断层距 (km) 上盘 下盘
      51WCW 103.18° 31.04° 18.0 16.1
      51DXY 103.52° 30.59° 46.9 43.9
      51LXT 103.45° 31.56° 64.0 43.6
      51LXM 103.34° 31.57° 64.5 51.4
      51QLY 103.27° 30.41° 65.1 43.4 \ \
      51BXY 102.91° 30.53° 66.4 10.8 \ \
      51SFB 103.99° 31.28° 68.1 14.0
      51XJD 102.64° 30.97° 68.7 44.0
      51LXS 102.91° 31.53° 73.7 74.9
      51MXN 103.73° 31.58° 74.4 27.8
      51PJW 103.63° 30.29° 82.0 76.2
      51PJD 103.41° 30.25° 82.4 65.9 \ \
      51MZQ 104.09° 31.52° 91.0 0.2
      51LSJ 102.93° 30.16° 101.1 49.3 \ \
      51AXT 104.30° 31.54° 108.3 11.2
      51DYB 104.46° 31.29° 109.9 42.5
      51HSL 103.26° 32.06° 119.4 98.1
      51MXD 103.68° 32.04° 120.6 70.2
      51JYH 104.63° 31.78° 149.2 11.3
      51JYD 104.74° 31.78° 157.7 18.2
      51SPA 103.64° 32.51° 171.1 112.6
      51JYC 104.99° 31.90° 184.8 23.6
      51SPC 103.62° 32.78° 200.5 136.8
      51PWM 104.52° 32.62° 211.8 67.1
      51JZW 104.21° 33.03° 240.6 121.2
      51JZG 104.32° 33.12° 253.5 122.0
      51CXQ 105.93° 31.74° 257.9 95.8
      51GYS 105.84° 32.15° 268.0 55.2
      62WUD 104.99° 33.35° 304.0 99.7
      51GYZ 106.11° 32.62° 316.8 31.9 \ \
      下载: 导出CSV

      表  4  采用4种不同破裂速度和5种不同时间间隔得到的合成包络与观测包络的残差

      Table  4.   Residue of synthetic and observed envelopes at 4 different rupture velocity and 5 time interva

      vr(km/s) Δt(s)
      0.6 0.8 1.0 1.2 1.4
      2.6 257.7 258.1 258.4 257.2 257.8
      2.8 243.5 241.9 240.8 241.1 240.2
      3.0 239.9 234.4 232.5 229.2 230.2
      3.2 239.8 233.1 229.0 224.5 227.3
      下载: 导出CSV
    • [1] Aguirre, J., Irikura, K., 2003.Reliability of Envelope Inversion for the High-Frequency Radiation Source Process Using Strong Motion Data:Example of the 1995 Hyogoken Nanbu Earthquake.Bull.Seismol.Soc.Amer.,93(5):2005-2016.doi: 10.1785/0120020132
      [2] Cocco, M., Boatwright, J., 1993.The Envelopes of Acceleration Time Histories.Bull.Seismol.Soc.Amer.,83(4):1095-1114.
      [3] Du, H.L.., Xu, L.S., Chen, Y.T, 2009.Rupture Process of the 2008 Great Wenchuan Earthquake from the Analysis of the Alaska-Array Data.Chinese J.Geophys.,52(2):372-378 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract918.shtml
      [4] Li, X.J., Liu, L., Wang, Y.S., et al., 2010.Analysis of Horizontal Strong-Motion Attenuation in the Great 2008 Wenchuan Earthquake.Bull.Seismol.Soc.Amer.,100(5B):2440-2449.doi: 10.1785/0120090245
      [5] Liu, Q.F., Li, X.J., 2009.Preliminary Analysis of the Hanging Wall Effect and Velocity Pulse of the 5.12 Wenchuan earthquake.Earthquake Engineering and Engineering Vibration,8(2):165-177.doi: 10.1007/s11803-009-9043-2
      [6] Hanks, T.C., 1974.The Faulting Mechanism of the San Fernando Earthquake.J.Geophys.Res.,79(8):1215-1229.doi: 10.1029/JB079i008p01215
      [7] Hartzell, S., Liu, P.C., Mendoza, C., 1996.The 1994 Northridge, California, Earthquake:Investigation of Rupture Velocity, Risetime, and High-Frequency Radiation.J.Geophys.Res.,101:20091-20108.doi: 10.1785/0120120108
      [8] Hartzell, S., Mendoza, C., Ramirez-Guzman, L., et al., 2013.Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake:Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data.Bull.Seismol.Soc.Amer.,103(1):353-370.doi: 10.1785/0120120108
      [9] Huo, J.R., 1989.Study on the Attenuation Laws of Strong Earthquake Ground Motion Near the Source (Dissertation).Institute of engineering mechanics, China earthquake administration, Haerbin (in Chinese with English abstract).
      [10] Kakehi, Y., Irikura, K., 1996.Estimation of High-Frequency Wave Radiation Areas on the Fault Plane by the Envelope Inversion of Acceleration Seismograms.Geophys.J.Int.,125(3):892-900.doi: 10.1111/j.1365-246X.1996.tb06032.x
      [11] Kakehi, Y., Irikura, K., Hoshiba, M., 1996.Estimation of High-Frequency Wave Radiation Areas on the Fault Plane of the 1995 Hyogo-ken Nanbu Earthquake by the Envelope Inversion of Acceleration Seismograms.J.Phys.Earth,44:505-517. doi: 10.4294/jpe1952.44.505
      [12] Kakehi, Y., Irikura, K., 1997.High-Frequency Radiation Process During Earthquake Faulting Envelope Inversion of Acceleration Seismograms from the 1993 Hokkaido-Nasei-Oki, Japan, Earthquake.Bull.Seismol.Soc.Amer.,87(4):904-917. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.660.988&rep=rep1&type=pdf
      [13] Madariaga, R., 1977.High Frequency Radiation from Crack (Stress Drop) Models of Earthquake Faulting.Geophys.J.R.Str.Soc.,1(3):625-651.doi: 10.1111/j.1365-246X.1977.tb04211.x
      [14] Mikumo, T., Hirahara, K., Miyatake, T., 1987.Dynamical Fault Rupture Process in Heterogeneous Media.Techtonophysics,144(1-3):19-36.doi: 10.1016/0040-1951(87)90006-0
      [15] Nakahara, H., Nishimura, T., Sato, H., et al., 1998.Seismogram Envelope Inversion for the Spatial Distribution of High-Frequency Energy Radiation from the Earthquake Fault:Application to the 1994 far East off Sanriku Earthquake, Japan.J.Geophys.Res.,103:855-867.doi: 10.1029/97JB02676
      [16] Nakahara, H., 2008.Seismogram Envelope Inversion for High-Frequency Seismic Energy Radiation from Moderate to Large Earthquakes.Adv.Geophy.,50:401-426. doi: 10.1016/S0065-2687(08)00015-0
      [17] Nakahara, H., 2013.Envelope Inversion Analysis for High-Frequency Seismic Energy Radiation from the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake.Bull.Seismol.Soc.Amer.,103(2B):1348-1359.doi: 10.1785/0120120155
      [18] Nakamura, T., Tsuboi, S., Kaneda, Y., et al., 2010.Rupture Process of the 2008 Wenchuan, China Earthquake Inferred from Teleseismic Waveform Inversion and forward Modeling of Broadband Seismic Waves.Tectonophysics,491(1-4):72-84.doi: 10.1016/j.tecto.2009.09.020
      [19] Tang, H., Li, X.J., Li Y.Q., 2012.Site Effect of Topograghy on Ground Motions of Xishan Park of Zigong City.Journal of Vibration and Shock,31(8):74-79 (in Chinese with English abstract). https://www.researchgate.net/publication/272601946_Research_of_Earthquake_Topographic_Effect
      [20] Wang, W.M.., Zhao, L.F., Li, J., et al., 2008.Rupture Process of the Ms 8.0 Wenchuan Earthquake of Sichuan, China.Chinese J.Geophys.,51(5):1403-1410 (in Chinese). https://www.researchgate.net/publication/235769248_Rupture_process_of_the_1944_Tonankai_earthquake_MS_81_from_the_inversion_of_teleseismic_and_regional_seismograms
      [21] Wen, R.Z., Ren, Y.F., Huang, X.T., 2013.Strong Motion Records and Their Engineering Damage Implications for Lushan Earthquake on April 20, 2013.Journal of Earthquake Engineering and Engineering Vibration,33(4):1-14 (in Chinese with English abstract). https://www.researchgate.net/publication/279703557_Maximum_acceleration_recording_from_Lushan_earthquake_on_April_20_2013
      [22] Xiao, L., 2011.Study on the Attenuation Relationships of Horizontal Ground Motion Parameters Near the Sourse of Rock Site (Dissertation).Institute of geophysics, China earthquake administration, Beijing (in Chinese with English abstract).
      [23] Xu, X.W., Wen, X.Z., Ye, J.Q., et al., 2008.The Ms8.0 Wenchuan Earthquake Surface Ruptures and its Seismogenic Structure.Seismology and Geology,30(3):597-629(in Chinese with English abstract). https://www.researchgate.net/publication/286044433_The_Ms80_Wenchuan_Earthquake_and_co-seismic_river_response
      [24] Yamada, M., Heaton, T., 2008.Real-Time Estimation of Fault Rupture Extent Using Envelopes of Acceleration.Bull.Seismol.Soc.Amer.,98(2):607-619.doi: 10.1785/0120060218
      [25] Yuan, Y.F., 2008.Loss Assessment of Wenchuan Earthquake.Journal of Earthquake Engineering and Engineering Vibration,28(5):10-19 (in Chinese with English abstract). https://www.researchgate.net/publication/296555369_Loss_assessment_of_Wenchuan_Earthquake
      [26] Yu, Y., 2012.Empirical Estimate Model for Ground Motion of Wenchuan Earthquake Zone (Dissertation).Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
      [27] Zeng, Y.H., Aki, K., Teng, T.L., 1993.Mapping of the High-Frequency Source Radiation for the Loma Prieta Earthquake, California.J.Geophys.Res.,98(B7):11981-11993.doi: 10.1029/93JB00346
      [28] Zhang, H., GE, Z.X., 2010.Tracking the Rupture of the 2008 Wenchuan Earthquake by Using the Relative Back-Projection Method.Bull.Seismol.Soc.Amer.,100(5B):2551-2560.doi: 10.1785/0120090243
      [29] Zhang, Y., Feng, W.P., Xu L.S., et al., 2008.The Rupture Process of the Great Wenchuan Earthquake.Science China Earthquake Sciences,38(10):1186-1194 (in Chinese). doi: 10.1007%2Fs11589-010-0752-4.pdf
      [30] Zhang, Z.W., Zhou, L.Q., Cheng, W.Z., et al., 2015.Focal Mechanism Solutions of Lushan Mw6.6 Earthquake Sequence and Stress Field for Aftershock Zone.Earth Science,40(10):1710-1722(in Chinese with English abstract). https://www.researchgate.net/publication/284735585_Focal_mechanism_solutions_of_Lushan_Mw66_earthquake_sequence_and_stress_field_for_aftershock_zone
      [31] Zhao, C.P., Chen, Z.L., Zhou, L.Q., et al., 2009.Rupture Process of the 8.0 Wenchuan Earthquake of Sichuan, China:The Segmentation Feature.Chinese Sci.Bull.,54:3475-3482 (in Chinese with English abstract).
      [32] Zhao, Z., Zhang, R.S., 1987.Primary Study of Crustal and Upper Mantle Velocity Structure of Sichuan Province.Acta Sesimologica Sinica,9(2):154-166 (in Chinese with English abstract).
      [33] 杜海林, 许力生, 陈运泰, 2009.利用阿拉斯加台阵资料分析2008年汶川大地震的破裂过程.地球物理学报, 52(2):372-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902010.htm
      [34] 霍俊荣, 1989.近场强地面运动衰减规律的研究 (博士学位论文).哈尔滨:中国地震局地球物理研究所.
      [35] 唐晖, 李小军, 李亚琦, 2012.自贡西山公园山脊地形场地效应分析.振动与冲击, 31(8):74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201104011.htm
      [36] 王卫民, 赵连锋, 李娟, 等, 2008.四川汶川8.0级地震震源过程.地球物理学报, 51(5):1403-1410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805014.htm
      [37] 温瑞智, 任叶飞, 黄旭涛, 等, 2013.芦山7.0级地震强震动记录及其震害相关性.地震工程与工程振动, 33(4):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304001.htm
      [38] 肖亮, 2011.水平向基岩强地面运动参数衰减关系研究 (博士学位论文).北京:中国地震局地球物理研究所.
      [39] 徐锡伟, 闻学泽, 叶建青, 等, 2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629.
      [40] 袁一凡, 2008.四川汶川8.0级地震损失评估.地震工程与工程振动, 28(5):10-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200805002.htm
      [41] 喻烟, 2012.汶川地震区地震动估计经验模型 (博士学位论文).哈尔滨:中国地震局工程力学研究所.
      [42] 张勇, 冯万鹏, 许力生, 等, 2008.2008年汶川大地震的时空破裂过程.中国科学 (D辑), 38:1186-1194. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810003.htm
      [43] 张致伟, 周龙泉, 程万正, 等, 2015.芦山Mw6.6地震序列的震源机制及震源区应力场.地球科学, 40(10):1710-1722. http://earth-science.net/WebPage/qk.aspx?id=142#
      [44] 赵翠萍, 陈章立, 周连庆, 等, 2009.汶川Mw8.0级地震震源破裂过程研究:分段特征.科学通报, 54:3475-3482.
      [45] 赵珠, 张润生, 1987.四川地区地壳上地慢速度结构的初步研究.地震学报, 9(2):154-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198702003.htm
      [46] 中国地震局震害防御司, 2008.2008汶川8.0级地震未校正加速度记录.北京:地震出版社.
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  3748
    • HTML全文浏览量:  1105
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-03
    • 刊出日期:  2016-10-03

    目录

      /

      返回文章
      返回